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Abstract

Macroecological approaches can provide valuable insight into the epidemiology of globally

distributed, multi-host pathogens. Toxoplasma gondii is a protozoan that infects any warm-

blooded animal, including humans, in almost every habitat worldwide. Toxoplasma gondii

infects its hosts through oocysts in the environment, carnivory of tissue cysts within interme-

diate host prey and vertical transmission. These routes of infection enable specific predic-

tions regarding the ecological and life history traits that should predispose specific taxa to

higher exposure and, thus infection rates of T. gondii. Using T. gondii prevalence data com-

piled from 485 studies representing 533 free-ranging wild mammalian species, we exam-

ined how ecological (habitat type, trophic level) and life history (longevity, vagility, gestation

duration and torpor) traits influence T. gondii infection globally. We also compared T. gondii

prevalence between wild and domesticated species from the same taxonomic families using

data compiled from 540 studies of domestic cattle, sheep, and pigs. Across free-ranging

wildlife, we found the average T. gondii prevalence was 22%, which is comparable to the

global human estimate. Among ecological guilds, terrestrial species had lower T. gondii

prevalence than aquatic species, with freshwater aquatic taxa having an increased preva-

lence compared to marine aquatic species. Dietary niches were also influential, with carni-

vores having an increased risk compared to other trophic feeding groups that have reduced

tissue cyst exposure in their diet. With respect to influential life history traits, we found that

more vagile wildlife species had higher T. gondii infection rates, perhaps because of the

higher cumulative risk of infection during movement through areas with varying T. gondii

environmental loads. Domestic farmed species had a higher T. gondii prevalence compared

to free-ranging confamilial wildlife species. Through a macroecological approach, we deter-

mined the relative significance of transmission routes of a generalist pathogen, demonstrat-

ing an increased infection risk for aquatic and carnivorous species and highlighting the

importance of preventing pathogen pollution into aquatic environments. Toxoplasma gondii

is increasingly understood to be primarily an anthropogenically-associated pathogen whose

dissemination is enhanced by ecosystem degradation and human subsidisation of free-
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roaming domestic cats. Adopting an ecosystem restoration approach to reduce one of the

world’s most common parasites would synergistically contribute to other initiatives in con-

servation, feline and wildlife welfare, climate change, food security and public health.

Author summary

Toxoplasma gondii, a relative of malaria, is one of the most common parasitic infections

in the world, capable of causing severe and chronic health problems to host species, which

encompasses all warm-blooded animals. Humans, wildlife and domestic animals all suffer

from this pathogen, which is contracted through contaminated water, food and in utero.

To reduce the global burden of this parasite, we must understand the most common

routes of infection and which species will be most likely to be infected. To answer this, we

compiled infection data from 950 studies of free-ranging and domestic farm animals. We

found higher infection rates in larger predator species, wildlife living in freshwater, and

species travelling over larger distances. Higher infection rates in these types of wildlife spe-

cies highlight the importance of water contamination and the higher risk to predator spe-

cies, many of which are undergoing serious population declines. We also found that

domestic farm animals have higher infection rates than closely related wildlife species,

likely caused by their exposure to farm cats. Domestic free-roaming cats are the most sig-

nificant contributors to environmental contamination and infection of food animals due

to their large populations and frequent encroachment into natural and farm areas. Effec-

tive, multi-faceted approaches must be adopted to manage free-roaming cat populations

to protect wildlife and human health, food security and feline welfare.

Introduction

Pathogens can profoundly impact wildlife populations through overt or more insidious effects

on health [1,2]. The impacts of pathogens on wildlife can be exacerbated via the interaction

with other stressors such as habitat destruction, food scarcity, climate change, invasive species

and toxicant exposure, making it a conservation priority to predict the species or populations

that are disproportionately threatened by pathogen-mediated declines [1,2]. Generalist patho-

gens with domestic animal reservoirs that affect multiple species, including humans, are par-

ticularly poignant research targets, given the relevance for human, wildlife and domestic

animal health [3,4]. Insight into the most consequential transmission pathways of generalist

pathogens with multiple routes can be gained using a macroecology approach of comparing

prevalence patterns among species that vary in ecological traits. Toxoplasma gondii is a zoo-

notic protozoal pathogen with significant conservation and global health significance that

lends itself well to a macroecological approach due to its cosmopolitan distribution and capac-

ity as a generalist pathogen [4].

Toxoplasma gondii can infect any endothermic host species, with a third of the human pop-

ulation infected [5]. Hosts are infected environmentally through an oocyst stage, trophically

through ingesting a tissue cyst stage (bradyzoite) and in utero through a blood-borne stage

(tachyzoite). The complete T. gondii life cycle involves a felid as the definitive host and any

warm-blooded animal acting as an intermediate host. Infected felids excrete oocysts in their

feces, infecting any intermediate host that ingests these oocysts via contaminated water or

food. Oocyst loads in the environment can reach high levels because felids excrete millions of

oocysts over multiple episodes throughout a felid’s lifespan in response to T. gondii exposure
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or re-exposure [6]. These oocysts are resilient to environmental conditions with long-term sur-

vival [7,8], dispersing passively through soil/water transport pathways [9]. If the intermediate

host survives the initial infection, T. gondii encysts within the tissues of the infected individual,

persisting as a dormant infection. If any felid or non-felid predator consumes the infected tis-

sues of an intermediate host, the predator is then infected [5]. The ability for T. gondii to be

infective between intermediate hosts through carnivory, and not just between definitive and

intermediate hosts, is unique to T. gondii and not present in other related pathogens [10]. Tro-

phic transmission between intermediate hosts allows for long-term maintenance of T. gondii
in the environment and enables T. gondii infections to occur without felids [10].

The consequences of a T. gondii infection or reactivation depend on the host individual’s

immune status and T. gondii strain [5,11]. In immunocompromised hosts, T. gondii can cause

fatalities through meningoencephalitis, pneumonitis, myocarditis and hepatitis [11]. Acute or

reactivated T. gondii infections during pregnancy can lead to miscarriages, fetal death, and

severe congenital defects such as hydrocephalus, blindness and intellectual disability [11].

Although immunocompetent humans with latent T. gondii infections may lack overt symp-

toms, large clinical syntheses have suggested latent toxoplasmosis increases the risk and mor-

bidity of a range of diseases including neurodegenerative, psychiatric, ocular, autoimmune,

hepatic, cardiovascular disease and several forms of cancer [12]. Comparable clinical syn-

dromes are reported in food animals, with the most economically relevant effect being repro-

ductive failure [13].

Wildlife necropsy reports and field studies indicate that T. gondii infections impact wildlife

in similar ways as humans and domesticated animals [5]. Toxoplasmosis has caused high rates

of mortality in multiple critically endangered taxa, including birds [14,15], marine mammals

[16,17], felids [18], deer [19] and rodents [20]. Wildlife with latent T. gondii infections are more

likely to suffer mortality from other parasitic co-infections [21], vehicular collisions [22], cold

weather [23] and predators [24]. Infected wildlife are also more likely to experience delays in

reproductive development [25]. Impacts on reproduction lead to large economic losses in food

animal production [26]. Although cattle appear more clinically resistant, sheep and goats are

more sensitive, with global estimates of 3–54% of abortions attributable to toxoplasmosis [5,13].

The ability of T. gondii to infect hosts through multiple routes and life stages means that

species whose ecological traits differentially expose them to certain stages should experience

different infection rates. Thus, by examining infection rates relative to ecological and life his-

tory characteristics, we can gain important insight into how environmental and life history

drivers influence prevalence patterns [27]. Our first objective was to assess the influence of diet

and habitat on the prevalence of T. gondii in free-ranging mammalian wildlife. Waterborne

transmission is a significant exposure route for all mammals, irrespective of diet, due to the

risk of oocyst ingestion by drinking water and active foraging [28]. However, aquatic species

are immersed in water, placing them at an increased risk of encountering oocysts, which can

be distributed throughout the water column, providing a multi-dimensional exposure surface.

This risk is exacerbated by the ability of T. gondii to concentrate on aquatic particulates, sedi-

ment, biofilms and filter-feeding aquatic prey items [9]. Therefore, we predicted that aquatic

mammals would have higher prevalence patterns than terrestrial mammals. Since T. gondii
oocysts enter the aquatic system from terrestrial pollution pathways (i.e., surface runoff and

preferential flow) [29], we also predicted that freshwater aquatic species would have an

increased risk relative to marine aquatic species. In addition to habitat-associated exposure

risks, animals contract T. gondii through their diet by ingesting oocysts or tissue cysts. For her-

bivores, diet-associated infection occurs by ingesting oocyst-contaminated vegetation and soil.

Carnivores and omnivores have the additional risk of being infected by consuming infective

tissue cysts within intermediate host prey. Carnivores that scavenge may have an even higher
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risk of T. gondii infection because scavengers that consume higher trophic levels have

increased potential for bioaccumulation. Scavenging taxa also often have a predilection for

using anthropogenic subsidies, a known risk factor for T. gondii [30,31]. Therefore, we pre-

dicted that globally, T. gondii prevalence would increase with carnivory and scavenging.

Our next objective focused on life history traits that could influence T. gondii prevalence,

including longevity, gestation duration, hibernation and dispersal distance. Toxoplasma gondii
prevalence increases with individual age [32,33], and we predicted this age-associated trend

could manifest as longer-lived species having a higher prevalence. Similarly, since T. gondii
can be transmitted in utero, we assessed if T. gondii prevalence was higher in species with lon-

ger gestation duration, given the larger infection window for maternal-fetal transmission.

Since T. gondii can only successfully infect endothermic species, we tested if mammalian spe-

cies undergoing torpor or hibernation with the accompanying decreased body temperature

[34] and reduced time frame for exposure opportunities had a lower prevalence than ecolog-

ically comparable species. Finally, we evaluated how vagility could impact the prevalence of T.

gondii. There are strong geographic determinants of T. gondii infection risk, such as human

density [30,31], landscape conversion [35] and free-roaming cat density [29,31]. Therefore, we

predicted that highly vagile species would have an increased probability of infection due to the

increased probability of travelling through these high-risk locations. Our final objective com-

pared prevalence patterns between domestic animals (cattle, sheep, pigs) and free-ranging

wildlife from the same taxonomic family. We predicted domestic animals would have higher

infection rates due to previously demonstrated associations between anthropogenic distur-

bance and T. gondii [29–31].

Results

Our literature search identified 485 studies across 93 countries for free-ranging wildlife spe-

cies. Across these studies, there were 148, 425 individuals tested for T. gondii infection, repre-

senting 18 taxonomic orders, 86 taxonomic families and 533 taxonomic species (Fig 1). For

domestic species, focusing on cattle (Bos taurus), sheep (Ovis aries) and swine (Sus domesticus),
data was compiled from 540 studies across 77 countries and 384, 349 individuals (Fig 1). In

general, countries with high testing rates for T. gondii in domestic animals also had high test-

ing in wild mammals (Fig 1).

Habitat, diet, and dispersal distance were all significant variables when evaluated individu-

ally and were included within a single global model. Terrestrial species had a lower risk of T.

gondii exposure (β = -0.77; 95% CI: -1.41 –-0.18) compared to aquatic taxa. Among aquatic

species, marine species had a significantly lower risk of T. gondii exposure (β = -1.02; 95% CI:

-1.78 –-0.23) relative to freshwater aquatic species. Species that are not exposed to tissue cysts

through carnivory, such as herbivores, insectivores, invertivores and piscivores, had a signifi-

cantly reduced risk of T. gondii (β = - 1.23; 95% CI: -1.89 –-0.55) relative to carnivorous spe-

cies. Omnivores did not differ significantly from carnivores (β = -0.11; 95% CI: - 0.71–0.46).

Among the evaluated life history traits of generation time, gestation length and dispersal dis-

tance, only dispersal distance significantly affected T. gondii infection risk. Species with larger

average dispersal distances had an increased risk of T. gondii exposure (β = 0.22; 95% CI: 0.05–

0.37). Studies relying on molecular isolation or bioassays had a significantly lower prevalence

(β = -0.84; 95% CI: -1.28 –- 0.37) than studies using serology.

There was a significant phylogenetic signal present in the dataset, where phylogenetic varia-

tion (λ) accounted for 41% of the random variation (95% CI: 0.21–0.63), while the random

variation attributed to species accounted for 8% of total variation (95% CI: 0.03–0.18). For the

second analysis, the model including the wild/domestic predictor had greater support (AIC:

PLOS PATHOGENS Species ecology and T. gondii infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011908 January 10, 2024 4 / 15

https://doi.org/10.1371/journal.ppat.1011908


9103.1) compared to models with only taxonomic family (AIC: 9110.0) or continent (AIC:

9934.9). In this top model, wild species had a lower risk of T. gondii infection relative to the

domestic confamilial species. (β = -0.39; 95% CI: -0.02 –- 0.76).

The global prevalence for free-ranging wildlife compiled across all studies was 22%, with

substantial variation across taxa. Considering taxonomic families with at least 200 individuals

Fig 1. Distribution of study sites included in the global analysis of Toxoplasma gondii prevalence data for domestic

animals and free-ranging wildlife. The country-level sampling intensity in terms of number of individuals sampled is shown

for wildlife (blue) and domestic animals (green). Countries for which T. gondii prevalence data was not found within the scope

of our search are shown in grey. Basemap was made with Natural Earth (https://www.naturalearthdata.com).

https://doi.org/10.1371/journal.ppat.1011908.g001
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sampled, some of the lowest prevalences were found in marine mammals and rodents, while

prevalences exceed 40% in Felidae, Iniidae, Tayassuidae, Mustelidae, Ursidae and Hyaenidae

(Fig 2 and S1 Table). The species-level prevalences were highly variable, and some taxa lacked

sufficient sample sizes to obtain meaningful prevalence estimates (S1 Table). Across all studies

for domestic animals, the overall T. gondii prevalence was 23%. Although wild populations of

Bovidae and Suidae had lower average prevalences than domestic populations, there was con-

siderable inter-continental variation (S2 Table).

Discussion

Using a large global database, we demonstrated that T. gondii prevalence is influenced by spe-

cies ecological traits consistent with T. gondii epidemiology and ecology. The contribution of

Fig 2. Node-dated phylogeny of 530 species included in T. gondii analysis. The maximum clade credibility topology

of 10,000 trees is shown. The inner panel depicts the species-level T. gondii prevalence over all available studies. The

outer panel identifies the taxonomic families.

https://doi.org/10.1371/journal.ppat.1011908.g002
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tissue cyst-associated infections towards maintaining T. gondii within the environment was

apparent by the significant influence of carnivory on prevalence in wildlife populations. Carni-

vores and omnivores ingesting tissue cysts can be exposed to thousands of highly infectious T.

gondii bradyzoites, which, at least in cats, were more infectious than oocysts [5]. This addi-

tional transmission route with a larger dose of a potentially more infectious life stage explains

the higher prevalence for carnivorous and omnivorous species that we found in this global

study and has also been shown in other sympatric comparisons [36,37] and syntheses [27].

Terrestrial omnivorous species are often more synanthropic [38], which would increase expo-

sure risk, even if the rate of carnivory is lower than true carnivores. We also found no effect of

scavenging on T. gondii prevalence, suggesting the bradyzoites within tissue cysts may rapidly

lose infectivity. Aquatic carnivores are primarily piscivores and invertivores, meaning that

diet-associated infections would be disproportionately oocyst-associated because fish, inverte-

brates and mollusks can accumulate oocysts but do not form tissue cysts [39,40].

Despite the reduced exposure to tissue cysts and the absence of an aquatic definitive host,

we found that aquatic species had a higher T. gondii prevalence compared to terrestrial species.

Exposure in the aquatic environment can occur throughout the water column, increasing the

risk that an individual could inadvertently ingest an oocyst. Oocysts also concentrate on

aquatic particulates [41], microorganisms [42], biofilms [41], and even microplastics [43],

increasing the infective dose and elevating infection risk for aquatic taxa. Freshwater taxa are

considered particularly at risk due to the more direct and frequent exposure to contaminated

terrestrially-based waters without any dilutive effect associated with open ocean. In this study,

species associated with freshwater environments had an increased T. gondii prevalence.

Increased T. gondii prevalence associated with polluted water exposure has been shown in

muskrats (Ondatra zibethicus) [44] and Yellow-legged gulls (Larus michahellis) [45]. Variation

in exposure to terrestrial runoff has also been positively associated with T. gondii prevalence in

marine species such as sea otters (Enhydra lutris) [46] and beluga (Delphinapterus leucas) [47].

The increased T. gondii prevalence in aquatic mammalian species in this study supports earlier

suggestions of the importance of waterborne toxoplasmosis in the epidemiology of T. gondii
[28].

Certain life history traits could also differentially predispose particular species to infection

rates from generalist pathogens. We found an important positive relationship between dis-

persal distance and T. gondii prevalence but no relationship between T. gondii and longevity,

gestation duration or hibernation behaviour. Species with higher vagility may have an

increased prevalence due to the increased probability of travelling through an area with a high

T. gondii infection risk. Factors that are associated with increased T. gondii prevalence in wild-

life are exposure to urbanization [31,48–50], agriculture [51], sewage [52,53], anthropogenic

food provisioning [54] and domestic cat abundance [29–31]. Synanthropic wildlife often suffer

from higher pathogen loads [55], but as we were unaware of any indices of synanthropism for

wildlife taxa, we could not test that explicitly.

Toxoplasma gondii cannot invade and proliferate host tissues when body temperatures are

lower than 37˚C [56]. However, we were unable to detect any protective influence of hiberna-

tion or torpor against T. gondii infection, which could be attributable to the absence of an

effect, that any effect is small compared to other influential ecological traits, or our sample size

was too small to tease out the effects of these two traits. Similarly, contrary to our expectation,

we did not find a higher T. gondii prevalence in species with a longer gestation duration, sug-

gesting that vertical transmission may have a reduced role in maintaining T. gondii within

wildlife populations. Although vertical transmission may not be consequential for T. gondii
persistence, in utero transmission could impact wildlife populations through high fetal mortal-

ity, which would go unmeasured in most populations and obscure any relationship between
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gestation traits and prevalence. Additionally, rodents infected congenitally with T. gondii may

be unable to mount an immunologic response and would be seronegative [57], further obscur-

ing the importance of vertical transmission. These false negatives could explain the unexpect-

edly low T. gondii prevalence within Muridae, which is thought to be a major intermediate

host prey for felids. We also expected longevity to be associated with increased prevalence

because multiple intraspecific studies have found T. gondii prevalence to increase in older age

cohorts [32,33]. However, generation length as a proxy for average longevity was not signifi-

cantly associated with T. gondii prevalence in this study. The absence of a relationship could be

influenced by the suitability of generation time as a proxy for longevity, age-specific mortality

and morbidity, seroreversion and the inability to distinguish multiple infection events from

single infections.

We did find that studies using serosurveys were generally associated with a higher prevalence.

Although serological tests, especially the modified agglutination test, have been widely used in

wildlife, these tests are rarely validated, such that false positives and negatives are possible [5]. Sim-

ilarly, molecular or isolation methods require that bradyzoites or tachyzoites are included in the

sampled tissue from infected individuals. In cases where infected individuals have low numbers of

tissue cysts or in larger-bodied animals, there is an increased risk of sampling error, leading to an

underestimation of prevalence. However, if the sample includes the life stage, molecular methods

can have high sensitivity and specificity [5]. Although our model controlled for methodological

differences, the presence of a phylogenetic signal suggests that our models did not capture some

phylogenetically conserved but influential ecological or physiological traits, which may also

include taxon-specific differences in method sensitivity and specificity.

Further evidence of anthropogenic determinants of T. gondii infection comes from our

result that domestic animals had an increased prevalence compared to free-ranging wildlife

confamilial species. The presence of free-roaming cats on farms is a demonstrated risk factor

for T. gondii in food animals [58–60,13], with even low cat densities leading to substantial soil

contamination [51,58,59,61]. Outreach programs should ensure that food animal producers

are aware that not only are free-roaming cats ineffective for rodent control [62], but this prac-

tice increases farm animal infection rates [58,63] by amplifying the T. gondii infection cycle

through repeated sheds and host prey infections [6]. Integrative pest management strategies

should instead recruit local ecosystem services shown to be effective for rodent control, such as

attracting native carnivores [62,64] or habitat manipulation [65]. These ecosystem-based inter-

ventions may also synergistically benefit other aspects of farm productivity and sustainability.

In this study, we demonstrated that a macroecological approach can help elucidate conse-

quential transmission routes of a generalist pathogen for mammalian wildlife, enabling the

development of actionable recommendations. The elevated risk in freshwater aquatic species

suggests that prioritising the reduction of pathogen pollution from free-roaming domestic cats

for wildlife and food animals will be key for mitigating T. gondii infections. Domestic cats are

the most consequential definitive host for T. gondii [29], elevating the prevalence of T. gondii
beyond levels imparted by wild felids [29,31]. Strategies that prevent parasite spillover from

domestic definitive hosts to wildlife can be highly effective, as demonstrated in the Trichinella
spiralis-domestic pig cycle [66]. Although some studies call for T. gondii mitigation through

managing intermediate hosts, given the large environmental oocyst-associated route, this

approach would be ineffective given the scale of oocyst contamination and impractical since

all warm-blooded animals are intermediate hosts. There are also considerable ethical, eco-

nomic and legal implications of managing or neglecting native wildlife species instead of man-

aging an introduced species such as domestic cats [67,68]. Focusing on reducing free-roaming

cat populations synergistically addresses challenges such as other cat-associated diseases of

zoonotic, economic and conservation significance [26,69,70], the substantial wildlife mortality
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due to cat-associated predation [71] and the current marginalisation of free-roaming owned

and unowned cats [72].

Toxoplasma gondii’s close association with anthropogenic activities [73] makes it an ideal

model pathogen for demonstrating the benefit of a multifaceted ecosystem-level approach

towards mitigating important and prolific pathogens globally [4]. For example, restoring land-

scape features that sequester T. gondii oocysts can prevent the transfer and contamination to

other downstream receptors of environmental and public health significance [35]. Habitat res-

toration also provides predation refugia, bolsters wildlife health, and improves reproductive

success, all leading to increased disease resiliency within wildlife populations [74]. Ensuring

robust populations of apex predators can provide critical ecosystem services by limiting the

encroachment of introduced mesopredators, including domestic cats [22,75], reducing preda-

tion pressure and opportunities for zoonotic disease spillover. Holistic ecosystem protection is

a cost-effective, straightforward, but currently underused approach for disease prevention

despite the large economic impact of zoonotic disease and synergistic benefits to biodiversity

conservation, climate change mitigation efforts and human health [76].

Materials and methods

Literature review

Our analyses first focused on T. gondii prevalence studies within populations of free-ranging

wild mammals (Class: Mammalia). We searched for studies using Web of Science, PubMed

and Google Scholar using search terms: "wild*", "mammal" and "toxoplasmosis" or "toxo-

plasma." We were able to locate additional studies from the reference lists of these studies,

studies citing these works, and comprehensive review articles [5]. For the wildlife analyses, we

excluded studies that did not report results from all samples tested, data with only genus-level

identifiers, and studies from captive or farmed wild animals. We extracted all data from each

study, including the number of infected animals, the total number of animals tested, and the

methodology used. For each species, we then compiled the ecological information as described

below. We used a similar search protocol to compile prevalence data on cattle (Bos tarus),
sheep (Ovis aries) and swine (Sus domesticus) (S3 Table).

Ecological and life history factors

To test our hypotheses on the ecological drivers of T. gondii prevalence in wildlife, we collected

ecological and life history information for all taxa included in the compiled dataset. We stan-

dardized the taxonomy and extracted information from the COMBINE database of mamma-

lian traits [77]. Data was used as provided in this database with the exception that we

reclassified the dietary groups to reflect the risk of tissue cyst carnivory leading to three catego-

ries: 1) Species with a primarily non-tissue cyst diet (e.g. herbivores, insectivores, invertivores

and piscivores), 2) Carnivores with primarily endothermic prey and 3) Omnivores which con-

sume a mixed tissue cyst and non-tissue cyst diet. Taxa were classified as terrestrial or aquatic,

with aquatic being subclassified into freshwater or marine. Scavengers were any carnivore or

omnivore species that had>10% of their diet originating from scavenging. For the life history

traits, we included gestation duration, whether they engaged in hibernation or torpor, average

dispersal distance and generation time as a proxy for longevity.

Statistical analysis

Analyses used Bayesian phylogenetic generalized linear mixed models as implemented in the

R package MCMCglmm [78], following the methods of Barrow et al. (2019) [79]. Phylogenetic
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generalized linear models accommodate phylogenetic covariance matrices, controlling for trait

sharing or disease susceptibility due to common ancestry. We included phylogenetic variance

as a random effect with the phylogenetic covariance matrix for mammalian taxa based on 10,

000 birth–death node-dated trees [80], with the R package ape [81]. Prevalence data were mod-

elled as a multinomial distribution of counts of positive and negative individuals. We used a

base model for model selection that included a fixed effect of the T. gondii detection method

(serological or isolation) and four random variables (phylogenetic variance, species, study and

country). We used this base model to test the influence of habitat (aquatic or terrestrial) tissue

cyst carnivory, longevity, gestation duration and dispersal. To evaluate the influence of fresh-

water and marine exposure and scavenging, we tested a subset of models that only considered

aquatic species and terrestrial species, respectively. Predictors found to be statistically signifi-

cant individually were retained in a top global model. This top model, containing the signifi-

cant variables, was used to estimate the mean effects of the fixed predictor variables, the

phylogenetic signal (λ) and non-phylogenetic species’ effects. Fixed-effect predictors were con-

sidered significant at 95% if the 95% credible interval (CI) did not overlap with zero.

A separate analysis was run for domestic species and the confamilial free-ranging wildlife,

where we compared the improvement of model support by adding three fixed predictor vari-

ables: taxonomic family, domesticated or wild and continent. All tested models included ran-

dom effects of locality and study. We also calculated the T. gondii prevalence with 95%

confidence intervals at the species and family levels with epiR [82] for free-ranging wildlife and

domestic species. All data is available in Dryad [83].

Dryad DOI

10.5061/dryad.c59zw3rfp
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23. Jokelainen P, Isomursu M, Näreaho A, Oksanen A. Natural Toxoplasma gondii infections in European

brown hares and mountain hares in Finland: Proportional mortality rate, antibody prevalence, and

genetic characterization. J Wildl Dis. 2011; 47: 154–163. https://doi.org/10.7589/0090-3558-47.1.154

PMID: 21270004

24. Gering E, Laubach ZM, Weber PSD, Soboll Hussey G, Lehmann KDS, Montgomery TM, et al. Toxo-

plasma gondii infections are associated with costly boldness toward felids in a wild host. Nat Commun.

2021; 12: 3842. https://doi.org/10.1038/s41467-021-24092-x PMID: 34158487

25. Formenti N, Trogu T, Pedrotti L, Gaffuri A, Lanfranchi P, Ferrari N. Toxoplasma gondii infection in alpine

red deer (Cervus elaphus): Its spread and effects on fertility. Favia G, editor. PLoS ONE. 2015; 10:

e0138472. https://doi.org/10.1371/journal.pone.0138472 PMID: 26405785

26. Legge S, Taggart PL, Dickman CR, Read JL, Woinarski JCZ. Cat-dependent diseases cost Australia

AU$6 billion per year through impacts on human health and livestock production. Wildl Res. 2020; 47:

731–746. https://doi.org/10.1071/WR20089

27. Wilson AG, Lapen DR, Mitchell GW, Provencher JF, Wilson S. Interaction of diet and habitat predicts

Toxoplasma gondii infection rates in wild birds at a global scale. Glob Ecol Biogeogr. 2020; 29: 1189–

1198. https://doi.org/10.1111/geb.13096

28. Dubey JP. Toxoplasmosis—A waterborne zoonosis. Vet Parasitol. 2004; 126: 57–72. https://doi.org/10.

1016/j.vetpar.2004.09.005 PMID: 15567579

29. Vanwormer E, Conrad PA, Miller MA, Melli AC, Carpenter TE, Mazet JAK. Toxoplasma gondii, source

to sea: Higher contribution of domestic felids to terrestrial parasite loading despite lower infection preva-

lence. EcoHealth. 2013; 10: 277–289. https://doi.org/10.1007/s10393-013-0859-x PMID: 24048652

30. Zhu S, VanWormer E, Shapiro K. More people, more cats, more parasites: Human population density

and temperature variation predict prevalence of Toxoplasma gondii oocyst shedding in free-ranging

domestic and wild felids. PLoS ONE. 2023; 18(6):e0286808. https://doi.org/10.1371/journal.pone.

0286808

31. Wilson AG, Wilson S, Alavi N, Lapen DR. Human density is associated with the increased prevalence of

a generalist zoonotic parasite in mammalian wildlife. Proc R Soc B Biol Sci. 2021;288. https://doi.org/

10.1098/rspb.2021.1724 PMID: 34666519

32. Hwang YT, Pitt JA, Quirk TW, Dubey JP. Seroprevalence of Toxoplasma gondii in mesocarnivores of

the Canadian prairies. J Parasitol. 2007; 93: 1370–1373. https://doi.org/10.1645/GE-1319.1 PMID:

18314682

PLOS PATHOGENS Species ecology and T. gondii infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011908 January 10, 2024 12 / 15

https://doi.org/10.1016/s0304-4017%2802%2900034-1
https://doi.org/10.1016/s0304-4017%2802%2900034-1
http://www.ncbi.nlm.nih.gov/pubmed/12031816
https://doi.org/10.7589/2015-09-235
http://www.ncbi.nlm.nih.gov/pubmed/26967138
https://doi.org/10.1007/s10393-006-0059-z
https://doi.org/10.1016/J.VETPAR.2012.11.001
http://www.ncbi.nlm.nih.gov/pubmed/23207018
https://doi.org/10.1016/j.vetpar.2010.05.013
http://www.ncbi.nlm.nih.gov/pubmed/20570441
https://doi.org/10.1016/j.micpath.2020.104282
http://www.ncbi.nlm.nih.gov/pubmed/32479783
https://doi.org/10.1016/j.ijppaw.2019.06.001
http://www.ncbi.nlm.nih.gov/pubmed/31211046
https://doi.org/10.1371/journal.pntd.0001142
http://www.ncbi.nlm.nih.gov/pubmed/21629726
https://doi.org/10.1016/j.ijppaw.2013.02.002
https://doi.org/10.1016/j.ijppaw.2013.02.002
http://www.ncbi.nlm.nih.gov/pubmed/24533323
https://doi.org/10.7589/0090-3558-47.1.154
http://www.ncbi.nlm.nih.gov/pubmed/21270004
https://doi.org/10.1038/s41467-021-24092-x
http://www.ncbi.nlm.nih.gov/pubmed/34158487
https://doi.org/10.1371/journal.pone.0138472
http://www.ncbi.nlm.nih.gov/pubmed/26405785
https://doi.org/10.1071/WR20089
https://doi.org/10.1111/geb.13096
https://doi.org/10.1016/j.vetpar.2004.09.005
https://doi.org/10.1016/j.vetpar.2004.09.005
http://www.ncbi.nlm.nih.gov/pubmed/15567579
https://doi.org/10.1007/s10393-013-0859-x
http://www.ncbi.nlm.nih.gov/pubmed/24048652
https://doi.org/10.1371/journal.pone.0286808
https://doi.org/10.1371/journal.pone.0286808
https://doi.org/10.1098/rspb.2021.1724
https://doi.org/10.1098/rspb.2021.1724
http://www.ncbi.nlm.nih.gov/pubmed/34666519
https://doi.org/10.1645/GE-1319.1
http://www.ncbi.nlm.nih.gov/pubmed/18314682
https://doi.org/10.1371/journal.ppat.1011908


33. Zarnke RL, Dubey JP, Kwok OCH, Ver Hoef JM. Serologic survey for Toxoplasma gondii in selected

wildlife species from Alaska. J Wildl Dis. 2000; 36: 219–224. https://doi.org/10.7589/0090-3558-36.2.

219 PMID: 10813602

34. Ambler M, Hitrec T, Pickering A. Turn it off and on again: Characteristics and control of torpor. Wellcome

Open Res. 2021;6. https://doi.org/10.12688/wellcomeopenres.17379.1 PMID: 35087956

35. Shapiro K, Conrad PA, Mazet JAK, Wallender WW, Miller WA, Largier JL. Effect of estuarine wetland

degradation on transport of Toxoplasma gondii surrogates from land to sea. Appl Environ Microbiol.

2010; 76: 6821–6828. https://doi.org/10.1128/AEM.01435-10 PMID: 20802072

36. Ferreira SCM, Torelli F, Klein S, Fyumagwa R, Karesh WB, Hofer H, et al. Evidence of high exposure to

Toxoplasma gondii in free-ranging and captive African carnivores. Int J Parasitol Parasites Wildl. 2019;

8: 111–117. https://doi.org/10.1016/j.ijppaw.2018.12.007 PMID: 30740303

37. Ferroglio E, Bosio F, Trisciuoglio A, Zanet S. Toxoplasma gondii in sympatric wild herbivores and carni-

vores: Epidemiology of infection in the Western Alps. Parasit Vectors. 2014; 7: 196. https://doi.org/10.

1186/1756-3305-7-196 PMID: 24766665

38. Fedriani JM, Fuller TK, Sauvajot RM. Does availability of anthropogenic food enhance densities of

omnivorous mammals? An example with coyotes in southern California. Ecography. 2001; 24: 325–

331. https://doi.org/10.1111/j.1600-0587.2001.tb00205.x

39. Massie GN, Ware MW, Villegas EN, Black MW. Uptake and transmission of Toxoplasma gondii oocysts

by migratory, filter-feeding fish. Vet Parasitol. 2010; 169: 296–303. https://doi.org/10.1016/j.vetpar.

2010.01.002 PMID: 20097009

40. Schott KC, Krusor C, Tinker MT, Moore J, Conrad PA, Shapiro K. Concentration and retention of Toxo-

plasma gondii surrogates from seawater by red abalone (Haliotis rufescens). Parasitology. 2016; 143:

1703–1712. https://doi.org/10.1017/S0031182016001359 PMID: 27573192

41. Shapiro K, Silver MW, Largier JL, Conrad PA, Mazetb JAK. Association of Toxoplasma gondii oocysts

with fresh, estuarine, and marine macroaggregates. Limnol Oceanogr. 2012; 57: 449–456. https://doi.

org/10.4319/lo.2012.57.2.0449

42. Winiecka-Krusnell J, Dellacasa-Lindberg I, Dubey JPP, Barragan A. Toxoplasma gondii: Uptake and

survival of oocysts in free-living amoebae. Exp Parasitol. 2009; 121: 124–131. https://doi.org/10.1016/j.

exppara.2008.09.022 PMID: 18992742

43. Zhang E, Kim M, Rueda L, Rochman C, VanWormer E, Moore J, et al. Association of zoonotic proto-

zoan parasites with microplastics in seawater and implications for human and wildlife health. Sci Rep.

2022; 12: 6532. https://doi.org/10.1038/s41598-022-10485-5 PMID: 35474071

44. Ahlers A, Wolf TM, Aarrestad O, Windels SK, Olson BT, Matykiewicz BR, et al. Survey of Toxoplasma

gondii exposure in muskrats in a relatively pristine ecosystem. J Parasitol. 2020; 106: 346–349. https://

doi.org/10.1645/19-126 PMID: 32294183
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