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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:Candida auris is an emerging fungal pathogen with unusual evolutionary history—there are

multiple distinct phylogeographic clades showing a near simultaneous transition from a cur-

rently unknown reservoir to nosocomial pathogen. Each of these clades has experienced

different selective pressures over time, likely resulting in selection for genotypes with differ-

ential fitness or phenotypic consequences when introduced to new environments. We also

observe diversification within clades, providing additional opportunities for phenotypic differ-

ences. These differences can have large impacts on pathogenic potential, drug resistance

profile, evolutionary trajectory, and transmissibility. In recent years, there have been signifi-

cant advances in our understanding of strain-specific behavior in other microbes, including

bacterial and fungal pathogens, and we have an opportunity to take this strain variation into

account when describing aspects of C. auris biology. Here, we critically review the literature

to gain insight into differences at both the strain and clade levels in C. auris, focusing on phe-

notypes associated with clinical disease or transmission. Our goal is to integrate clinical and

epidemiological perspectives with molecular perspectives in a way that would be valuable

for both audiences. Identifying differences between strains and understanding which pheno-

types are strain specific will be crucial for understanding this emerging pathogen, and an

important caveat when describing the analysis of a singular isolate.

Introduction

Fungal diseases account for over 6.5 million invasive infections annually, with nearly one quar-

ter of these attributed to members of the Candida genus [1]. In 2009, a clinical report detailed

the isolation of a previously uncharacterized pathogenic member of this genus, Candida auris,
from the ear canal of an inpatient in a Japanese hospital [2]. This report marked the beginning

of the emergence of a globally distributed, often multidrug-resistant, outbreak-capable patho-

gen, ultimately recognized by the United States Centers for Disease Control and Prevention

(CDCAU : Pleasenotethat}CDC}hasbeenaddedafter}CentersforDiseaseControlandPrevention}asitsabbreviationatfirstmentioninthesentence}Thisreportmarkedthebeginningoftheemergenceofa:::}Pleaseconfirmthatthiscorrectionisvalid:) and the World Health Organization as an urgent and critical public health threat [2,3].

Within a decade of its initial characterization, surveillance initiatives defined the nearly simul-

taneous emergence from a currently unknown reservoir of distinct C. auris genetic lineages in

dozens of countries across all 6 major continents [4,5], driven both by multiple geographic
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origins and carriage through patient travel [5]. C. auris infection presents similarly to candidi-

asis caused by other Candida species, with the most severe cases attributed to candidemia and

subsequent organ dissemination [6]. Unlike related Candida species, however, C. auris is fre-

quently reported in association with nosocomial transmission, leading to clonally dissemi-

nated outbreaks in healthcare settings and in some circumstances, multiyear and regionally

endemic spread [7,8]. Surveillance efforts in the US and Europe have recognized exponentially

increasing rates of outbreaks since the introduction of C. auris into these regions, highlighting

the difficulty in containing this organism [9,10]. In outbreak settings, C. auris persistently col-

onizes patient skin, hospital surfaces, and medical devices, demonstrates contaminative and

fomite transmission between individuals, and causes invasive infections, often with high rates

of mortality and widespread acquired antifungal resistance [5,8,11–15]. For these reasons, C.

auris is recognized as a critical public health threat and represents a substantial clinical and

infection prevention challenge.

Four major genetic lineages of C. auris have been extensively described, with origins clus-

tering geographically in South Asian (I), East Asian (II), African (III), and South American

(IV) clades [5]. Sparse reports of isolates that are genetically distinct from the 4 major clades

suggest at least 2 additional lineages, with isolates having geographic links to Iran (V) or Singa-

pore and Bangladesh (VI) [16–18]. Notably, the clades are genetically well separated, differing

by tens of thousands to hundreds of thousands of single nucleotide polymorphisms (SNPs)

[18–20]. Even within clades, individual strains can differ by thousands of SNPs, exhibit karyo-

typic diversification, and have stable chromosomal rearrangements [5,19–22]. Increasing evi-

dence even suggests isolates collected from clonal outbreaks, differing only by small numbers

of SNPs, can exhibit clinically meaningful phenotypic variation, suggesting the possibility of

adaptation within the timescale of outbreak settings [23–25]. The result is the emergence of at

least 6 highly divergent genetic lineages of C. auris and within-lineage variation, ultimately

associated with divergent clinically relevant phenotypes such as antifungal resistance [5], viru-

lence and pathogenesis in infection models [26–28], body site tropism [16,29], outbreak poten-

tial [29,30], morphogenesis [31], host colonization [32], disinfection resistance [33–35], and

metabolite utilization [36].

In this review, we explore experimental, surveillance, and clinical data to synthesize evi-

dence of clinically impactful variation between strains and between clades of C. auris. We per-

form a systematic analysis of the most extensively described examples of variation and propose

mechanistic models to understand the basis and scope of such variation and to clarify ambigu-

ity present in isolated reports. Finally, we offer hypotheses to promote further research pertain-

ing to the mechanistic and molecular bases for medically relevant behavior in C. auris and

perspectives around studying a global, emerging, divergent pathogen.

Topical focus

We performed a systematic search of PubMed, Web of Science, and Scopus databases with the

only search term “Candida auris” to identify all records from inception until August 4, 2023.

Search results were deduplicated using the Systematic Review Accelerator [37] to yield 1,945

unique reports. Titles and abstracts for all reports were reviewed, and each study was catego-

rized thematically. A weekly recurring automated PubMed search for “Candida auris” was per-

formed to identify and categorize new reports as appropriate during manuscript preparation.

Based on categorical representation, topics were selected that were most likely to encompass

characterization of clinically relevant strain variation.

Among clinical reports, 192 included more than 1 patient. The full text of each of these

reports was reviewed, and data were systematically extracted using a standardized form to
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record relevant findings. To perform a meta-analysis of crude mortality, 39 reports

[4,6,8,14,38–76] were selected that met the acceptance criteria of having (1) At least 5 infection

cases; (2) Determination of clade made by the authors or identifiable through publicly available

analyses through one or more molecular typing techniques; and (3) Crude in-hospital mortal-

ity reported. Meta-analysis with subgroup analysis was performed using the meta R package

(version 6.5–0) using a random intercept logistic regression model with logit-transformation,

maximum-likelihood estimator for τ2 without a common estimate across subgroups, and the

Clopper–Pearson confidence interval for individual studies with a continuity correction of 0.5

for studies with zero cell frequencies.

For experimental virulence models, 11 reports of invertebrate or murine infection models

[24,25,28,77–84] were identified that met the acceptance criteria of having (1) Multiple isolates

with clade or body site origin indicated; (2) Identical infection protocol between isolates; and

(3) Survival data available. Because of the small number of studies available, an acceptance cri-

teria including any study that compared more than 1 isolate from different groups was estab-

lished, with the anticipated limitation that studies with small sample sizes might exhibit

greater variation from a true effect. For each study, isolates were ranked by virulence score:

first by overall mortality (number of mortality events or time to 100% mortality, whichever

was more appropriate) then by median survival time. Survival results for individual isolates

were plotted by within-study ranks, colored by clade or origin.

To evaluate outbreak sizes, 109 clinical reports were selected that met the acceptance crite-

ria of having (1) At least 2 linked cases; (2) Single center or clustered multicenter outbreak; (3)

Dates of the outbreak or data collection reported; and (4) Location of the outbreak reported.

Outbreak size was determined as the total number of affected patients (colonized or infected),

and average rate was determined by dividing the total number of affected patients by the length

of time sampling was performed.

C. auris association with human hosts

While limited evidence supports the possibility of environmental, zoonotic, or foodborne res-

ervoirs of C. auris [85–90], the best understood reservoir for carriage, transmission, and dis-

persal is the human body. C. auris exhibits both asymptomatic and infectious associations with

susceptible hosts, and understanding the dynamics of these associations has been a topical

focus for much of the clinical and experimental literature. Critically, decontamination of colo-

nized or infected patients with antiseptics or antifungals has presented substantial clinical chal-

lenges, and recent work has highlighted some of the biological underpinnings exacerbating

these difficulties.

Virulence

C. auris persistently colonizes multiple body sites. Most prominently, skin sites such as the

nares, palms, fingertips, axillae, inguinal creases, and toe webs show high positivity, but asymp-

tomatic isolation from other nonsterile body sites such as lungs and urine is not uncommon

[11,91]. Unlike for some other human-associated Candida species, colonization is likely a rare

event specific to individuals with healthcare exposures. For instance, a recent search of approx-

imately 300,000 publicly available metagenomic runs found only 20 runs from 5 projects likely

containing C. auris genomic information, most of which were specifically linked to surveil-

lance initiatives in C. auris outbreak settings [92]. Colonization can increase the risk for dis-

seminated infection, especially candidemia [93,94]. One report found that approximately 5%

to 10% of colonized patients develop bloodstream infections [58], while another estimated a

25% cumulative risk of candidemia 60 days after initial detection of colonization [42]. In
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addition, urinary tract infections, wound infections, otitis, and skin abscesses are common,

but C. auris is not prominently associated with other common types of candidiasis such as oral

thrush or vulvovaginal candidiasis [95]. The clinical presentation of invasive disease is often

nonspecific and indistinguishable from other types of systemic microbial infection, and

reported in-hospital crude mortality rates for C. auris infection range from 25% to 70%

[96,97].

Multiple mammalian and invertebrate infection models have been employed to character-

ize C. auris virulence, with some reports directly comparing isolates of distinct genetic lineages

or origins [24,25,27,28,77–84]. Independently, 2 separate reports concluded that isolates from

clade IV showed the highest virulence of the 4 major clades in either murine or silkworm

infection models [27,28]. We found this to be consistent across multiple reports, with clade IV

and clade I isolates generally exhibiting virulence greater than the median of all comparators

and clade II and clade III generally exhibiting virulence below the median (Fig 1A). Notably,

of the 4 major clades, only clade II is not associated with human-invasive infection or out-

breaks, consistent with its poorer pathogenicity in infection models [27–30]. One possible

mechanism of this phenotypic diversity is adaptation in response to host association. Based on

reports comparing the virulence of isolates recovered from different body sites, however, we

found no evidence of differential pathogenicity associated with strains originating from either

invasive or colonizing sites (Fig 1B). Together, this analysis suggests genetic lineage, but not

within host adaptation, predicts C. auris virulence in infection models.

To investigate whether the clade-specific virulence was reflected in human infection, we

performed a meta-analysis of crude mortality after C. auris infection for all case reports com-

prising at least 5 infected individuals and for which C. auris clade was reported based on

molecular typing. As clades II, V, and VI have not yet been associated with outbreaks, no case

reports met the selection criteria for number of infected individuals. For the remaining reports

comprising isolates from clades I, III, and IV, pooled crude mortality was 41% (95% CI: 37%

to 45%) with a prediction interval of 26% to 57%, which aligns well with previous reports of

crude mortality for C. auris infection (Fig 2). Egger’s test gave a p-value of 0.4095, indicating

no evidence of publication bias (Fig 2), and heterogeneity among reports was marginal and

nonsignificant (I2 = 24%, p = 0.09). Subgroup analysis indicated nonsignificant differences

between C. auris clades (χ2 = 2.58, df = 2, p = 0.27). However, clade IV showed the highest

effect size (45% mortality, 95% CI: 32% to 59%), followed by clade I (42% mortality, 95% CI:

37% to 48%), then clade III (35% mortality, 95% CI: 26% to 46%). While these differences do

not reach statistical significance, the trend agrees with the attributable mortality data demon-

strated by the experimental virulence models, suggesting clade IV and potentially clade I may

truly exhibit greater pathogenicity during infection. Importantly, our meta-analysis only

included crude mortality and so is likely underpowered to describe attributable differences by

C. auris clade. Moreover, because the genetic lineages have historically clustered geographi-

cally, it is difficult to uncouple strain-specific virulence from regionally differential healthcare

practices. However, our analysis suggests the possibility that clade IV is more virulent than

other clades.

Host colonization

In vitro and in vivo models have been developed to study skin colonization by C. auris. In an

in vitro model using an artificial human axillary sweat medium and ex vivo porcine skin as a

substrate, C. auris was able to produce dense, multilayered accumulation [98]. Interestingly, C.

auris exhibited a fungal burden 10-fold greater than that of C. albicans in the artificial sweat

medium but not RPMI-MOPS, along with an apparent persistence of C. auris in concentrated
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Fig 1. Experimental infection models suggest C. auris exhibits clade-specific but not body site specific virulence. Survival data were

extracted from studies [24,25,28,77–84] directly comparing virulence between isolates of different clades (A) or body site origins (B) in

animal infection models. For each study, the virulence of each isolate was ranked by mortality and median survival. Stacked bars plot of

each isolate per study, with higher virulence rankings plotted at the top. The horizontal dashed line corresponds to the average virulence

rank for each study. Because isolates were ranked on survival by time to mortality and median survival time, isolates with tied ranks are
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plotted at the same height on the y-axis. Where isolates from multiple groups share a tied rank, the width of bars grouped horizontally

corresponds to the proportion of isolates of that rank attributable to a given group. Pie charts summarize the survival rankings by bisecting

all isolates into high or low virulence scores, corresponding to a virulence rank greater than the median of within study comparators (High

Virulence) or less than the median (Low Virulence). For panel B, hot colors indicate invasive origins and cool colors indicate colonizing

origins.

https://doi.org/10.1371/journal.ppat.1012011.g001

Fig 2. Forest plot on crude mortality of C. auris infection reports shows nonsignificant variation in crude mortality

rates by clade. Effect size (crude mortality) and 95% confidence interval are reported for each included report [4,6,8,14,38–

76]. A random effects model was used to estimate overall crude mortality (vertical dotted line included for reference across

each report) and the average crude mortality for each clade through subgroup analysis. Funnel plot included for

investigation of evidence of publication bias.

https://doi.org/10.1371/journal.ppat.1012011.g002
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sweat medium designed to mimic the evaporation of sweat even after 14 days, where the C.

albicans cells were not viable [98]. This finding suggests a distinct capacity for growth in a

physiological environment that might be encountered during colonization of high-sweat body

sites such as the axillae or inguinal crease. The salt concentration in this synthetic sweat

medium is around 3%, and other reports have found this level of salinity to be well tolerated by
C. albicans, suggesting the differential growth capacities in this media between C. albicans and

C. auris may not be attributed to differences in halotolerance alone, despite increased haloto-

lerance in C. auris compared to other clinically relevant Candida species [99,100]. In this same

model, the observed substantial fungal burden was achieved by clinical isolates of all 4 major

clades of C. auris without notable differences [101]. This behavior likely reflects an advantage

for C. auris in human skin colonization, which serves as a source for nosocomial transmission

between patients. Notably, in this model, fungal burden was extensive on the skin surface, but

there was no evidence of invasive growth into the dermis.

Another study, using an in vivo murine model of skin colonization, observed varying levels

of fungal burden following colonization with individual isolates from each of the 4 major

clades [32]. In this model, C. auris was applied onto the shaved mouse skin. A clade III isolate

showed the greatest fungal burden 14 days after infection, followed by clade IV, then clade I,

and a clade II isolate exhibited the lowest fungal burden. Notably, histopathological evidence

suggested C. auris cells invaded deeper into the skin tissue and resided within the hair follicle

[32]. Furthermore, C. auris cells were recovered from skin tissues for up to 4 months, even

after surface swabbing resulted in negative cultures, perhaps suggesting that such prolonged

persistence could be attributed to its potential to survive deeper within the skin tissue.

The fungal factors contributing to strain or clade-specific advantages in skin colonization

have only begun to be explored. Utilizing both an ex vivo human skin model and an in vivo

murine epicutaneous model, we specifically investigated the role of adhesins in skin coloniza-

tion in 2 clade I isolates, AR0382 and AR0387 [23]. We observed a noticeable difference in the

fungal burden between these 2 closely related isolates. This variation in colonization capacity

could be partly attributed to the differential expression of 2 adhesins: the canonical adhesin

Iff4109 and the C. auris-specific adhesin Scf1 [23]. Notably, the deletion of SCF1 and IFF4109
in AR0382 led to a reduced ability to colonize both ex vivo human skin explants and in vivo

murine skin. Conversely, overexpressing SCF1 in AR0387 significantly enhanced its skin colo-

nization capacity. Another report found increased bioburden in skin colonization models

associated with strain-specific increased expression of the adhesin Als4112 [102]. Expression

of these adhesins may directly mediate surface association with the skin substrate. As adhesin

expression varies widely among C. auris isolates, this may substantially explain variability in

strain colonization potentials [23,102]. Interestingly, a study using an intradermal infection

model observed nearly equivalent fungal burdens among 4 strains from the 4 major clades,

suggesting the source of strain-specific variation may have been bypassed by intradermal inoc-

ulation in this case [103]. Natural variation observed in colonization potential then likely pre-

dominantly reflects variation in skin surface association.

In humans, patients colonized with C. auris can remain positive for extensive periods of

time [7,58]. The observation that C. auris can reside in the hair follicle and persist for months

in murine colonization model may in part explain the prolonged colonization of C. auris on

patient skin [32]. In addition, the recovery of C. auris cells from skin tissues even after negative

cultures from surface swabs could be reflected by challenges in identifying C. auris coloniza-

tion during patient screening. Proctor and colleaguesAU : Pleasenotethatallinstancesof }etal:}inthemaintexthavebeenchangedto}andcolleagues}; asperPLOSstylereported that taking swab samples from

at least 6 body sites, including nares, palm and fingertips, toe webs, perianal skin, inguinal

crease, and axilla, maximizes the sensitivity of colonization screening [11]. However, for rou-

tine screening and practicality, the authors recommended focusing on high-yield areas such as

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1012011 March 1, 2024 7 / 26

https://doi.org/10.1371/journal.ppat.1012011


the armpits, inguinal creases, and anterior nostrils [11]. Antiseptic agents such as chlorhexi-

dine gluconate (CHG) are routinely utilized for skin care and decontamination in long-term

care patients. Using an in vivo murine model, Huang and colleagues showed that treating

mice with CHG prior to or post C. auris colonization significantly reduced fungal burden on

the skin [32]. However, some reports suggest C. auris can continue to spread even after the

introduction of unit-wide CHG bathing [7], indicating the effectiveness of CHG bathing in

reducing C. auris skin colonization requires additional investigation.

Despite the advancements in our understanding of C. auris colonization dynamics, the abil-

ity of available colonization models to recapitulate human data is largely unexplored. First, it is

unclear whether critical interactions between C. auris and the human skin microbiome would

be recapitulated by the in vivo murine models. One study showed distinct microbiome compo-

sitions associated with healthy patients compared to C. auris-colonized patients [11]. The

microbiome of C. auris-negative samples were dominated by Malassezia species and skin com-

mensal bacteria species: Staphylococcus hominis, Corynebacterium tuberculostearicum, Staphy-
lococcus epidermidis, Staphylococcus caprae, and Corynebacterium striatum. However, C. auris-
positive samples were associated with various Candida species along with bacteria such as

Pseudomonas aeruginosa, Klebsiella pneumoniae, Providencia stuartii, and Proteus mirabilis.
Whether this association has a causal influence on C. auris colonization remains unclear.

However, the authors proposed an example mechanism that could directly link the C. auris-
associated microbiome with C. auris colonization, pointing to reports demonstrating that the

skin commensal S. epidermidis induces the expression of the antimicrobial peptide LL-37 in

human keratinocytes [104], which could, in turn, inhibit C. auris growth and skin colonization

[105].

Furthermore, the physiological conditions present in distinct body sites favored by C. auris
for skin colonization may not be fully captured in existing models. Common colonization sites

like the axilla, groin, nostrils, and fingertips contribute to both persistent infections and trans-

mission risks, although each body site presents a unique colonization environment [11,106].

For instance, differing from the epidermal cells found in other areas, the nares are lined with

mucosal epithelium, which secretes mucus, contributing to the nares’ moist environment.

Alternatively, the axillae are home to a higher concentration of sweat glands and typically

exhibits a pH of 6.5, in contrast to the more acidic pH of 5.5 found in other skin areas [107].

This reduction in acidity is associated with altered bacterial growth, resulting in a distinct

microbiome compared to other body sites [108]. Where C. auris robustly colonizes diverse

skin niches, adaptations to distinct environmental pressures are likely to inform differential

colonization dynamics.

Antifungal resistance

The high rate of acquired antifungal resistance in C. auris poses a substantial threat to treat-

ment efficacy. While antifungal susceptibility cutoff values have not been established for C.

auris, the US CDC has proposed tentative breakpoints. Based on these values, it is estimated

that 80% to 90% of isolates exhibit fluconazole resistance, 20% to 50% of isolates exhibit

amphotericin B resistance, and 5% to 7% are resistant to echinocandins [5,109]. The rate of

antifungal resistance in non-auris Candida species overall is estimated at only 7%, demonstrat-

ing remarkable plasticity and adaptation in C. auris by comparison [95]. Notably, resistance

rates vary by clade, with isolates of clades I and III demonstrating almost universal resistance

to fluconazole, isolates of clade II being widely susceptible, and isolates of clade IV demonstrat-

ing variable resistance [5]. These trends are largely associated with acquired and lineage-spe-

cific mutations in genes encoding drug targets or efflux regulators, highlighting stable
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adaptability in C. auris even around cellular processes with potentially impactful fitness impli-

cations. Multidrug and even pan-resistant isolates have demonstrated the capacity to spread

and transmit between individuals, despite any fitness costs potentially associated with the

development of high levels of resistance, and resistance is known to emerge upon therapy, lim-

iting viable treatment options [110]. Specific mutations and mechanisms leading to acquired

resistance have been extensively analyzed elsewhere, and we direct the reader to other excellent

reviews for detailed discussion [95,109]. Briefly, characterized resistance mutations largely

accumulate in genes encoding drug targets or regulators of efflux, in line with classical mecha-

nisms of antifungal resistance. Somewhat enigmatically, however, C. auris also exhibits high

rates of resistance to amphotericin B, a polyene antifungal rarely associated with resistance in

other pathogenic fungi, and the vast majority of resistant isolates lack canonical resistance

mutations [109,111] One recent report found experimentally evolved amphotericin B resis-

tance most commonly emerged in association with membrane sterol modulation through

mutation in ERG pathway genes, though high-level resistance frequently arose at the cost of

growth rate or infection potential [112]. Using wild type isolates from 4 different clades, the

authors observed strain-specific variability in both resistance development and resistance-

associated fitness loss, suggesting the importance of differential genetic backgrounds for the

emergence of acquired resistance. Mechanistically, the authors noted an evolved mutant with a

compensatory mutation in the cAMP/PKA signaling pathway responsible for rescuing the fit-

ness tradeoff associated with sterol modulation, and a similar mutation has been reported in 1

case of clinically acquired amphotericin B resistance [112,113]. This finding suggests a broader

crosstalk between stress response and drug resistance, which may prove critical in understand-

ing the development of antifungal resistance and variations in acquired resistance in divergent

C. auris lineages.

Aggregation

Filamentation and morphogenic plasticity are critical virulence traits in many fungal patho-

gens, including the model pathogenic yeast Candida albicans. While morphogenic transitions

in C. auris are less apparent in response to canonical filamentation cues described in model

species, numerous reports have documented cases of isolates exhibiting an alternative aggrega-

tive morphological state, with cells growing in multicellular conjoined structures. While some

experimental evidence has suggested aggregation can influence host association [84,114,115],

and while similar multicellular phenotypes have been argued to convey environmental advan-

tages in nonpathogenic settings in other species [116,117], selective advantages for aggregation

in C. auris remain largely speculative. Efforts to characterize this behavior suggests C. auris
aggregation is the result of one of a multitude of phenotypes rather than a single phenomenon.

Aggregative states have been reported as either a constitutive and heritable characteristic or as

an inducible response to environmental conditions [114,118–120]. Some reports suggest

aggregation as a phenotype is strain or clade specific, while others suggest any representative

isolate from diverse clades can grow in aggregates [28,114,120]. Isolates from other haemulonii
complex members exhibit similar heritable multicellular phenotypes, suggesting the evolution

of aggregation is not specific to any C. auris lineage [121]. With aggregation being a largely

qualitative phenotype with an observational but not always biological definition, the broad

umbrella term of aggregation may encompass multiple molecular underpinnings. Aggregates

may exhibit common selective advantages, such as those conferred by their physical multicel-

lular structure, but may also exhibit distinct phenotypes specific to the molecular mechanisms

associated with the aggregative state.
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Three distinct mechanisms of aggregation have been described: (1) Adhesin-mediated

aggregation; (2) Cell separation defects; and (3) Extracellular matrix aggregation (Fig 3).

Adhesin-mediated aggregation appears to be the result of cell–cell adhesion driven by cell

surface proteins. For C. auris, the ALS family adhesin encoded by the reference locus

B9J08_004112 (ALS4112) is frequently reported in association with cellular aggregation. In C.

albicans, Als5 and other cell wall proteins promote cell–cell adhesion through the formation of

amyloid aggregates [122,123]. The mechanism for Als4112 aggregation in C. auris may be sim-

ilar, as treatment of aggregating isolates with amyloid-inhibiting compounds Thioflavin-T or

Congo Red partially suppresses aggregation [120]. Interestingly, 1 report detailed an isolate

exhibiting reversible aggregation when suspended in PBS that could be suppressed by suspen-

sion in pure water, which could potentially be explained by electrostatic requirements for amy-

loid formation [119]. Disruption of some forms of aggregation by Proteinase K also suggests a

cell surface proteinaceous mechanism [102,119]. A similar mechanism may be responsible for

aggregation in other C. haemulonii complex members, which can be disrupted by treatment

with Proteinase K, trypsin, or SDS [121].

Transcriptional control of Als4112 specifically has been demonstrated as a mechanism for

development of an aggregative state. Numerous reports have detailed aggregation in response

to subinhibitory concentrations of triazoles and echinocandins [31,124,125]. One study found

overexpression of ALS4112 associated with aggregation in a strain grown for multiple

Fig 3. Three distinct molecular mechanisms of C. auris aggregation. C. auris can exist either in a unicellular, budding yeast morphology or in multicellular

aggregates (phase contrast microscopy, top; scale bar = 20 μm). Three distinct mechanisms of aggregation have been reported: (1) Cell–cell adhesion mediated

by cell surface–bound proteins, with strong evidence for a prominent role by the adhesin Als4112. (2) Failure of daughter cells to separate from parent cells

after budding, often due to incomplete septum degradation. (3) Cohesive multicellular clusters conjoined by secreted extracellular components.

https://doi.org/10.1371/journal.ppat.1012011.g003
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generations under subinhibitory concentrations of caspofungin [124]. In this case, removal of

the caspofungin stress resulted in loss of aggregation and reduced ALS4112 expression. This

behavior is reminiscent of ALS-mediated echinocandin-induced aggregation described in C.

albicans [126]. In another case, Bing and colleagues identified naturally aggregating isolates

that exhibited substantial copy number increases in the ALS4112 locus [102]. Similarly, a clade

III isolate that exhibited aggregation when grown in SabDEX, but not RPMI, demonstrated

transcriptional overexpression of ALS4112 under aggregation–growth conditions but failed to

aggregate when ALS4112 was deleted [119]. Interestingly, the media-inducible expression of

ALS4112 and associated aggregation was not observed in a clade I isolate [119], although in

our recent work, we found that overexpression of ALS4112 in a clade I isolate by promoter

replacement was sufficient to drive aggregation, suggesting the strain-specific phenotypes

reported in association with ALS4112 aggregation are likely due to regulation of the gene

rather than clade-specific adhesin sequence variation [23].

As an alternative mechanism of aggregate formation, isolates exhibiting defects in cell sepa-

ration after budding have been described. Mechanistically, this can result from a failure of sep-

tum degradation. Through genetic screening, we identified aggregative mutants associated

with defects in the Regulation of ACE2 and Morphogenesis (RAM) pathway [115]. The RAM

pathway is a conserved regulatory network that controls daughter cell localization of the termi-

nal transcription factor Ace2, which, in turn, regulates transcription of a suite of septum-

degrading enzymes, including chitinases and glucanases [127]. The aggregative phenotype

associated with defects in ACE2 or upstream members of the RAM pathway is conserved in

other Candida species and Saccharomyces [128,129]. Interestingly, cultivation under condi-

tions that favor multicellularity can select for spontaneous RAM pathway mutants in model

species [116], which may explain some instances of aggregation in C. auris. One report identi-

fied 2 urinary tract C. auris patient isolates exhibiting rugose colony morphology and strong

cellular aggregation associated with a nonsense mutation in ACE2 that was heritable over 30

passages over the course of 6 months [118]. This spontaneous emergence of heritable and con-

stitutive aggregation may be mechanistically similar to aggregative or elongated isolates recov-

ered in rare events after passage of nonaggregative parent strains through animal hosts, though

the genetic bases for these reports remain unexplored [130,131]. Other reports have detailed

transcriptional down-regulation of chitinase genes in naturally aggregating isolates, but it is

unclear whether this is responsible for the aggregative phenotype or whether this down-regula-

tion is the result of defects in the RAM pathway [120,132]. Interestingly, 1 report suggested cell

separation defects may also contribute to echinocandin-induced aggregation [119].

A third proposed mechanism for aggregation relies on extracellular matrix (ECM) connect-

ing cells together. In this case, aggregation is the result of an inducible response associated

with production of ECM. Through SEM, Malavia-Jones and colleagues observed aggregates

connected by ECM in cells cultured at 37˚C [120]. This inducible aggregation was observed in

isolates from all 4 major clades, even for isolates that exhibited no aggregation or notable ECM

production when cultured at 30˚C [120]. This finding may be consistent with an observation

that all isolates from a panel of 19 strains, representing aggregative and nonaggregative pheno-

types in vitro from all 4 major clades, formed aggregates in infected organs in a murine model

[28]. Importantly, these reports suggest all C. auris isolates have the potential for aggregation

under specific conditions.

Morphological variation is a critical pathogenic feature in C. albicans and other related

fungi, so it is reasonable to examine aggregation in C. auris from a clinical perspective. Aggre-

gating isolates are often found to be less virulent in experimental models compared to nonag-

gregating isolates (for instance, [84,114,115]), although exceptions are common, with reports

that strain-specific virulence differences are independent of aggregation (for instance,
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[25,28,119]). Importantly, quantitative comparisons in virulence models should be examined

carefully, as standardization of infectious units in inocula between single-celled yeast and mul-

ticellular aggregates is unrealistic, and colony-forming unit recovery can be unreliable for

aggregating isolates [28]. Still, physical or biological variation may meaningfully contribute to

virulence. One report found that phagocytic uptake by THP-1 cells was minimal for aggregat-

ing isolates, and it has been suggested that aggregation may be a mechanism of immune eva-

sion in vivo [75,119]. In the same experiment, stray single C. auris cells were efficiently

recognized by the immune cells, suggesting the physical bulk of aggregates may hinder phago-

cytosis [119]. This model is difficult to reconcile as an explanation for differential virulence

between aggregative and nonaggregative strains, though, given the propensity of even nonag-

gregative strains to form aggregates in vivo [28,75]. It has also been suggested that aggregation

may hinder dissemination in vivo, but this idea is inconsistent with observations that both

aggregating and nonaggregating isolates exhibit similar capacities for tissue invasion in murine

models [28,120]. Differences in virulence, then, likely arise from strain-specific biological vari-

ation beyond aggregation in and of itself.

Outbreak potential

Clonally distributed outbreaks in healthcare settings remain a substantial driver of public

health and clinical concern for C. auris. While carriage by an index patient represents the most

likely primary reservoir in these settings, viable C. auris cells are rapidly and extensively shed

to surrounding areas, and colonization of inert substrates in the nearby clinical environment

can provide a secondary reservoir to potentiate outbreak progression. Here, we highlight bio-

logical observations exploring the persistence of C. auris nosocomially on abiotic reservoirs

and its recalcitrance to decontamination efforts in these environments.

Disinfection resistance

While high level and sporicidal disinfectants have widely been observed to be effective against

C. auris, other disinfectants demonstrate unreliable and often unpredictable efficacy. Recom-

mendations from the CDC and other authorities particularly caution against the use of water-

based quaternary ammonium compounds (QACs) [133,134]. This places an additional burden

on infection prevention efforts, as QACs are used extensively in healthcare settings for disin-

fection of noncritical patient care items and surfaces. Accordingly, the Environmental Protec-

tion Agency established the List P Registry to validate disinfectants against C. auris specifically,

as experimental data suggest even QACs with C. albicans claims can exhibit poor efficacy

against C. auris [133]. While these observations might give the impression that C. auris is

inherently less susceptible to killing by QACs than C. albicans, the reality appears to be more

complex. Disinfectant efficacy testing suggests the susceptibility of C. auris is dependent on the

genetic background of the isolate tested as well as the formulation of the QAC. For instance,

compared to clades I, III, and IV isolates, the clade II isolate-type strain consistently shows

increased susceptibility to killing by diverse QAC formulations [33,34], including to a benzalk-

onium chloride QAC that demonstrated poor efficacy against C. albicans [35]. Bacterial

acquired resistance to QACs most often stems from efflux activity [135]. The strain-specific

resistance exhibited by C. auris may follow similar principles. Dire and colleagues found that

pulsing a C. auris isolate with a subinhibitory concentration of benzalkonium chloride for 15

days increased its MIC to the QAC 4-fold [136]. This increase was associated with increased

rhodamine-6G efflux activity, suggesting increased efflux may be related to the increased QAC

tolerance [136]. This finding suggests C. auris isolates with low susceptibility to QACs may be
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adapted to increased efflux activity. In practice, this adaptation may even occur upon exposure

to subinhibitory concentrations of disinfectant in clinical settings.

While consensus guidelines generally recommend against QAC usage for C. auris disinfec-

tion, susceptibility data are more complicated, with evidence of both strain-specific tolerance

to certain formulations and specific activity of different formulations against different isolates,

often in unpredictable associations. For instance, 2 Kinzua disinfectants with QAC blends as

active ingredients showed strong efficacy (approximately 4-log reduction or greater) against C.

albicans and clades I and II isolates of C. auris, while exhibiting only minor efficacy against

clades III and IV isolates [33]. Meanwhile, another QAC-based disinfectant exhibited strong

efficacy against C. albicans and a clade I C. auris isolate, while isolates from clades II, III, and

IV were largely nonsusceptible [33]. Combinatorial formulations of QACs with other disinfec-

tant classes has shown promise of increased efficacy, such as a QAC/polyhexanide blend that

prevented growth and demonstrated a>5-log reduction against a panel of isolates from 3

clades [137] or QAC disinfectants supplemented with varying concentrations of isopropanol

or ethanol demonstrating consistent efficacy against diverse isolates [33,34]. Interestingly,

some formulations highlight further strain specificity in susceptibility, such as a QAC disinfec-

tant containing only 17.2% isopropanol only exhibiting strong efficacy against clade II and

clade IV isolates, but not others [34]. With understanding of disinfectant resistance mecha-

nisms being largely incomplete, explaining strain-specific susceptibility to different active

ingredients and formulations remains challenging. Efflux potential represents a promising

explanation, but lineage-specific physiological differences, such as cell surface and membrane

profiles, may also be relevant, especially given the differential activity of diverse QAC

chemistries.

Ultraviolet-C (UV-C) devices are increasingly used to supplement chemical disinfection

regimes. While protocols and devices vary considerably, several reports have examined the dis-

infectant efficacy of UV-C treatment on C. auris isolates from diverse backgrounds. Again,

clade II isolates are frequently reported to exhibit greater susceptibility to UV-C killing than

isolates from other clades [138,139]. Still, sensitivity to UV-C varies widely among isolates,

though increasing exposure time and reducing distance from the UV source can sometimes

improve killing of less susceptible isolates [139–142]. Interestingly, several direct comparisons

have found C. albicans sensitivity in line with clade II and other highly susceptible C. auris iso-

lates, while resistant isolates exhibit greater resistance to UV-C than C. albicans [138,139,141].

This variation suggests some C. auris isolates exhibit an adaptation that is protective against

UV killing, though it is unclear whether such an adaptation would be selected for by UV pres-

sure. One possible resistance mechanism is cellular aggregation. Chatterjee and colleagues

observed UV susceptibility among isolates was qualitatively associated with aggregation poten-

tial, where nonaggregative isolates were more commonly susceptible [143]. In this case, 2

aggregative clade III isolates exhibited very little susceptibility, and killing could not be

improved by increased exposure time [143]. As is typical of UV disinfectant efficacy, killing is

most effective when the cells are directly exposed to the light source [141,144]. It is perhaps

possible that exposed cells in large aggregates absorb UV radiation and protect internal cells,

offering a resistance strategy implicit to the physical multicellular structure in aggregates that

may explain strain-specific UV susceptibility.

Nosocomial persistence

The frequent association of C. auris with healthcare outbreaks is often accompanied by wide-

spread persistence in clinical environments. Inert surfaces near colonized patients show associ-

ated high rates of positivity [7,12], and colonized objects have been linked to transmission
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events between individuals and outbreak persistence [13,14,45,145]. Spread and transmission

through contact-independent mechanisms are also possible, as air dispersal of C. auris cells to

patient-inaccessible areas has been observed [146]. The contaminated environment, in turn,

likely serves as a secondary reservoir to potentiate transmission, and examples of patients

acquiring C. auris infection after being moved to rooms previously inhabited by colonized

individuals have been reported [147]. The ability of C. auris to tenaciously colonize surfaces

further extends to invasive medical devices, and, like for other Candida pathogens, coloniza-

tion of indwelling equipment poses a substantial risk for the development of invasive infection

[8,148]. Considering these and similar observations, C. auris outbreaks are met with extensive

infection prevention responses, more so than other Candida species and in similar force as for

classically hospital-associated bacterial infectious agents [9,134,149]. Challenges in adhering to

such responses are thought to contribute to the continuingly increasing rate of C. auris out-

breaks [9].

As is the theme of this review, we questioned whether this one-size-fits-all mentality fully

captures the diversity of C. auris outbreaks. Examination of reports from single center or clus-

tered multicenter outbreaks demonstrates widespread variability in both transmission rate and

associated outbreak size, ranging from localized outbreaks involving single transmission

events to major outbreaks involving rampant contamination of dozens of patients each

month, leading to hundreds of affected individuals, with the caveat that variation in surveil-

lance efficiency may be reflected in differences in reported outbreak sizes (Fig 4). Mapping of

outbreak size and transmission rate failed to reveal obvious geographic associations between

outbreak discrepancies, suggesting varying outbreak scenarios are possible despite differential

infection control practices and recommendations from regional authorities.

In the most expansive outbreaks, hundreds of patients are affected across several years,

resulting in near-endemic spread in multiple clustered facilities. For example, surveillance

Fig 4. Size and transmission dynamics of single center or clustered multicenter C. auris outbreaks. Each point represents an individual outbreak report.

Outbreaks are represented by total number of affected patients identified (colonized or infected) and by the rate of outbreak progression, defined by the average

number of new cases identified per month. Inset (left panel) recapitulates all outbreaks comprising less than 100 affected individuals.

https://doi.org/10.1371/journal.ppat.1012011.g004
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covering a 2.5-year period of a regional C. auris outbreak in the Chicago metropolitan area

identified 490 clinical or colonized patients among multiple facilities, with within-facility prev-

alence as high as 71% [7]. Environmental sampling of an affected facility during 4 point preva-

lence surveys found 38% (73/191) of sampled objects and surfaces were colonized, even after

routine cleaning and disinfection [7]. Contaminated objects included reusable and noninva-

sive patient care items, high-touch surfaces such as bedrails and doorknobs, and mobile objects

such as nursing carts and mobile ultrasounds, providing a widespread reservoir for persistence

and dissemination. Importantly, this example, as is representative of other large outbreaks, has

largely been associated with long-term care facilities involving multiple-occupancy rooms

filled with furnishings, care equipment, and personal items. These circumstances can promote

persistent and prolonged colonization of patients as well as reduced opportunities for terminal

and extensive room cleaning, likely substantially influencing outbreak progression.

A pattern of smaller outbreaks can also often be linked to C. auris persistence on abiotic

substrates, demonstrating multiple acquisition events linked to a contaminated reservoir, but

with much lower prevalence and transmission rates. One example of this is a single center

observational study in the United Kingdom encompassing 2 general adult ICUs affected by a

C. auris outbreak where a single index case lead to 6 transmission events over 6 months [13].

In this case, positivity was lower, with only 2.5% (6/236) of sampled objects collected over 3

environmental screens exhibiting C. auris contamination [13]. A single cloth lanyard (1 out of

100 sampled) attached to a controlled drug locker key was found to be contaminated, and

removal of the cloth lanyards temporally correlated with termination of the outbreak

[14,45,145]. Presumably, the contaminated lanyard represented a persistent reservoir, espe-

cially being a mobile object handled by numerous healthcare personnel and, importantly, not

being subject to routine disinfection, leading to intermittent transmission events. This pattern

may be common, as colonized medical devices such as temperature probes or surgical knives

have similarly been linked to outbreak progression, and in some cases, exposure to colonized

equipment has been demonstrated as an independent risk factor for development of coloniza-

tion or infection [149].

Curiously, a contrasting scenario is not uncommon: a single index case with limited envi-

ronmental persistence and no identified transmission events, despite high occupancy and

room sharing. In 1 example, 1 patient demonstrating both skin and invasive C. auris culture

was identified in an oncology ward at a New York hospital, prompting surveillance and deep

hospital sampling over the course of 3 weeks [150]. In total, 48 samples from 18 patients and

132 samples from environmental surfaces throughout the patient room and ward were

screened [150]. In this case, no other patients were affected, including one who shared a room

with the index patient [150]. From environmental sampling, 2.3% (3/132) of samples demon-

strated positivity, with 2 sequential positive samples taken between cleanings from a single

reclining chair in the patient’s room [150]. Thirty other samples from the patient’s room were

negative, as were the remaining samples from throughout the ward [150]. The stark contrast

in colonization and dissemination rate in such examples raises the question as to whether the

failure of C. auris to spread and persistently colonize the environment in these circumstances

could be attributed to intrinsic and strain-specific colonization potential.

Efforts to describe colonization dynamics experimentally have largely focused on measur-

ing persistence under desiccation and biofilm formation, and there is evidence in each case of

differential behavior between strains. Welsh and colleagues measured the persistence of a

clade I isolate dried onto a plastic surface and found recoverable CFU up to 14 days after inoc-

ulation and detectable esterase activity for up to 28 days [151]. Similar results were reported in

a study that modeled surface contamination by suspending cells in PBS, artificial saliva, or

fetal calf serum before drying cells on a plastic surface, in this case finding recoverable cells 14
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days after inoculation [152]. The surface being colonized appears to be important for persis-

tence as well; Dire and colleagues found that fabric, plastic, steel, and wood sustained coloniz-

ing cells for at least 21 days under wet or dry conditions, and at times even supported growth,

while viability for wet or dry cells on glass decreased significantly by 14 or 21 days [152].

Another report observed survival of C. auris cells on latex or nitrile gloves up to 3 minutes but

could not detect viable cells by 5 minutes [153]. These initial evaluations suggest survival for

minutes to weeks in dry, nutrient poor conditions is plausible. Longer timeframes are likely;

for instance, 1 clinical report identified a cloth lanyard that was potentially colonized for sev-

eral months [151]. Careful quantitative comparison between related and unrelated isolates

under consistent experimental conditions is needed, however, to understand the molecular

basis for C. auris persistence on inert surfaces and to examine strain-specific adaptations. One

report examined persistence of 2 distinct isolates after drying on a plastic surface [152]. While

both isolates exhibited viability after 14 days, the recoverable CFU differed by 2 to 4 orders of

magnitude depending on experimental conditions, suggesting strain-specific tolerance for des-

iccated survival [152].

As an alternative model for surface colonization and persistence, several studies have char-

acterized the ability of C. auris to form biofilms. While, experimentally, biofilm-grown cells

exhibit increased persistence and tolerance to decontamination [136,154,155], it is not well

understood where C. auris would exist in a biofilm state during a nosocomial outbreak. Colo-

nized sinks and catheters are likely to support biofilm growth given liquid flow and nutrient

access, and experimental models suggest cells adopt biofilm characteristics when grown on

skin, but individual cells transmitted to dry, nutrient poor surfaces are perhaps less likely to be

found in biofilm states [8,71,98,156]. Several reports have demonstrated substantial quantifi-

able variability in biomass from biofilm formation between isolates [23,26,102,152,157,158].

Mechanistically, strain-specific variation in biofilm formation has been linked to differential

expression of specific adhesins: either Scf1 or Iff4109, which mediate the attachment of cells to

colonized surfaces, or Als4112, which mediates cell–cell attachment [23,102]. SCF1 exhibits

strain-specific transcriptional variation across isolates from every major clade, and differences

in its expression are associated with differences in bioburden in colonization and biofilm for-

mation on surfaces such as catheters or skin [23]. Expression variation in ALS4112 may be

common as well, as genotypic evidence suggests duplication and copy number variation

around the ALS4112 locus has occurred in numerous isolates, and associated overexpression

correlates with colonization phenotypes [26,158,159]. Interestingly, some reports fail to find

strain-specific variation in biofilm formation or colonization under certain experimental mod-

els, suggesting differential biofilm phenotypes may be the result ofAU : Pleasecheckandconfirmthattheeditto}Interestingly; somereportsfailtofindstrain � specificvariationin:::}didnotaltertheintendedmeaningofthesentence:specific environmental con-

ditions [26,159,160]. Understanding the appropriate experimental conditions to accurately

model nosocomial colonization then will be key to accurately characterizing outbreak

dynamics.

Beyond surface association, persistence, and biofilm formation, transmissibility from colo-

nized substrates plays a major role in outbreak settings, but the mechanisms are still unclear.

Strain-specific adhesin expression results in strains with reduced capacity for surface associa-

tion and tenacity against shear force [23]. This phenotype may be associated with greater rates

of dissemination from surfaces at the expense of reduced colonizing biomass. Similarly, in

skin colonization models, different isolates produce varying bioburden [146], but the associ-

ated consequences on differential levels of shedding from colonized skin, transmission upon

contact, or rates of environmental dissemination are unknown. C. auris has also been found to

disperse across long distances through air transmission, but the dynamics of this mode of dis-

semination have not been explored [160–164]. Understanding the molecular mechanisms

underpinning C. auris outbreak spread will require experimental modeling of transmission in
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addition to colonization and persistence and may ultimately yield critical insights into intrinsic

fungal factors driving outbreak development.

Conclusions

In this review, we have focused on virulence and other clinical phenotypic differences between

strains and clades of C. auris, although there are many phenotypic differences that we have not

discussed. It is likely that these differences in core biology will also impact the ability of C.

auris to cause disease and transmit, and future work on the connections between genotype and

phenotype in these different strains will be needed to fully understand this emerging pathogen.

From our analyses, we see a few critical points to consider for future research. It appears

that clade IV isolates have a higher pathogenic potential than isolates from other clades; how-

ever, the molecular underpinnings of this are currently unknown. On the other hand, clade I

isolates appear to tolerate acquisition of drug resistance mutations more than other clades. The

relative impact of these 2 features on disease outcomes is still unknown. We also observe mul-

tiple different modes of aggregation, including some that are strain specific and others that

appear to be generalizable across C. auris. The importance of these different modes of aggrega-

tion during infection still needs to be determined. Lastly, the potential strain-specific differ-

ences in outbreak potential is of critical importance, and in this case, we do not observe clade-

level trends beyond the lack of outbreaks that can be attributed to clade II strains.

Going forward, it will be important to clarify which strain of C. auris is being investigated

for each research question. The differences between strains also provide an opportunity to

leverage comparative genomics approaches to map out specific genotypic variants associated

with a phenotype of interest. Variation between strains within a clade provides an opportunity

to understand specific evolutionary selective pressures. Importantly, this variation should be

considered when deciding which strain is an appropriate wild-type strain for molecular analy-

ses. Recent work in the model fungal pathogen C. albicans has identified that the reference

SC5314 strain, in many cases, behaves differently than other isolates of C. albicans for clinically

relevant phenotypes, including induction of host inflammation, degree of filamentation, and

level of commensal colonization [161–165]. For C. auris, as a field, we have the opportunity to

perform analyses across clades that will then allow us to define both species-level and strain-

level differences and chose an appropriate strain for laboratory experiments to define

mechanisms.
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