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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
The pathophysiology of severe falciparum malaria involves a complex interaction between

the host, parasite, and gut microbes. In this review, we focus on understanding parasite-

induced intestinal injury and changes in the human intestinal microbiota composition in

patients with Plasmodium falciparum malaria. During the blood stage of P. falciparum infec-

tion, infected red blood cells adhere to the vascular endothelium, leading to widespread

microcirculatory obstruction in critical tissues, including the splanchnic vasculature. This

process may cause intestinal injury and gut leakage. Epidemiological studies indicate higher

rates of concurrent bacteraemia in severe malaria cases. Furthermore, severe malaria

patients exhibit alterations in the composition and diversity of the intestinal microbiota,

although the exact contribution to pathophysiology remains unclear. Mouse studies have

demonstrated that the gut microbiota composition can impact susceptibility to Plasmodium

infections. In patients with severe malaria, the microbiota shows an enrichment of patho-

bionts, including pathogens that are known to cause concomitant bloodstream infections.

Microbial metabolites have also been detected in the plasma of severe malaria patients,

potentially contributing to metabolic acidosis and other clinical complications. However,

establishing causal relationships requires intervention studies targeting the gut microbiota.

Introduction

Malaria remains a significant global health burden, with an estimated 247 million cases and

620.000 deaths in 2021 [1]. The majority of severe and fatal malaria cases are caused by Plas-
modium falciparum, one of the 5 malaria parasite species affecting humans. A crucial aspect of

the pathophysiology of severe falciparum malaria is the extensive sequestration of parasitized

red blood cells in the microcirculation, which impairs microcirculatory blood flow and leads

to dysfunction of vital organs [2]. Additionally, endothelial activation and glycocalyx dysfunc-

tion are believed to further compromise tissue perfusion [3]. The degree of microvascular
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dysfunction can be assessed by directly observing the microcirculation and estimating the

sequestered parasite biomass using plasma P. falciparum histidine-rich protein 2 (PfHRP2)

[4,5]. Notably, microvascular sequestration of parasitized red blood cells is prominent in the

gut [4,6], affecting gut perfusion and potentially disrupting tight and adherent junctions in the

gut epithelium. This disruption compromises the gut’s barrier function and facilitates the

translocation of enteric bacteria into the bloodstream, as previously reviewed [7].

The microbiome consists of a diverse group of bacteria, archaea, fungi, protozoa, and

viruses. Among the human-associated microbial communities, the gut microbiota is the largest

and most heterogeneous [8]. The gut microbiota has been implicated in numerous physiologi-

cal processes, including energy homeostasis, metabolism, gut epithelial health, immunologic

activity, and neurobehavioral development [9]. Furthermore, the microbiota’s composition

may play a role in the pathogenesis of various infectious diseases, such as influenza [10], bacte-

rial sepsis [11], Clostridium difficile enteritis [12], and in malaria as shown in prior reviews of

mouse studies [13,14]. Previous mouse studies have demonstrated that different gut micro-

biota compositions result in varying disease severities [15–18], in particular, in mouse models

of malaria [15]. Several studies in both human and rodent malaria have shown changes in gut

microbiota composition during Plasmodium infections, with an association observed with dis-

ease severity. The causal relationship between gut microbiota composition and disease severity

in humans remains unclear, but it may offer new insights into the pathophysiology of severe

malaria and potential targets for intervention.

In this review, we focus on the evidence from clinical studies in patients with malaria for

intestinal injury, changes in microbiota composition, and their potential consequences in P.

falciparum malaria. These consequences include the translocation of bacteria and their metab-

olites across the gut barrier and alterations in gut immunological functions. Furthermore, we

briefly discuss potential interventions targeting the gut microbiota.

In a parallel review, Mandal and Schmidt discuss the evidence and insights from laboratory

and experimental studies into the interaction between the host gut microbiome and malaria.

Parasite-induced intestinal injury

Patients with malaria commonly experience gastrointestinal symptoms such as nausea, vomit-

ing, abdominal pain, and diarrhea. Intestinal damage occurs through a complex pathological

cascade, primarily driven by the extensive sequestration of parasitized red blood cells in the

splanchnic microcirculation of severe malaria patients. For a summary of the mechanisms

involved, see Table 1.

The splanchnic circulation supplies blood to abdominal organs, including the liver, spleen,

stomach, pancreas, small intestine, and large intestine. It is perfused by 3 branches of the

abdominal aorta: the coeliac artery, superior mesenteric artery, and inferior mesenteric artery.

The splanchnic blood flow is primarily influenced by systemic vascular resistance and car-

diac output. Under normal conditions, splanchnic blood flow accounts for about 25% to 30%

of cardiac output, but it can vary depending on factors such as recent feeding or physiological

stress [19].

Hemodynamic shock is rare in severe malaria, as both systemic vascular resistance and car-

diac output are typically maintained at adequate levels despite infections with a large parasite

load. This is different from the macrovascular changes seen in bacterial sepsis. The key feature

of septic shock is significant peripheral arteriolar vasodilation. This leads to low systemic vas-

cular resistance, high cardiac output, severe hypotension, and shock, with subsequent inade-

quate tissue perfusion. Studies have shown that systemic vascular resistance remains at

adequate levels in both uncomplicated and severe malaria, possibly due to the vasoconstrictive
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effects of cell-free hemoglobin released during red cell hemolysis [20]. Mildly elevated systemic

vascular resistance has been observed in fatal cases of severe falciparum malaria [21]. It is

unlikely that macrovascular changes contribute to splanchnic bed hypoperfusion and intesti-

nal injury in severe malaria.

Table 1. Evidence from clinical studies in patients with malaria for a pathological cascade of parasite-induced intestinal injury, impaired intestinal barrier function,

translocation of bacteria and metabolites into the bloodstream, and an altered gut microbiota composition.

Study Population Organ/tissue Measurement Finding Ref.

Parasite-induced intestinal injury

Pongponratn and

colleagues (1991)

Adults with fatal malaria (n = 39) Brains, hearts, lungs,

small intestines

Autopsy Sequestration of parasitized red blood cells in

mucosal villi capillaries in the intestines

[6]

Milner and

colleagues (2015)

Children with fatal cerebral malaria

(n = 103)

Brain, intestines, and

others

Autopsy Extensive sequestration parasitized red blood

cells in the capillary network of the lamina

propria in the intestines

[33]

Dondorp and

colleagues (2008)

Adults with severe malaria (n = 43) Rectal

microcirculation

In vivo video-

microscopy

Obstruction of the intestinal microcirculation

related to disease severity

[4]

Hanson and

colleagues (2015)

Adults with severe malaria (n = 142) Rectal

microcirculation

In vivo video-

microscopy

Obstruction of the intestinal microcirculation [34]

Impaired intestinal barrier function

Molyneux and

colleagues (1989)

Adults with uncomplicated malaria

(n = 12)

Gastric and small

intestine permeability

Sugar absorption tests Severe, yet reversible impairment of mucosal

barrier function in malaria

[35]

Wilairatana and

colleagues (1997)

Adults with severe malaria (n = 7),

uncomplicated malaria (n = 14),

healthy controls (n = 11)

Gastric and small

intestine permeability

Sugar absorption tests Gastrointestinal permeability in patients with

severe and uncomplicated malaria, returning

to normal on recovery

[36]

Olsson and

colleagues (1969)

Soldiers with severe malaria (n = 20) Intestines Small-bowel biopsy

and sugar absorption

tests

Vascular congestion and oedema of the

lamina propria and impaired absorption of

sugar probes

[37]

Olupot-Olupot and

colleagues (2013)

Children with severe malaria

(n = 257)

Circulating markers Endotoxins/I-FABP Endotoxaemia observed in 71 (27.6%)

children

[32]

Sarangam and

colleagues (2022)

Children with severe malaria

(n = 598) and healthy controls

(n = 120)

Circulating markers TFF3, I-FABP Intestinal injury biomarkers significantly

elevated in children with severe malaria

associated with mortality

[26]

Translocation of intestinal bacteria into the bloodstream

Berkley and

colleagues (2009)

Children with severe malaria

(n = 3,068), healthy controls (n = 592)

Whole blood Blood cultures Invasive bacterial infection detected in 127

(6%) of 2,048 consecutive parasitaemic

admitted children (95% CI, 5.2%–7.3%)

[38]

Bassat and

colleagues (2009)

Children with malaria (n = 7,043) Whole blood Blood cultures Children with malaria with bacteraemia (5.4%

of cases) on admission

[39]

Nyen and colleagues

(2016)

Adults with malaria (n = 67) Whole blood Blood cultures Adults with malaria with bacteraemia (13% of

cases) on admission

[29]

Aung and colleagues

(2018)

Adults with malaria (n = 87) Whole blood Blood cultures Adults with severe malaria with clinically

significant bacteraemia (15% of cases) on

admission

[40]

Phu and colleagues

(2020)

Adults with severe malaria (between

1991 and 2003) (n = 845)

Whole blood Blood cultures Adults with severe malaria with bacteraemia

(1.0% of cases) on admission

[27]

Leopold and

colleagues (2019)

Adults with severe malaria (n = 60),

uncomplicated malaria (n = 47),

healthy controls (n = 45)

Plasma LC-MS Microbial metabolites detected in the plasma

of patients with uncomplicated and severe

malaria

[31]

Altered gut microbiota

Mandal and

colleagues (2021)

Children with severe malaria (n = 40),

healthy controls (n = 35)

Stool samples 16S ribosomal RNA Changes in the gut microbiota related to

severity of disease

[18]

Leopold and

colleagues (2021)

(preprint)

Adults with severe malaria (n = 29),

uncomplicated malaria (n = 23), local

healthy controls (n = 34)

Stool samples 16S ribosomal RNA Changes in the gut microbiota related to

severity of disease

[25]

TFF3, trefoil factor 3; I-FABP, intestinal fatty acid binding protein; LC-MS, liquid-chromatography mass spectrometry.

https://doi.org/10.1371/journal.ppat.1011661.t001
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Sequestration of parasitized red blood cells, however, significantly affects the blood flow in

the intestines’ microcirculation. Autopsy studies have shown that, given the total blood volume

of the splanchnic circulation, the intestines represent a significant proportion of the total body

sequestration [6,22]. Video-microscopy of the rectal circulation in living patients with severe

malaria has confirmed widespread microcirculatory obstruction in the intestines [4]. Micro-

vascular sequestration of parasitized red blood cells is believed to cause intestinal damage and

contribute to the development of hyperlactatemia in severe malaria.

Additional mechanisms that may contribute to intestinal injury include ischemia-

reperfusion injury, intestinal inflammation, and mast cell activation. Mast cell activation

can damage the gut barrier, both physically and immunologically, through the release of

Th2 cytokines that affect the defence against bacteria that may translocate from the intes-

tine [23,24]. This may lead to disruption of the tight and adherent junctions between gut

epithelial cells, further compromising gut barrier function, as previously reviewed [7].

Impaired intestinal barrier function

Intestinal injury in patients with malaria can progress to impaired intestinal barrier function,

as evidenced by increased intestinal permeability and abnormal markers of intestinal integrity,

Table 1. In adults with severe malaria, observational studies have shown that patients with a

high parasite biomass exhibit reduced enterocyte integrity, indicated by decreased plasma L-

citrulline, a marker produced by enterocytes in the small intestine [25]. In pediatric patients

with malaria, elevated levels of trefoil factor 3 (TFF-3) and intestinal fatty acid binding protein

(I-FABP), markers of intestinal injury, are associated with severe malaria and an increased risk

of death [26].

Impairment of the gut barrier can increase the likelihood of translocation of enteric bacteria

into the bloodstream, leading to concomitant bacteraemia and sepsis. In children with severe

malaria in Africa, concurrent invasive bacterial infections are described, involving bacteria

such as Streptococcus pneumoniae, nontyphoidal Salmonella, and Escherichia coli [27–30].

Additionally, studies have observed elevated plasma concentrations of bacterial metabolites in

patients with severe falciparum malaria [31,32].

Gut microbiota alterations in malaria

The composition of the gut microbiota can potentially influence the progression of malaria

infection through various mechanisms. One important mechanism is colonization resistance,

which refers to the ability of the gut microbiota to prevent the overgrowth of harmful bacteria

by employing different mechanisms, including the reduction of gut pH [41–43]. Perturbations

in the gut microbiota can disrupt this balance and lead to the overgrowth and translocation of

harmful bacteria, resulting in the dissemination of their metabolites into the bloodstream. This

phenomenon has been observed in the development of C. difficile enteritis following broad-

spectrum antibiotic treatment [44]. The gut microbiota also plays a role in modulating the

immune response, both innate and adaptive, and changes in the microbiota due to antibiotic

treatment have been shown to weaken the immune response to certain pathogens [45]. Addi-

tionally, the gut microbiota contributes to gut barrier function through the production of

short-chain fatty acids [11].

In an observational study conducted in Bangladesh, the gut microbiota composition of

adult patients with severe and uncomplicated falciparum malaria was compared to healthy vol-

unteers [25]. The study utilized sequencing of the V4 region of the 16S rRNA gene amplified

from fecal DNA [25]. Patients with severe malaria showed a significant enrichment of poten-

tially pathogenic Enterococcus and Escherichia/Shigella species in their gut microbiota,
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pathogens that are known to be able to cause bloodstream infections [25]. Furthermore, an

abundance of lactate-producing species, including Bacteroides, Streptococcus spp., and Lacto-
bacillus spp., in the gut microbiota was associated with the severity of metabolic acidosis,

which is a strong predictor of fatal outcomes in severe malaria [25,31]. However, the causal

mechanisms underlying these associations remain unclear, and it is important to consider var-

ious environmental and patient-related factors that can influence the composition of the gut

microbiota, such as age, diet, comorbidities, and prior treatment with antibiotics or antimalar-

ials. To date, no intervention studies targeting the gut microbiota in patients with malaria have

been conducted.

Furthermore, mouse models have shown changes in the gut microbiota composition fol-

lowing infection with different Plasmodium species. In Swiss Webster and C57BL/6 (B6) mice

infected with Plasmodium yoelii, a reduction in the Firmicutes/Bacteroidetes ratio and a

decrease in Proteobacteria were observed [46]. Another study in B6 and BALB/c mice infected

with Plasmodium berghei revealed a decrease in Firmicutes and, specifically in one mouse

strain, an increase in Proteobacteria and Verrucomicrobia [47]. In C57BL/6 mice, liver dam-

age and bile acid depletion correlated with an increase in gut bacterial diversity during and

after infection with P. yoelii, suggesting a potential role of bile acids in shaping the gut micro-

biota [48]. These findings highlight the alterations of the gut microbiota in malaria infection.

Impact of gut microbiota on Plasmodium infections

The role of the gut microbiota in influencing the immune response to malaria has been studied

primarily in mouse models, with some evidence suggesting a similar effect in human malaria.

Here, we summarize important findings from recent experimental studies, but for more

insights into the interaction between the host gut microbiome and malaria, see the parallel

review by Mandal and Schmidt, where the experimental evidence is further elaborated.

Mouse models of Plasmodium berghei or Plasmodium yoelii infection, including BALB/c

and C57BL/6 mice, have been used to investigate the relationship between the gut microbiota

and malaria pathogenesis. Studies have shown that mice colonized with the gut pathobiont

Escherichia coli O86:B7, which expresses α-galactosyl, produce antibodies (against α-galacto-

syl) that cross-react with Plasmodium sporozoites, and could mediate clinical protection

against malaria infection [49].

The composition of the gut microbiota in mouse models appears to impact parasite burden

and fatality rates following infection with various Plasmodium species. In one study, fecal con-

tent from mice with different susceptibility to P. yoelii infection was transplanted into germ-

free mice, demonstrating that resistance to infection could be transferred through fecal trans-

plant [15]. In this study, relative protection against Plasmodium correlated with the abundance

of Lactobacillus and Bifidobacterium bacteria [15].

Differences in parasite burden and bacterial community composition have been observed

between different strains of mice. For example, Taconic mice showed lower peak parasite bur-

den and faster recovery compared to Charles River mice, suggesting that the host–microbiota

interaction plays a role in parasite burden rather than genetics or environmental factors [50].

The study also identified differences in gene expression, including the cell surface receptor

basigin, which may link the gut microbiome and malaria resistance.

Intestinal helminth infections, such as hookworm (Ancylostoma duodenale, Necator ameri-
canus), ascaris (Ascaris lumbricoides), and whipworm (Trichuris trichiura), have also been

associated with malaria susceptibility [51], although the data are not conclusive.

Studies on hookworm coinfections largely indicate increased susceptibility to malaria. A

study from Ethiopia reported that the intensity of hookworm (and trichuriasis) coinfections
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was associated with increased densities of both P. falciparum and P. vivax [51]. Other studies

from Uganda and Zimbabwe investigating hookworm coinfection reported early P. falciparum
parasitemia [52,53], while another study from Uganda showed no association between hook-

worm infection and early or delayed parasitemia [54]. Most studies on Ascaris lumbricoides
coinfections suggest a protective effect against malaria. A negative correlation was observed

between the intensity of A. lumbricoides infection and P. falciparum and P. vivax parasitemia

[51]. Another study from Thailand suggested protection from coinfection with Ascaris lumbri-
coides against the development of cerebral malaria or renal failure in patients with severe

malaria [55,56]. However, a study from Cameroon reported no association between intestinal

helminths (including ascaris and hookworm) and the clinical outcome of malaria [57].

Proposed mechanisms for the protective effect of ascaris infection include endothelial cell

receptor down-regulation and the production of IgE-anti-IgE immune complexes that reduce

the severity of falciparum malaria. Endothelial cell receptor down-regulation reduces parasite

erythrocyte cytoadherence or selective splenic parasite clearance, thus reducing the proportion

of virulent P. falciparum strains. It has also been suggested that IgE-anti-IgE immune com-

plexes resulting from helminth infections reduce the severity of falciparum malaria and can

mediate tolerance to the malaria parasite through the CD23/NO pathway [55]. Studies examin-

ing malaria in pregnancy have shown a negative correlation between A. lumbricoides infection

and the risk of P. vivax malaria [58], while hookworm has been associated with an increased

incidence of P. falciparum but not P. vivax parasitemia [56,59]. Overall, based on these epide-

miological observations the relationship between intestinal helminth infections and malaria

susceptibility or severity remains inconclusive.

Potential interventions targeting the gut microbiota

Therapies aimed at modifying the gut microbiota composition could be potential interventions

to influence susceptibility to and severity of Plasmodium infections. These interventions

include probiotics, selective digestive tract decontamination, fecal transplants, and antibiotics.

Probiotics

Probiotics are live microorganisms that can modify the gut microbiota. When combined with

prebiotics, which support their growth, they are known as synbiotics [60,61]. Common probi-

otic bacteria include Lactobacilli spp., Bifidobacteria spp., Saccharomyces boulardii, and Bacil-
lus coagulans. Probiotics and synbiotics have been suggested to reduce pathobionts through

colonization resistance, prevent bacterial translocation, degrade toxins, and modulate the

immune response [60].

While probiotics and synbiotics have been primarily studied for their potential in sepsis,

their effects on Plasmodium infections remain largely unexplored in human studies. However,

experimental mouse studies have shown promising results and have suggested a positive effect

on time to death, reduction of bacteraemia, and improved gut wall integrity [62]. A large

Indian study demonstrated a protective effect of a synbiotic containing Lactobacillus plan-
tarum plus fructooligosaccharide on the prevalence of sepsis in neonates and infants. Although

an earlier meta-analysis suggested a beneficial effect of probiotics on the prevention of ventila-

tor-associated pneumonia (VAP) [63], a recent large multicenter, double-blinded, randomized

controlled trial comparing the efficacy of the probiotic Lactobacillus rhamnosus GG (LGG)

versus placebo in preventing VAP did not confirm these findings [64].

There are no human studies on the use of probiotics in patients with malaria.

Probiotics containing Lactobacillus and Bifidobacterium have demonstrated a beneficial

effect in reducing P. yoelii parasitemia in another experimental mouse study [15]. The
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administration of Lactobacillus casei reduced the severity of Plasmodium chabaudi infection

[65]. In a mouse model of Plasmodium berghei, the efficacy of Lactobacillus casei as adjuvant

therapy to chloroquine, an antimalarial drug, was evaluated and showed a reduction in periph-

eral blood parasitemia with probiotic treatment [66].

Selective digestive tract decontamination

Selective digestive tract decontamination (SDD) involves the use of non-absorbable antimicro-

bials applied daily in the oropharynx and gastrointestinal tract [11]. SDD has been shown to

reduce nosocomial infections and lower mortality in large trials involving critically ill patients

in intensive care units in the Netherlands. It is now a standard infection prevention measure

in Dutch ICUs [67]. SDD prevents colonization of potentially pathogenic microorganisms,

including gram-negative aerobic microorganisms and Staphylococcus aureus, in the orophar-

ynx and intestines [68]. SDD has not been studied as an adjunctive therapy in malaria and has

also not been investigated in animal models of malaria.

Other interventions: Fecal transplants and antibiotics

Fecal microbiota transplantation (FMT) involves the administration of a solution of fecal

material from a healthy donor into the intestinal tract of a recipient through a feeding tube to

restore the gut microbiota [69]. FMT is currently used in the treatment of severe C. difficile
infections (CDI) [70]. It has also been studied in patients with other causes of diarrhea or sep-

sis [71]. However, FMT has not been investigated in human or animal models of malaria.

Antibiotics represent a potential intervention for the treatment of bacterial coinfections in

severe malaria. World Health Organization management guidelines recommend empirical

broad-spectrum antibacterial therapy for all children diagnosed with severe falciparum malaria

in malaria-endemic areas [72].

Conclusions

Intestinal injury and the gut microbiota appear to play a role in the severity and outcome of

falciparum malaria. Mouse studies show that altering the microbiota affects susceptibility to

Plasmodium infections. In humans, malaria leads to changes in the gut microbiota, including

an increase in pathogens associated with severe disease and bacterial infections. Studies in

patients with malaria show parasite-induced intestinal injury. Subsequently, impaired intesti-

nal barrier function could allow translocation of gut microbiota and microbial metabolites

into the bloodstream, potentially leading to concomitant sepsis. Observational studies in

humans provide associations between the microbiota and disease severity or protection. Possi-

ble interventions include probiotic therapy, selective digestive tract decontamination, or fecal

transplantation therapy. However, intervention studies are needed to establish causal

relationships.
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