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Abstract

Isoprenoid precursor synthesis is an ancient and fundamental function of plastid organelles

and a critical metabolic activity of the apicoplast in Plasmodium malaria parasites [1–3].

Over the past decade, our understanding of apicoplast properties and functions has

increased enormously [4], due in large part to our ability to rescue blood-stage parasites

from apicoplast-specific dysfunctions by supplementing cultures with isopentenyl pyrophos-

phate (IPP), a key output of this organelle [5,6]. In this Pearl, we explore the interdepen-

dence between isoprenoid metabolism and apicoplast biogenesis in P. falciparum and

highlight critical future questions to answer.

Cellular isoprenoid metabolism in Plasmodium parasites depends

on the apicoplastAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Malaria parasites retain a non-mevalonate/methylerythritol phosphate (MEP) pathway for iso-

prenoid precursor synthesis in the apicoplast organelle. This pathway synthesizes two 5-carbon

isoprene subunits, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate

(DMAPP), whose sequential condensation is critical for making diverse longer-chain isopren-

oids required for a variety of key cellular functions that include protein prenylation, dolichol

synthesis for protein glycosylation, and biosynthesis of mitochondrial ubiquinone and heme A

(Fig 1). Core enzymes in the MEP pathway are encoded in the nucleus but are trafficked to the

apicoplast after translation in the parasite cytoplasm.

Within the apicoplast, isoprenoid precursor synthesis requires the support of several

additional metabolic pathways. The final 2 enzymes in the MEP pathway, IspG and IspH,

contain essential Fe-S cluster cofactors that receive electrons from apicoplast-targeted

ferredoxin, which also contains an Fe-S cluster. These critical Fe-S cofactors are produced

by the apicoplast Suf pathway, which is therefore essential for isoprenoid synthesis [7–10].

One of the Suf pathway proteins, SufB, is encoded on the apicoplast genome, and thus repli-

cation, transcription, and translation of the apicoplast genome are expected to be essential

for Fe-S cluster provision to the MEP pathway. Substrates for isoprenoid precursor synthe-

sis include glyceraldehyde-3-phosphate, pyruvate, and cytidine triphosphate, whose pro-

duction and/or import into the apicoplast depend on apicoplast pyruvate kinase II and

membrane transporters [11]. Because IPP and DMAPP synthesis requires the integrated

function of MEP enzymes and supporting pathways within the apicoplast (Fig 1), disruption
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of the apicoplast organelle via biochemical and/or genetic perturbations ablates the synthe-

sis of these key isoprenoid precursors [5,6]. Cellular isoprenoid synthesis in Plasmodium
therefore requires the apicoplast and the pathways that support and maintain this key

organelle.

Fig 1. Isoprenoid synthesis and utilization by blood-stage malaria parasites. Abbreviations: DHAP, dihydroxyacetone phosphate; DMAPP, dimethylallyl

pyrophosphate; DOXP, 1-deoxy-D-xylulose 5-phosphate; DXR, DOXP reductase; DXS, 1-deoxy-D-xylulose-5-phosphate synthase; FD, ferredoxin; FOS, fosmidomycin;

FPP, farnesyl pyrophosphate; FPPS, FPP synthase; GPP, geranyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; GGPPS, GGPP synthase; Gly3P, glyceraldehyde-

3-phosphate; HMB-PP, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate; IPP, isopentenyl pyrophosphate; IPPI, IPP isomerase; IspG, HMP-PP synthase; IspH,

HMB-PP reductase; MEcPP, 2-C-methyl-D-erythritol-2,4-cyclopyrophosphate; MEP, methylerythritol phosphate; MiaA, tRNA dimethylallyltransferase; MiaB, tRNA

2-methylthio-N(6)-dimethylallyladenosine synthase; PEP, phosphoenolpyruvate; PPS, polyprenyl synthase; PYR, pyruvate. Question marks indicate uncertainty.

https://doi.org/10.1371/journal.ppat.1011713.g001
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Apicoplast biogenesis requires isoprenoid precursor synthesis

and the pathways that support MEP pathway activity

Prior studies in Plasmodium focused almost exclusively on cellular roles for isoprenoids out-

side of the apicoplast, since exogenous IPP can rescue parasites from loss of the apicoplast and

the attendant ablation of endogenous IPP synthesis. Nevertheless, multiple prior papers

reported that MEP pathway inhibitors like fosmidomycin (FOS) blocked apicoplast biogenesis

and prevented elongation of the organelle in blood-stage parasites [12–14]. Recent work dem-

onstrated that these defects were due to specific apicoplast dysfunction (rather than a nonspe-

cific phenotype of dying parasites) and confirmed a critical role for isoprenoids in supporting

apicoplast biogenesis [15]. The only previously annotated role for isoprenoids in the apicoplast

was tRNA prenylation by MiaA, but knockout of this enzyme had no impact on apicoplast bio-

genesis or parasite viability (Fig 1). However, it was discovered that Plasmodium parasites tar-

get a polyprenyl synthase (PPS) enzyme to the apicoplast that synthesizes longer-chain linear

isoprenoids required for organelle biogenesis [15]. Indeed, parasites could be rescued from

loss of PPS by addition of long-chain decaprenol (C50-OH) but not by GGOH (C20-OH) or

shorter polyprenols.

It remains a key unmet challenge to understand why apicoplast biogenesis requires long-

chain polyprenols. These compounds can serve multiple functions in plant chloroplasts (e.g.,

light harvesting and photosynthesis, oxidative stress protection, signaling and defense mole-

cules), but there is little or no evidence for these functions in Plasmodium parasites [1,3,15]. In

the absence of other known roles for long-chain linear isoprenoids, one hypothesis is that

these lipids tune the structure and flexibility of apicoplast membranes, which is a known or

proposed biophysical role for membrane polyprenols in bacteria, plants, and other eukaryotes

[16]. The evolutionary pathway by which the Plasmodium apicoplast acquired and retained a

PPS enzyme is also unclear. Long-chain isoprenoids like undecaprenyl phosphate serve as the

membrane lipid carrier for bacterial peptidoglycans used in cell wall synthesis [16,17]. This

pathway (which includes a PPS) was likely present in the ancestral prokaryotic progenitor of

the apicoplast, with most enzymatic components being lost during evolution of the current

organelle. We hypothesize that PPS may have been retained in the Plasmodium apicoplast as a

vestige of this erstwhile peptidoglycan synthesis pathway, due to a separate essential role for

long-chain polyprenols in tuning membrane biogenesis.

Due to its reciprocal dependence on isoprenoid precursor synthesis, apicoplast biogenesis

also requires organelle functions that support MEP pathway activity, including Suf-mediated

Fe-S cluster biogenesis, replication of the apicoplast genome and expression of SufB, pyruvate

kinase II activity, and membrane transporters that import the requisite biosynthetic substrates

(Fig 1) [4]. Several of these pathways also have separate essential roles in apicoplast biogenesis

in addition to and independent of their direct support of MEP pathway activity. In the next

section, we explore some of these pathways and how parasite rescue by exogenous IPP has

been used to test and understand the role of apicoplast-targeted proteins in organelle

biogenesis.

IPP rescue as a tool to probe apicoplast-specific function and

organelle biogenesis

The foundational discovery that exogenous IPP could rescue parasites from apicoplast-specific

dysfunctions and organelle loss enabled many opportunities to probe the functional properties

of the apicoplast and its constituent proteins [5]. Because the apicoplast requires isoprenoid

precursors to initiate and complete its biogenesis program [15], 2 general phenotypes have

been observed when parasites are rescued by exogenous IPP from chemical or genetic
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perturbations to the apicoplast. For proteins whose only essential function in blood-stage para-

sites is to support isoprenoid precursor biosynthesis, including MEP-pathway enzymes (e.g.,

DXS) and several proteins in the Suf pathway (e.g., SufC) [7,11], IPP bypasses the loss or inhi-

bition of these proteins to rescue parasites and support normal apicoplast elongation and divi-

sion. In such cases (e.g., FOS treatment, ΔDXS, ΔSufC), however, defective apicoplast

biogenesis is observed when IPP supplementation is withheld such that the punctate apicoplast

present in rings and trophozoites fails to elongate as parasites progress into schizogeny (Fig 2)

[7,15]. For apicoplast-targeted proteins that have essential functions in apicoplast biogenesis

that are in addition to or apart from supporting MEP-pathway activity (e.g., ClpC, PPS, SufS),

IPP rescues parasite viability from loss of these proteins but the apicoplast fails to elongate and

divide such that daughter parasites stably lose the organelle and its genome [7,15,18].

Current knowledge specifies IPP and coenzyme A (CoA) as the only biosynthetic outputs

of the apicoplast that are essential for blood-stage P. falciparum [5,19,20]. Unlike IPP synthesis,

however, CoA biosynthesis does not require the apicoplast organelle as a metabolic hub and

appears to persist regardless of apicoplast maintenance or loss or targeting of the terminal

enzyme to the apicoplast, cytoplasm, or vesicles [19]. Nevertheless, apicoplast biogenesis

appears to depend on synthesis of both IPP and CoA [15,19]. Based on these observations, we

propose that any essential apicoplast-targeted protein in blood-stage Plasmodium will be

required for organelle maintenance due to a critical role in IPP synthesis and/or in other

aspects of apicoplast biogenesis apart from IPP synthesis. Future studies of apicoplast func-

tions can test this prediction and extend or revise its validity to different parasite stages in dis-

tinct host environments, where additional apicoplast pathways like type II fatty acid synthesis

can produce essential outputs [21,22] that may also be required for apicoplast biogenesis.

Conservation and divergence in apicomplexan isoprenoid metabolism

The MEP pathway for isoprenoid precursor synthesis is a hallmark of apicoplast retention in

apicomplexan parasites [1]. Although isoprenoid synthesis and apicoplast biogenesis are recip-

rocally coupled in Plasmodium, this paradigm of metabolic interdependence does not appear

to hold throughout the phylum Apicomplexa. Toxoplasma gondii parasites express 2 PPS

homologs but neither appears to localize to the apicoplast [15,23,24]. Although the MEP

Fig 2. Apicoplast Fe-S cluster biosynthesis is required for isoprenoid synthesis and apicoplast biogenesis. (A) Live-cell imaging of ΔSufC

NF54 (PfMev) parasites synchronized and cultured 36 hours with or without 50 μM DL-mevalonate (Mev) to stimulate IPP synthesis [7]. (B)

Population analysis of parasites imaged under the conditions in (A). A total of 56 parasites were imaged per condition from biological

duplicate samples. Apicoplast morphologies were scored as punctate, elongated, or disrupted (dispersed signal) and plotted by population

percentage.

https://doi.org/10.1371/journal.ppat.1011713.g002
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pathway is essential for T. gondii, loss of isoprenoid precursor synthesis has no apparent

impact on apicoplast biogenesis [12,25]. These metabolic and phenotypic differences between

Plasmodium and Toxoplasma presumably reflect the differing selective pressures that guided

evolution of these parasites over the 600 Myr timeline of their divergence from a common

ancestor. Multiple PPS homologs are also retained by other hematozoan parasites (e.g., Babe-
sia) that are more closely related to Plasmodium than Toxoplasma, but a possible role for PPS

in apicoplast biogenesis is unexplored in these organisms. Understanding the similarities and

differences in isoprenoid metabolism between broader apicomplexan parasites can unveil and

unravel the biochemical forces that have spurred evolution of intracellular parasitism along

distinct pathways.

Frontier questions

Below, we lay out several key questions at the frontier of our understanding of the apicoplast

and isoprenoid metabolism in P. falciparum parasites that we hope will stimulate future studies

in these areas.

1. Why does apicoplast biogenesis require long-chain linear isoprenoids? We hypothesize that

these lipids are critical to tune the biophysical properties and flexibility of apicoplast mem-

branes, such that their deficiency impairs membrane expansion during organelle biogene-

sis. It remains unknown if these isoprenoids are enriched in specific or all apicoplast

membranes and/or serve other roles in organelle biogenesis. It may be possible to test our

hypothesis with small-molecule dyes whose fluorescence properties are sensitive to varia-

tions in membrane fluidity, together with chemical rescue experiments using a homologous

series of progressively longer-chain polyprenols to bypass loss of PPS.

2. How are isoprenoids transported into and out of the apicoplast? Isoprenoid precursors syn-

thesized in the apicoplast, including IPP and DMAPP, are required and utilized outside the

organelle. Chemical rescue experiments suggest that IPP and longer isoprenoids can enter

the apicoplast. Charged metabolites face an unfavorable energetic barrier to diffuse across

the 4 hydrophobic membrane bilayers that encircle the apicoplast, but specific protein

transporters that enable their passage into and out of the organelle remain undefined.

3. What prenyl synthase supports the biosynthesis of ubiquinone required in the Plasmodium
mitochondrion? Ubiquinone, which has a polyprenyl tail, is critical for function of the mito-

chondrial electron transport chain. A mitochondrial-targeted polyprenyl synthase has been

identified in T. gondii [23], but the metabolic origins of this critical coenzyme and its poly-

prenyl tail in Plasmodium remain obscure and poorly studied. Apicoplast PPS was pro-

posed to play this role in Plasmodium [26], but the ability of IPP to rescue parasites from

PPS knockdown argues against such a role [15].

4. Are there additional metabolic uses of isoprenoids by malaria parasites beyond currently
defined products? Plasmodium lacks enzyme homologs for terpene and carotenoid biosyn-

thesis, and recent work found no evidence to support IPP incorporation into carotenoids

[2,3,15]. Nevertheless, are there other metabolic end products in parasites that depend on

IPP synthesis and remain to be discovered?
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