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Abstract

Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to

limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients

and metabolites critically influence macrophage polarization. Choline is an essential nutrient

known to support normal macrophage responses to lipopolysaccharide; however, its func-

tion in macrophages polarized by type 2 cytokines is unknown. Using murine IL-4-polarized

macrophages, targeted lipidomics revealed significantly elevated levels of phosphatidylcho-

line, with select changes to other choline-containing lipid species. These changes were sup-

ported by the coordinated up-regulation of choline transport compared to naïve

macrophages. Pharmacological inhibition of choline metabolism significantly suppressed

several mitochondrial transcripts and dramatically inhibited select IL-4-responsive tran-

scripts, most notably, Retnla. We further confirmed that blocking choline metabolism dimin-

ished IL-4-induced RELMα (encoded by Retnla) protein content and secretion and caused a

dramatic reprogramming toward glycolytic metabolism. To better understand the physiologi-

cal implications of these observations, naïve or mice infected with the intestinal helminth

Heligmosomoides polygyrus were treated with the choline kinase α inhibitor, RSM-932A, to

limit choline metabolism in vivo. Pharmacological inhibition of choline metabolism lowered

RELMα expression across cell-types and tissues and led to the disappearance of peritoneal

macrophages and B-1 lymphocytes and an influx of infiltrating monocytes. The impaired

macrophage activation was associated with some loss in optimal immunity to H. polygyrus,

with increased egg burden. Together, these data demonstrate that choline metabolism is
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required for macrophage RELMα induction, metabolic programming, and peritoneal immune

homeostasis, which could have important implications in the context of other models of

infection or cancer immunity.

Author summary

Metabolic factors such as diet can profoundly impact the immune response to pathogens.

Choline is an essential nutrient that functions as a precursor to membrane phospholipids.

Here, we identify a critical role for choline metabolism in driving IL-4 macrophage polari-

zation and shaping the cellular immune response to intestinal helminth infection. IL-4

polarized macrophages had increased phosphatidylcholine biosynthesis and content. Inhi-

bition of choline metabolism dramatically impaired macrophage activation and metabo-

lism in culture, and in vivo following intestinal helminth infection, which was

accompanied by reduced expression of secreted protein RELMα, and a change in the

immune cellular composition. Overall, these studies identify a previously unrecognized

role for the essential nutrient choline in shaping the cellular immune landscape under

normal conditions and in response to intestinal helminths.

Introduction

Macrophages represent a heterogeneous and plastic subset of innate immune cells that per-

form critical homeostatic, surveillance and effector tasks in almost all tissues [1]. They can

dynamically respond to diverse endogenous and exogenous cues, including nutrient and

energy availability. Metabolic programming can directly drive macrophage function but can

also be rewired in response to various stimuli [2]. While we continue to expand our under-

standing of how energy-generating pathways and their intermediates underpin immunometa-

bolic function, the importance of nutrients in macrophage biology remains largely

underexplored.

Choline is a quaternary amine and essential nutrient that can form the main eukaryotic

phospholipid class, glycerophosphocholines (the most abundant of which are phosphatidyl-

cholines (PC)), or form acetylcholine in cholinergic tissues [3]. Additionally, methyl groups

from choline contribute to one-carbon metabolism after its mitochondrial oxidation. Given its

positive charge, choline requires facilitated transport across cellular membranes, representing

the first but least studied step in its metabolism. In immune cells, choline transporter-like pro-

tein 1 (Slc44a1) is responsible for the majority of choline uptake [4, 5]. Upon uptake, choline is

thought to be rapidly phosphorylated by choline kinase (Chkα/Chkβ) and is then committed

to the PC biosynthetic (CDP-choline/Kennedy) pathway [3, 6].

Phospholipid biosynthesis is indispensable for membrane biogenesis, which plays an

important role in cellular differentiation and phagocytosis [7]. The first insight into the poten-

tial role of choline in macrophage function came over twenty years ago with the observation

that deletion of myeloid Pcyt1a, encoding the rate-limiting enzyme in PC synthesis, dimin-

ished adaptive responses to endogenous stimuli (free cholesterol) [8] and impaired the secre-

tion of pro-inflammatory cytokines from macrophages [9]. Recent lipidomic analyses of

cultured macrophages demonstrated sweeping alterations to phospholipid composition and

content in response to various inflammatory stimuli [4, 10–12]. To begin to address the spe-

cific roles of choline as a regulator of macrophage functions, we and others have shown that
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polarization with the bacterial endotoxin lipopolysaccharide (LPS; termed M[LPS]) in primary

mouse macrophages leads to increased choline uptake and PC synthesis in an Slc44a1-depen-

dent manner. Inhibiting choline uptake and metabolism led to more pronounced inflamma-

tory responses in M[LPS], but also diminished inflammasome-mediated cytokine release [4,

5]. How choline metabolism may be regulated by or be important for macrophage phenotypes

in response to Th2 cytokine exposure remains unknown.

Interleukin-4 (IL-4), along with IL-13, is a signature cytokine of type 2 inflammatory

responses [13]. In addition to being widely used to polarize macrophages in vitro (termed M

[IL-4]), secretion of these cytokines in vivo is a critical response triggered by invading macro-

parasites or allergens [14]. Since it is now appreciated that macrophage inflammatory and met-

abolic programs exhibit a dichotomy in response to prototypical pro- and anti-inflammatory

stimuli, we sought to characterize the interplay between choline metabolism and IL-4-medi-

ated polarization of macrophages. Interestingly, we found that identical to LPS, choline uptake

and incorporation into PC was augmented in M[IL-4]. Moreover, when choline uptake and

metabolism was inhibited, we observed select but striking differences in metabolic and IL-

4-specific responses, underpinned by a dramatic reduction in RELMα both in vitro and in

mouse parasitic helminth infection.

Results

IL-4 increases PC content and alters choline containing phospholipid

composition

To begin to interrogate the potential effect of IL-4 stimulation on choline metabolic pathways,

we performed targeted LC-MS/MS analysis of choline-containing phospholipids in naïve (M

[0]), M[IL-4] and M[LPS] (Fig 1A). Surprisingly, the typically divergent polarization states led

to a symmetrical increase in total cellular PC levels (Fig 1B) with a significant increase pre-

dominantly in PCs containing unsaturated and monounsaturated fatty acids (Fig 1C). With

respect to other choline-containing lipids, no differences were found in the level of sphingo-

myelin (Fig 1D). Interestingly, there were also changes within the choline-containing lipidome

in response to either IL-4 or LPS. The plasmalogen forms of PC, which have been demon-

strated to be important for downstream lipid signaling, showed divergent changes. Levels of

plasmenyl PCs (PC(P)), structurally known as 1-alkenyl,2-acylglycerophosphocholines, as well

as their immediate precursors (LPC(P)) were reduced in response to both stimuli, while levels

of plasmanyl PCs (PC(O)), known as 1-alkyl,2-acylglycerophosphocholines remained

unchanged (Figs 1E, 1F, and S1A). The levels of platelet activating factors (PAF), their immedi-

ate precursor the lyso-PAFs (LPC(O)) (S1B and S1C Fig), as well as total lysophosphatidylcho-

lines (LPCs) (Fig 1G) did not change in response to IL-4 but were significantly up-regulated in

M[LPS]. The fatty acid composition of choline-containing subspecies was indistinguishable

between LPS and IL-4 polarization, except for a divergence in total LPCs (S1D Fig).

IL-4 up-regulates choline metabolism in macrophages

In keeping with higher levels of total cellular PC, polarization with IL-4 increased the incorpo-

ration of choline into PC (Fig 1H), as well as the rate of choline uptake in bone marrow-

derived macrophages (BMDM) (Fig 1I), without changing choline transport affinity or sensi-

tivity to inhibition (S2A and S2B Fig). Moreover, while select phospholipases are up-regulated

in M[IL-4] [15] we observed no difference in the rate of PC degradation (S2C Fig), which

completely mirrored the effects of LPS polarization [4]. We and others have shown that macro-

phages express two choline transporters, Slc44a1 and Slc44a2. IL-4-treated cells did not show
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increased Slc44a1 or Slc44a2mRNA (Fig 1J); however, total (Fig 1K) and surface (Fig 1L)

Slc44a1 protein expression was significantly augmented, suggesting post-transcriptional mech-

anisms. There were no changes in Slc44a2 protein levels. Taken together, these data suggest a

coordinated up-regulation of choline uptake and subsequent incorporation into PC in

response to IL-4 that is comparable in magnitude to LPS stimulation, though subtly different

in terms of mechanism.

Inhibiting choline metabolism selectively impairs IL-4 polarization

Characteristically, IL-4 polarization induces the expression of genes involved in dampening

inflammation and promoting tissue repair. We next sought to understand how limiting

Fig 1. IL-4 up-regulates choline metabolism in macrophages. A) Schematic of lipidomics analysis. B-G) Total PC content (B), heatmap of PC species (C), SM

content (D), PC(O) content (E), PC(P) content (F), or total LPC content (G) for M[0], M[IL-4], or M[LPS] expressed as nmol per 106 cells. n = 5 per polarization.

Heatmap statistics are shown as fold change over the average of M[0]. One-way ANOVA with Dunnett’s test for multiple comparisons (* p< 0.05, **< 0.01). H)

Incorporation of 3H-choline into phospholipids over time. n = 5 per timepoint, representative of 3 experiments. Two-way ANOVA with Šı́dák’s test for multiple

comparisons (** p< 0.01, *** p< 0.001). I) Uptake of 3H-choline over time in M[0] or M[IL-4]. n = 3 per timepoint, representative of 3 experiments. Linear

regression F test (**** p< 0.0001). J) Relative expression of Slc44a1 and Slc44a2 transcripts in M[0] or M[IL-4], normalized to Actb. n = 8 mice. K) Expression by

Western blot of Slc44a1 and Slc44a2 in M[0] or M[IL-4]. Densitometry quantified relative to β-actin. n = 3, representative of 3 experiments. Unpaired t test (**
p< 0.01). L) Expression of Slc44a1 by surface flow cytometry after different IL-4 stimulation times. Representative of 2 experiments. Schematics were created using

BioRender.

https://doi.org/10.1371/journal.ppat.1011658.g001
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choline availability and metabolism may affect these well-known responses. We used an inhib-

itor of extracellular choline uptake (hemicholinium-3; HC3) [16] and an inhibitor of choline

incorporation into PC, the choline kinase inhibitor RSM-932a (RSM) [17]. BMDM incubated

with HC3 or RSM for 24 h prior to polarization had little effect on most hallmark M[IL-4]

genes, such as Arg1,Mrc1 and Chil3 (Fig 2A-C); however, completely suppressed IL-4-medi-

ated induction of Retnla (Figs 2D and S3A–S3C). Interestingly, shorter (6 h) treatment with

HC3 was insufficient to affect Retnla expression (S3D Fig). To ascertain a better understanding

of the kinetics of Retnla inhibition, we conducted a simple experiment in which cells were

treated with inhibitors for 24 h, followed by IL-4 for a further 24 h (labeled POST), 24 h of con-

current inhibitor and IL-4 treatment (labeled as CONC) and 24 h of IL-4 polarization, fol-

lowed by 24 h of inhibition (labeled as PRE). Inhibiting choline metabolism prior to IL-4

polarization flattened any induction of Retnla. Concurrent inhibition of choline uptake and

metabolism along side polarization also significantly limited Retnla up-regulation. Finally,

while inhibition of choline uptake with HC3 in already polarized macrophages tended to

diminish expression, blocking choline metabolism with RSM in polarized cells was sufficient

to completely suppress Retnla expression (Fig 2E). To begin to explain the select effect of cho-

line inhibition in M [IL-4], we assessed the activation of pSTAT6-Y641 after IL-4 stimulation,

which was significantly blunted by treatment with HC3 or RSM after 15 minutes (Fig 2F).

There were no changes in levels of Il4ra transcript (S3E Fig), and pSTAT6-Y641 phosphoryla-

tion was further diminished over time (S3F Fig). Together, this suggests that disruptions of

choline metabolism in macrophages can blunt STAT6 signaling, though it is likely that ligand

recognition through IL-4R is not impaired [18].

To further probe how limiting choline metabolism alters macrophage IL-4 polarization, we

used CD38 and Egr2, which have been identified as effective discriminators of M [LPS] vs. M

[IL-4], respectively [19]. Blocking choline uptake did not impair the induction of Egr2, nor did

it promote CD38 expression in M [IL-4] (S3G Fig), despite Egr2 being induced in an IL-4/

STAT6-dependent manner [20]. We next assessed the expression of the checkpoint ligands

PD-L1 and PD-L2, which have also been used discriminate between M [LPS] and M [IL-4]

polarization [21]. Inhibiting choline metabolism with either HC3 or RSM led to consistent

PD-L1 up-regulation in M[0] and M[IL-4], but not in M[LPS] where expression was already

maximal (Fig 2G). In contrast, inhibiting choline metabolism reduced PD-L2 expression in M

[IL-4] (Fig 2G). Therefore, by limiting uptake and phosphorylation of choline, there were

pointed changes to traditional IL-4-induced cytokines (e.g., Retnla) and a skewing toward a M

[LPS]-like profile.

Choline metabolism inhibition impairs macrophage function

The secreted cytokine resistin-like molecule alpha (RELMα) is encoded by Retnla and has

pleiotropic functions, including suppression of Th2 responses and promotion of wound heal-

ing [22]. In IL-4-polarized macrophages, blocking choline uptake significantly reduced intra-

cellular RELMα levels (Fig 2H). Furthermore, to rule out off-target pharmacological effects,

culture of M [IL-4] in choline-deficient media also curtailed intracellular RELMα to the same

extent as HC3 and RSM (Fig 2H). Finally, we confirmed that secreted RELMα in M[IL-4] con-

ditioned media was significantly lower when choline uptake was inhibited (Fig 2I). Function-

ally, given that RELMα levels were dramatically reduced in response to altered choline uptake

and metabolism, we sought to assess the in vitro wound healing capacity of macrophages. A

“scratch wound” was created among 3T3-L1 fibroblasts grown to confluency and when

exposed to conditioned media from HC-3-treated M[IL-4], we observed a significantly

impaired rate of wound healing (S3H Fig).
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Fig 2. Choline uptake and phosphorylation is required for normal IL-4 signaling and M[IL-4] phenotype. A-D) Macrophages

were treated with vehicle (DMSO) or HC3 (250 μM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h. Relative

expression of M[IL-4] hallmark genes Arg1,Mrc1, Chil3, or Retnla normalized to Actb and compared to M[0]. n = 3–4,

representative of 3–5 experiments. Unpaired t test (*** p< 0.001). E) Schematic of timing variations for inhibitors and IL-4

polarization. Macrophages were treated with vehicle (DMSO), HC3 (250 μM), or RSM (5 μM) in the first 24 h then polarized with

IL-4 (20 ng/mL) for 24 h (POST). Inhibitors were given together with IL-4 for 24 h (CONC). Macrophages were polarized with IL-4

for 24 h, then treated with inhibitors for 24 h (PRE). Expression of Retnla normalized to Actb and compared to M[0]. n = 3,

representative of 1 experiment. Two-way ANOVA with Tukey’s test for multiple comparisons (* p< 0.05, ** p< 0.01, *** p< 0.001,

**** p< 0.0001). F) Macrophages were treated with vehicle (DMSO), HC3 (250 μM) or RSM-932a (5 μM) for 24 h, washed, then

treated with IL-4 (20 ng/mL) for 15’ and stained for intracellular pSTAT6 (Tyr641). n = 3, representative of 3 experiments. Two-way
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Choline metabolism supports naïve and M[IL-4] transcriptional programs

To gain an unbiased understanding of the transcriptional changes in response to blocking cho-

line uptake and metabolism, we next performed RNA transcriptomic analysis. Naïve and IL-

4-polarized macrophages that had been pretreated with either HC3 or RSM prior to polariza-

tion showed profound and sweeping differences in transcript expression patterns. Reactome

pathway analysis revealed the up-regulation of extracellular matrix organization genes by cho-

line inhibition, and down-regulation of genes involved in GPCR signalling (M[0]) and cell

cycle (M[IL-4]) (S4 Fig). Importantly, we confirmed that Retnla was only expressed with IL-4

polarization and was one of the most strongly down-regulated gene by fold change compared

to vehicle for both HC3 and RSM treatments (Fig 3A). We next performed Enrichr-KG analysis

[23] on the top 100 shared genes up- and down-regulated by HC3 and RSM in both M[0] and

M[IL-4]. These analyses indicated a conserved induction of unfolded protein response and ER

stress pathway genes, such as Trib3, Ern1,Ddit3 (Fig 3B and 3C). In contrast, both drugs down-

regulated genes involved in tyrosine phosphorylation and DNA replication (Fig 3D).

Choline metabolism inhibition profoundly alters mitochondrial

morphology and function

Macrophage metabolism is highly responsive to exogenous stimuli [24]. In response to IL-4,

glycolysis, glutaminolysis, and oxidative phosphorylation are up-regulated [25]. The inhibition

of choline metabolism led to a dramatic decrease in select electron transport chain (ETC)

genes encoded in the mitochondrial genome, with concomitant up-regulation of two mito-

chondrial ribosomal genes (mt-Rnr1/mt-Rnr2) (Fig 4A). Immunoblot analysis of ETC com-

plexes showed a strong trend toward reductions in complexes I-IV with HC3 and RSM (Fig

4B), though only changes in complex I was significantly different (S5A Fig). To interrogate fur-

ther, we performed extracellular flux analysis and as expected, oxygen consumption rate

(OCR) and spare respiratory capacity (SRC) were increased in M[IL-4] compared to M[0] (Fig

4C-I). Treatment with HC3 or RSM resulted in a potent reduction of SRC (Fig 4H). Presum-

ably as a compensatory mechanism, glycolysis as measured by extracellular acidification rate

(ECAR) was modestly elevated by HC3 and highly increased by RSM (Fig 4D and 4F), effects

reminiscent of complex I inhibition. We used a recently refined method to calculate energy

derived from glycolysis (ATPGlyco) or oxidative phosphorylation (ATPOXPHOS) using extracel-

lular flux assay values [26]. This showed that although ATPOXPHOS was diminished with HC3

or RSM, overall ATP production remained relatively stable (Fig 4J). To understand the kinetics

of these effects, we next assessed the time needed for metabolic changes in response to choline

kinase inhibition. Prior to washing the assay plate, just 5 minutes of RSM treatment was suffi-

cient to partially reduce ATPOXPHOS production, while 1 hour of treatment strongly reduced

ATPOXPHOS (S5B Fig). However, direct injection of RSM instead of rotenone/antimycin A

failed to reduce OCR (S5C Fig). This suggests that while rapid, the inhibitory effect on oxida-

tive metabolism is indirect by way of general mitochondrial disruption rather than a direct off-

target activity on ETC complexes.

ANOVA with Tukey’s test for multiple comparisons (** p< 0.01, **** p< 0.0001). G) Surface PD-L1 and PD-L2 expression in M

[0], M[IL-4], or M[LPS], treated with vehicle, HC3 (250 μM) or RSM-932a (5 μM). n = 2, representative of 3 experiments. H)

Macrophages were treated with vehicle (DMSO) or HC3 (250 μM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h in

complete or choline-deficient (ΔCho) media. B) Quantification of intracellular RELMα staining in live F480+ macrophages. n = 3,

representative of>4 experiments. One-way ANOVA with Tukey’s test for multiple comparisons (* p< 0.05, ** p< 0.01). I)

Macrophages were treated with vehicle (DMSO), HC3 (250 μM), or RSM-932a (5 μM) for 24 h, washed, then treated with IL-4 (20

ng/mL) for 24 h. Detection of supernatant RELMα by ELISA. n = 5 (vehicle, HC3, IL-4) or n = 2 (RSM). Unpaired t test (**
p< 0.01). Schematics were created using BioRender.

https://doi.org/10.1371/journal.ppat.1011658.g002
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TEM images of RSM-treated M[IL-4] displayed a near complete lack of intact mitochondria

with normal cristae structure (Fig 4K). We also observed examples of engulfed mitochondria

in RSM-treated M[IL-4] cells, indicative of mitophagy as seen by others [5]. In line with this

and previous reports, choline metabolism inhibition also impaired mitochondrial membrane

potential (S5D Fig). Together, these results suggest that choline inhibition causes a rapid,

though not immediate, deterioration of mitochondrial health that culminates in near complete

mitochondrial dysfunction.

Choline kinase inhibition in vivo reduces tissue-resident macrophage

RELMα
RELMα is strongly up-regulated upon IL-4 treatment in vitro but is also expressed endoge-

nously in tissue-resident macrophages throughout the body, especially serosal cavity

Fig 3. Inhibiting choline metabolism drives pronounced changes in gene transcription in naïve and IL-4-polarized macrophages. A) Schematic of bulk

RNA-seq sample preparation. Heatmap of z-scores for select genes of interest. n = 3. B) Volcano plots of comparisons between Veh and HC3 or RSM in M

[0] or M[IL-4]. Red dots represent genes with false discovery rate (FDR)< 0.05 and log2 fold change (FC)< -1 or> 1. Select genes of interest are

annotated. C-D) The top significantly up- or down-regulated genes shared in all comparisons in B) were analyzed by Enrichr-KG to identify common

pathways. Schematics were created using BioRender.

https://doi.org/10.1371/journal.ppat.1011658.g003
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macrophages [27, 28]. We next sought to pharmacologically block choline metabolism in vivo
to interrogate whether this could mimic changes in IL-4 responses observed in cultured cells.

Mice were dosed with RSM (3 mg/kg i.p.) every other day for seven days (Fig 5A). Previously,

long-term RSM administration in preclinical tumour models resulted in significant reduction

in tumour growth [17], highlighting its low toxicity and therapeutic potential. Surprisingly,

Fig 4. Inhibiting choline metabolism impairs mitochondrial structure and function. A) Heatmap of z-scores for select mitochondrially-encoded

genes. B) Western Blot of electron transport chain complexes I to V in macrophages treated with vehicle (DMSO), HC3 (250 μM), or RSM (1 or 5 μM).

Total protein by trichloroethanol (TCE) staining shown for normalization. Representative blots of n = 3. C-I) Mito Stress Test assay of extracellular flux

with sequential treatments of 1.5 μM oligomycin, 14 μM BAM15, and 1 μM rotenone/1 μM antimycin A/Hoechst 33342. Oxygen consumption rate

(OCR) of M[0] (C) or M[IL-4] (E) treated with DMSO (Veh), HC3 (250 μM), or different concentrations of RSM. Extracellular acidification rate

(ECAR) in M[0] (D) or M[IL-4] (E). Derived parameters of basal respiration (G), spare respiratory capacity (H), or non-mitochondrial respiration (I)

from (C) and (E). Measurements (n = 3 in triplicate) were normalized to an arbitrary cell factor determined by Hoechst 33342 nuclei counts. One-way

ANOVA with Šı́dák’s test for multiple comparisons (*** p< 0.001, **** p< 0.0001). J) Bioenergetics analysis of ATP produced through oxidative

phosphorylation (ATPOXPHOS) or glycolysis (ATPGlyco). Measurements (n = 3 in triplicate) were normalized per 103 cells. Mixed-effects analysis with

Tukey’s test for multiple comparisons (ATPOXPHOS: ## p< 0.01, ### p< 0.001; ATPGlyco: * p< 0.05, *** p< 0.001, **** p< 0.0001). K) Transmission

electron micrographs of macrophages treated with vehicle (DMSO) or RSM (5 μM) in M[IL-4]. Scale bars represent 2 μM (left) or 0.5 μM (right insets).

White arrows indicate healthy mitochondria with intact cristae, orange arrows indicate mitochondria with aberrant membrane structure or absent

cristae. Representative images from n = 3 and at least 10 cells imaged per condition. No cells with intact mitochondria were observed with RSM

treatment.

https://doi.org/10.1371/journal.ppat.1011658.g004
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RSM treatment resulted in drastic remodelling of peritoneal exudate cell (PEC) populations

(Fig 5B). Uniform manifold approximation and projection plots show a reduction in B cells,

macrophages and eosinophils, and an increase in Gr-1+ polymorphonuclear cells (PMNs) and

monocytes. Furthermore, intracellular RELMα levels were significantly decreased in large

(CD11b+F4/80hi), and small (CD11b+F4/80lo) PEC macrophages (LPM and SPM) taken from

RSM-treated mice compared to vehicle control (Figs 5C and gating in S6A). Moreover, expres-

sion of PD-L1 was also significantly increased and PD-L2 reduced compared to vehicle-treated

mice, which mirrored in vitro results (Fig 5D and 5E). The suppressive effect of RSM on LPM

and SPM, which contained moderate or high levels of intracellular RELMα was evident follow-

ing just two doses, separated by 48 h (S6B and S6C Fig).

Inflammation, infection, or sterile injury of serosal (peritoneal and pleural) cavities cause

the disappearance of LPM from serosal fluids (termed macrophage disappearance reaction or

macrophage disturbance of homeostasis reaction (MDHR) [29]. Several recent studies have

shown that these macrophages are primarily forming aggregates within the cavity or localizing

Fig 5. In vivo choline kinase inhibition remodels peritoneal cell populations and impairs RELMα expression. A) Schematic of 7-day in vivo choline kinase

inhibition. Mice were treated intraperitoneally with vehicle (40% DMSO in PBS) or RSM-932a (3 mg/kg) every other day for 6 days and sacrificed on day 7. B)

UMAP of peritoneal cell populations. n = 9–10, representing 2 independent experiments. C) Intracellular RELMα expression in live CD11b+F4/80hi large (LPM)

and CD11b+F4/80lo small (SPM) peritoneal macrophages. Two-way ANOVA with Šı́dák’s test for multiple comparisons (* p< 0.05, **** p< 0.001). D-E)

PD-L1 or PD-L2 expression (gMFI) in live CD11b+F4/80hi LPM and CD11b+F4/80lo SPM. Two-way ANOVA with Šı́dák’s test for multiple comparisons (*
p< 0.05, ** p< 0.01, *** p< 0.001). F) Intracellular RELMα expression in LPM and SPM isolated from peritoneal cavity aggregates or suspended lavage cells.

Two-way ANOVA with Šı́dák’s test for multiple comparisons (* p< 0.05, **** p< 0.0001). Schematics were created using BioRender.

https://doi.org/10.1371/journal.ppat.1011658.g005
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to the omentum [30]. We adapted a recently published comprehensive methodology [30, 31]

to address MDHR in our studies by analyzing potential sites of LPM egress: floating and

adherent cellular aggregates, homing to the omentum, and migration to draining lymphatics.

We found that aggregated MHCIIlo LPM and MHCII+ SPM in RSM-treated mice expressed

nearly no RELMα, similar to suspended lavage cells (Fig 5F). Thus, in vivo inhibition of cho-

line metabolism restructures endogenous tissue-resident macrophage phenotypes and

supresses RELMα in multiple tissue compartments.

RELMα is further found in white adipose tissue (WAT) and lung, and though previously

thought to be an adipokine [32], RELMα is mainly produced by WAT macrophages. Short-

term RSM treatment increased WAT Emr1 expression (S6D Fig) and matched the pattern of

in vitro choline uptake or Chkα inhibited BMDM with decreased Retnla, increased Chil3, and

unchangedMrc1 (S6E–S6G Fig).

Inhibiting choline metabolism with RSM improves measures of chemical-

induced colitis

The link between choline metabolism and RELMα was unexpected. To further probe the func-

tional consequences of altering RELMα levels under pathophysiological conditions, we used

dextran sodium sulfate (DSS) to chemically induce a state of colitis in female C57BL/6J mice

over a 7-day protocol, where mice were given vehicle or RSM (3 mg/kg i.p.) bi-daily (S6H Fig).

While there were no significant differences in body weight (S6I Fig), colon length was signifi-

cantly longer and hemoccult was significantly lower in RSM-treated mice compared to control,

respectively (S6J and S6K Fig). This is entirely consistent with previous reports where Retnla-

deficient mice were protected against DSS-induced colitis [33].

Choline inhibition shifts peritoneal immunity and impairs M[IL-4]

polarization to multiple helminth infections

Our data suggest a role for choline metabolism in supporting IL-4-induced (Th2) responses in
vitro and in vivo. To interrogate choline metabolism function in the physiologic setting of a

Th2-skewed environment driven by helminth infection, we infected female mice withHelig-
mosomoides polygyrus (Hp), a parasitic nematode that colonizes the small intestine and drives

protective M[IL-4]-like responses [34]. IntestinalHp infection induces significant peritoneal

cavity inflammation and macrophage M[IL-4] responses [35]. The striking RSM-induced

changes in the peritoneal immune landscape of naïve mice was exacerbated duringHp infec-

tion (Figs 6A and S7A). We detected more than a 10-fold increase in peritoneal cells compared

to naïve mice and during infection, there was a significantly lower number total cells when

mice were treated with RSM (Fig 6B). There was a substantial drop in eosinophils and B-1 cells

in RSM-treated mice, accompanied by a rise in monocytes and neutrophils, both by frequen-

cies and total cell numbers (Fig 6C–6F). Peritoneal macrophages were also decreased by RSM

treatment in both naïve and infected mice (Fig 6G). Bulk peritoneal macrophages showed dif-

ferences in CD206, CD86, and PD-L1 in infected mice treated with RSM (Fig 6H–6J), similar

to immunofluorescent staining and in naïve mice (Fig 5D). For acuteHp-infected mice, we

further refined peritoneal macrophage classification into MHCIIhi SPM and MHCIIlo LPM.

The numbers and frequencies of MHCIIhi and MHCIIlo peritoneal macrophages were

decreased upon RSM treatment (S7B Fig). CD86 and PD-L1 were increased whereas CD206

was up-regulated in both populations, with a stronger effect seen in MHCIIlo macrophages

(S7C–S7E Fig). In contrast, PD-L2 was decreased only in MHCIIhi macrophages in RSM-

treated mice (S7F Fig). These results were directly recapitulated during chronicHp infection

and RSM treatment, where we observed differences in resident peritoneal immune

PLOS PATHOGENS Choline sustains M2 macrophage responses

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011658 September 25, 2023 11 / 30

https://doi.org/10.1371/journal.ppat.1011658


Fig 6. In vivo choline kinase inhibition in naïve mice and primary intestinal helminth infection alters peritoneal cell

populations and macrophage alternative activation. A) UMAP plots of peritoneal cells (PECs) from naïve andH. polygyrus-
infected mice treated with vehicle or RSM-932a. See S6A Fig for population gating. B-G) Enumeration of B) total PECs, C)

eosinophils, D) monocytes, E) B-1 cells, F) neutrophils, G) peritoneal macrophages among live PECs. n = 3–4 (naïve) or n = 5

(infected). Two-way ANOVA with Šı́dák’s test for multiple comparisons (* p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001).

H-J) CD206, I) CD86, or J) PD-L1 expression (gMFI) on peritoneal macrophages. n = 3–4 (naïve) or n = 5 (infected). Two-way

ANOVA with Šı́dák’s test for multiple comparisons (* p< 0.05), representative of 2 experiments.

https://doi.org/10.1371/journal.ppat.1011658.g006
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populations, as well as changes in macrophage expression of CD86 and CD206 (S8A–S8F Fig).

Taken together, these data support a major role for choline metabolism in sustaining RELMα
expression and shaping the composition and phenotype of immune populations in vivo.

Choline kinase inhibition does not affect helminth burden despite

dramatic blunting of RELMα
Given the dramatic shift in peritoneal immune landscape, we next aimed to assess how mark-

ers of parasite burden may be affected. Mice were orally infected withHp larvae and left for 8

days to allow parasites to develop into adults within the intestinal lumen, followed by treat-

ment with RSM or vehicle every two days. Naïve mice were also treated with RSM at the same

dose and interval to serve as controls for infection (Fig 7A). Treatment with RSM had modest

effects on the weight of naïve orHp-infected mice, with the trend of decreasing weight gain

Fig 7. In vivo choline kinase inhibition during primary infection impairs systemic and intestinal RELMα and intestinal macrophage alternative activation. A)

Schematic of primary infection with 200H. polygyrus (Hp) L3 larvae through oral gavage. Mice were treated intraperitoneally with vehicle (40% DMSO in PBS) or

RSM-932a (3 mg/kg) every other day for 8 days starting on day 8 and sacrificed on day 17. B-C) Percentage of weights at start of vehicle or RSM injections at 8 DPI

withH. polygyrus (B) or final weights at day 17 (C). Mixed-effects analysis with Tukey’s test for multiple comparisons (* p< 0.05). D-E) Eggs in feces were counted at

multiple time points after infection, and E) adult worms were isolated from the small intestine and enumerated on the day of sacrifice. Values represent

means ± SEM (n = 3–5 mice per group), representative of 3 experiments. Two-way ANOVA with Šı́dák’s test for multiple comparisons and unpaired t test (ns). F-G)

Detection of serum and G) peritoneal fluid RELMα by ELISA in naïve andH. polygyrus-infected mice. n = 3–5 per group. Two-way ANOVA with Šı́dák’s test for

multiple comparisons (* p< 0.05, *** p< 0.001 for differences between treatment and ## p< 0.01 for differences between naïve and infected vehicle-treated mice).

H-L) Immunofluorescent staining of intestinal tissue for CD206 and RELMα against DAPI counterstain. Scale bar 50 μm. Quantification of CD206+ (I) or RELMα+

(J) per DAPI+ cell. Unpaired t test (* p< 0.05). Quantification of F4/80+ (K) and RELMα+F4/80+ (L) per DAPI+ cell. n = 6. Two-way ANOVA with Šı́dák’s test for

multiple comparisons (**** p< 0.0001). Schematics were created using BioRender.

https://doi.org/10.1371/journal.ppat.1011658.g007
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but no change in final weights between groups (Fig 7B and 7C). IL-4-polarized macrophages

have been shown to play an important role in reducing helminth parasite burden [36]; yet, nei-

ther egg nor worm burden were affected following RSM treatment (Fig 7D and 7E).Hp infec-

tion significantly increased RELMα levels in the peritoneal fluid and serum; nevertheless,

consistent with in vitro and in vivo observations, RELMα levels were significantly decreased

with RSM treatment (Fig 7F and 7G). Furthermore, the presence of CD206+ and RELMα+

cells in intestinal tissue, the primary site of infection, was also reduced (Fig 7H–7J). To deter-

mine whether macrophage derived RELMα was specifically affected by RSM treatment, intesti-

nal tissue sections were co-stained with F4/80 and RELMα and double positive cells

quantified. This analysis revealed thatHp infection strongly induced F4/80+RELMα+ cells in

the intestine, but these were significantly reduced by RSM treatment (Fig 7K and 7L).

We next probed the effect of chronic RSM treatment in a vaccination model forHp involv-

ing secondary infection (S9A Fig), where IL-4-polarized macrophages are critical for protec-

tion [36]. Over the course of the 10-week infection, RSM treatment resulted in significantly

increased fecal egg burden specifically at week 8 but showed a trend at all other time points

(S9B Fig). Taking the area under the curve for egg burden, RSM treated mice had significantly

higher total egg burden (S9C Fig), suggestive of some deficiency in optimal immunity to the

parasitic worm. However, there were no significant differences in the adult worm burden after

secondary challenge (S9D Fig). Remarkably, consistent with the acute regiment, RSM treat-

ment led to a significant drop in peritoneal and serum RELMα (S9E and S9F Fig), as well as

down-regulated CD206 and up-regulated CD86 expression in the intestinal cells of infected

mice (S9G–S9I Fig). We conclude that choline metabolism inhibition significantly reduces

RELMα but this is not sufficient to fully impact worm burden, however, can impact worm fer-

tility. This may be partly explained by the fact that RSM does not inhibit other M2 macrophage

effectors such as Arg1. Together, this data indicates the importance of choline metabolism and

choline kinase signaling in promoting M[IL-4] polarization and RELMα expression in intesti-

nal helminth infection.

Discussion

Upon activation, macrophages up-regulate choline metabolism to fuel PC synthesis. LPS and

IL-4 both induce expansion of organellar membranes including ER, mitochondria, and endo-

lysosomes [37–40], in addition to a general enlargement of the cell itself [41]. Building on our

understanding of macrophage choline metabolism during LPS polarization, we show here that

stimulation of divergent signaling pathways (i.e., LPS-TLR4 vs. IL-4-JAK/STAT6), both lead to

more choline taken into the cell with an associated up-regulation of Slc44a1, which likely facili-

tates increased flux through the PC synthetic pathway and more PC levels for membrane bio-

genesis. Recently, another putative choline transporter has been described, FLVCR1 [42].

Flvcr1-knockout mice are embryonic lethal, but little has been reported as to the role of this

gene in immune cells. Interestingly, cells from Flvcr1-knockout embryos had major defects in

mitochondrial structure and morphology. Our RNA-seq analysis revealed robust expression of

Flvcr1 in M[0] and M[IL-4], which was up-regulated by choline metabolism inhibition. In con-

trast, transcript expression of Slc44a1 was inhibited by choline metabolism inhibition. The

physiological role and individual contributions of choline transporters such as Slc44a1,

Slc44a2 and Flvcr1 to choline transport and metabolism remains unexplored but of significant

priority.

How phospholipid composition is affected by macrophage polarization has been addressed

in studies using similar experimental designs. While the increased accumulation of PC in IL-4/

IL13-polarized macrophages (RAW264.7 cells) was shown in a comprehensive assessment of
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phospholipid content after long term exposure to polarizing stimuli, this was not seen in

human THP-1-derived macrophages [43], nor were increases observed before 18 h [38]. Cou-

pled with an increase in total PC content, we observed an increase in saturated and monoun-

saturated fatty acyl chains in PCs elevated in both M[IL-4] and M[LPS]. We and others have

previously shown that M[LPS] up-regulate de novo lipogenesis to supply new fatty acids for

phospholipid synthesis [4, 10]. There is now evidence to support a role for both exogenous

fatty acid uptake [11, 12], as well as de novo lipogenesis in M[IL-4] [44]. Despite the potentially

divergent sources of FA, differences in the side chain composition of choline-containing phos-

pholipids between macrophage polarizations may fuel distinct lipid signaling pathways follow-

ing phospholipase-specific processing.

A handful of studies have now interrogated the importance of choline metabolism in mac-

rophage biology, though all have been in the context of LPS-induced polarization and inflam-

mation [4, 5, 9, 45, 46]. Conversely, while macrophage IL-4 polarization is widely used in vitro
and typically yields a reproducible response, how this might be affected by or might affect cho-

line metabolism remained unclear. By blocking choline uptake and/or subsequent metabolism,

the transcriptional induction ofMrc1, Chil3, Arg1 were not changed. However, limiting the

availability of choline in the media, or pharmacologically blocking the uptake/phosphorylation

of choline caused the targeted reduction in IL-4-induced Retnla expression and RELMα secre-

tion. Early studies indicated that signaling through STAT6 is essential for proper induction of

Th2 cytokines and IL-4-induced RELMα expression [47]. In response to limiting choline avail-

ability and PC synthesis, STAT6 phosphorylation, as a surrogate for IL-4R signaling efficacy,

was decreased. Though this supports the robust down-regulation of Retnla, similarly regulated

transcripts such as Arg1 and Chil3 were not affected or mildly increased. Curiously, Chil3 has

even been suggested to augment Retnla expression [48]. The mechanism(s) by which choline

availability regulates Retnla are likely transcriptional; however, the exact mechanism remains

unclear. Interestingly, transient expression of Retnla was recently shown in nearly all tissue-

resident macrophages and its induction in PEC macrophages was IL-4R- and STAT6-indepen-

dent [49, 50]. Consistent with this, other studies report that RELMα is induced by signals

other than Th2 cytokines, such as hypoxia or phagocytosis of apoptotic cells [51, 52]. Further-

more, a reporter mouse line showed RELMα expression mainly in WAT, intestine, and perito-

neal macrophages [50], as well as peritoneal eosinophils and type II alveolar epithelial cells.

Our findings support the differential induction of canonical M[IL-4] genes and identify

choline metabolism as a specific inducer of Retnla. In our study, we found that Chkα inhibi-

tion resulted in major changes to PEC populations, akin to the macrophage disappearance

reaction upon inflammatory stimuli [53], pointing to a possible connection between macro-

phage tissue residence and choline metabolism. In addition, B cells in the peritoneum were

drastically reduced, which corroborates previous observations demonstrating that RSM and

another Chkα inhibitor (MN58B) dramatically lowered splenic B cell populations upon sys-

temic delivery [54]. How this altered peritoneal immune profile may influence RELMα levels

remains to be determined; however, since lung B cells express similar amounts of RELMα dur-

ing Nippostrongylus brasiliensis infection as alveolar macrophages [55], the effect may not be

exclusive to macrophages. During Nb infection, lung-resident interstitial macrophages up-reg-

ulate RELMα in a STAT6-dependent manner [50]. Separately, a subset of lung interstitial mac-

rophages identified as CD169+ nerve- and airway-associated macrophages (NAMs) were

found to express high levels of RELMα [56]. Depletion of all interstitial macrophages impaired

control of helminth infection [50], while depletion of NAMs exacerbated lung inflammation

but had no impact on control of influenza infection [56].

Macrophage-derived RELMα has been shown to promote profibrotic collagen cross-linking

in fibroblasts [57], while also contributing to pro-inflammatory processes in intestinal
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inflammation and infection [33, 58, 59]. Given that limiting choline metabolism in M[IL-4]

markedly depleted RELMα levels and that in vivo RSM treatment recapitulated this effect, we

reasoned that blocking choline metabolism during helminth infection may phenocopy models

of RELMα deficiency, where enhanced resistance to parasites is observed [60–62]. Contrary to

our hypothesis, RSM-mediated choline kinase inhibition had minimal impact on indices of

parasite burden in the helminth models we assessed, despite profound reductions in local and

systemic levels of RELMα (Figs 6, S5, and S7). While the explanation for this remains unclear,

there may be compensatory changes in RSM-treated mice, such as the altered immune profile,

differential activation of macrophages, or direct effects of RSM on the pathogen that could

confound the interpretation. The importance of macrophage-specific metabolism for M[IL-4]

activation in the context of helminth infection has previously been shown. Inhibition of lyso-

somal lipolysis inH. polygyrus-infected mice reduced M[IL-4] polarization and RELMα
expression, leading to increased parasite egg burden [63]. Similarly, our studies indicate that

choline metabolism is also important in optimal M[IL-4] polarization in response toH. poly-
gyrus infection, but with slight effects on egg burden in chronic studies and no effects on para-

site burden. Future work could involve genetic and tissue-specific models to directly address

the relevance of macrophage choline metabolism in controlling helminth infections.

Metabolic reprogramming that occurs in response to macrophage polarization represents

one of the fundamental observations of immunometabolism. Our RNAseq analyses revealed

intriguing changes in mitochondrial transcripts (ribosomal genes up-regulated and electron

transport chain component transcripts down-regulated). The extent to which mitochondrial

morphology and metabolism were altered was intriguing. M[IL-4] up-regulate oxidative and

glycolytic programs, with key signals coming from metabolic intermediates such as α-ketoglu-

tarate and succinate [64, 65]. When choline cannot enter the cell or be used in the synthesis of

PC, cellular organelles are swiftly affected. The capacity to continuously provide PC, from ER

to mitochondria is critically important and when disrupted, results in clear destruction of the

mitochondrial cristae, results consistent with Flvcr1- and SLC44A1-deficient cells [5, 66]. As a

result, macrophages, independent of IL-4 stimulation, must rely on anaerobic means to gener-

ate cellular ATP. Importantly, we observed a dramatic difference in the potency of inhibiting

choline uptake via HC3 or choline kinase activity via RSM, whereby the latter caused the most

dramatic effect. We reason that the inhibition of choline uptake, while limiting supply of exog-

enous choline, would continue to allow for the recycling and modification of existing phos-

pholipids, which lessens the impact of the treatment. Choline kinase inhibition; however,

would almost completely limit PC supply. While inhibiting macrophage PC synthesis was

shown to lead to the loss of mitochondrial membrane potential, leading to mitophagy and a

protection against inflammasome activation, future work will be required to identify whether

metabolic reprogramming is mechanistically linked to Retnla down-regulation in M[IL-4]

cells.

In addition to the striking effect on RELMα, we found the costimulatory checkpoint ligands

PD-L1 and PD-L2 were coordinately regulated by choline metabolism, which is contrary to

conventional IL-4-polarization. In tumour settings, nutrient availability may be heterogenous,

especially for infiltrating immune cells, which can explain the wide range of PD-L1 positivity

among tumour samples and the relatively poor response to anti-PD-1/PD-L1 immune-check-

point inhibitor therapies [67]. Up-regulated choline metabolism is a recognized hallmark of

certain cancers [68, 69] and targeting Chkα can both inhibit cancer cell growth and render cell

death-resistant cancers more susceptible to immunotherapy [70]. Similarly, RSM-932A

increased CD86 expression in the intestine in the secondary H. polygyrus infection, which is a

hallmark of M1-polarized macrophages [71]. CD86 in antigen-presenting cells provides costi-

mulatory signals to activate T cells through CD28 and CTLA4 binding [72, 73]. Previous
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studies reported that CD86 was also up-regulated by helminth-derived peptide GK-1 in

BMDM [74]. These changes in costimulatory and checkpoint proteins supports a potential

immunoregulatory role of choline metabolism that may represent an underappreciated thera-

peutic potential in certain disease settings.

Macrophages up-regulate choline uptake and incorporation in response to IL-4 stimula-

tion. Reciprocally, when the availability of choline is compromised, normal IL-4 responses are

affected. We used two pharmacological approaches to limit choline availability and nutrient

deprivation in the media. These approaches carry numerous caveats, including dose, timing,

route, and potential off-target effects; however, our in vitro pharmacological approach targeted

distinct steps in the CDP-choline pathway. Separately, other fates of choline may be modified

by or play a role in mediating the alteration of immune cell function. For instance, phospho-

choline may post-translationally modify proteins [75, 76], and macrophages and other

immune cells have been shown to produce acetylcholine [77]. Conversion of choline to betaine

may also support osmoregulation [78] or contribute to histone methylation [79], but these lat-

ter mechanisms require deeper investigation in immune contexts and remain speculative.

Future work using genetic models to solidify the importance of choline uptake and subsequent

metabolism are warranted.

In summary, we describe a critical role for choline metabolism in the mediating the full

potential of macrophage M[IL-4] polarization and metabolic programming. Moreover, sys-

temic pharmacological inhibition of choline metabolism in mice closely mirrors the dramatic

down-regulation of RELMα but fails to affect the pathology of intestinal or lung helminth

infection models. This work also highlights that the inhibition of choline metabolism via RSM

caused a dramatic shift in immune cell profile and potentially polarization, which may be ther-

apeutically beneficial in other disease settings such as peritoneal metastases or fibrosis.

Methods

Ethics statement

All animal procedures were approved by the University of Ottawa Animal Care Committee

(BMI-1863) and the University of California Riverside Institutional Animal Care and Use

Committee (protocol A-20210017).

Animals

Mice (C57BL/6J) were originally purchased from Jackson Laboratories (Stock no. 00064) and

bred in a pathogen-free facility in the University of Ottawa animal facility or acclimated for 7

days prior toH. polygyrus infection at the University of California Riverside. Mice were main-

tained on a 12-hour light dark cycle (lights on at 7:00 am) and housed at 23˚C with bedding

enrichment. Male and female mice ages 8–16 weeks were used for the generation of primary

macrophages as described below.

Isolation, culturing and polarization of bone marrow-derived macrophages

BMDM were isolated and cultured as previously described [80, 81]. Briefly, bone marrow

cells were obtained from the femur and tibia by centrifugation [4]. Cells were differentiated

into macrophages using 15–20% L929-conditioned media in complete DMEM (Wisent)

containing 10% FBS (Wisent), 1% penicillin/streptomycin. Cells were plated into 15 cm

dishes and allowed to differentiate for 6–8 days. Cells were lifted by gentle scraping in

10mM EDTA in PBS, counted, and seeded into culture plates for experiments at 1x106/mL.

Cells were treated for 24 h with DMSO as vehicle or inhibitors: hemicholinium-3 (Sigma-
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Aldrich), RSM-932a (Cayman Chemicals). Macrophages were polarized with 20 ng/mL

recombinant IL-4 (Peprotech or Roche) or 100 ng/mL LPS (E. coli:B4, Sigma-Aldrich).

Choline-free DMEM was formulated by preparing nutrient-deficient DMEM (US Biologi-

cals, D9809) according to manufacturer’s instructions and supplementing with sodium

pyruvate (Gibco), myo-inositol, L-methionine, and calcium D-pantothenate (Sigma-

Aldrich).

Choline uptake, incorporation, uptake inhibition and degradation

The rates of choline uptake, incorporation into PC, uptake inhibition and degradation were

determined in M[0] and M[IL-4] using 3H-choline chloride (Perkin Elmer) as previously

described [4].

High-performance liquid chromatography electrospray ionization tandem

mass spectrometry (LC-ESI-MS/MS) Lipidomics

Cells were counted, pelleted, and frozen at -80˚C in 15 mL Falcon tubes for 24 h. Pellets were

resuspended in 1 mL sodium acetate using a syringe pipette and transferred to Kimble tubes.

Tubes were washed two times in 1 mL and 1.2 mL sodium acetate, respectively, to recover all

material and these volumes were also transferred to the corresponding Kimble tube. All pipette

tips were glass. MS-grade lipid standards (all from Avanti Polar Lipids) consisting of 90.7 ng

LPC (13:0/0:0), 100 ng PC(12:0/13:0), and 75 ng SM(d18:1/18:1-D9), were added to the sam-

ples at time of extraction. Lipids were extracted using a modified Bligh and Dyer [82] protocol

at a final ratio of acidified methanol/chloroform/sodium acetate of 2:1.9:1.6 as previously

described [83, 84]. The organic chloroform phase was retained, and the aqueous phase was

successively back-extracted using chloroform three times. The four chloroform extracts were

combined and evaporated at room temperature under a constant stream of nitrogen gas. Final

extracts were solubilized in 300 μL of anhydrous ethanol (Commercial Alcohols) and stored

under nitrogen gas at -80˚C in amber vials (BioLynx).

Lipid quantification was performed on an Agilent 1290 Infinity II liquid chromatography

system coupled to a QTRAP 5500 triple quadrupole-linear ion trap mass spectrometer using a

Turbo V ion source (AB SCIEX) in positive ion mode. Reverse phase chromatography was

performed using a binary solvent system composed of solvent A (water with 0.1% formic acid

(Fluka) and 10 mM ammonium acetate (OmniPur)) and solvent B (acetonitrile (J.T. Baker)

and isopropanol (Fisher) at a ratio of 5:2 v/v with 10 mM ammonium acetate and 0.1% formic

acid) and a nanobore 100 mm x 250 μm (i.d.) capillary column packed in-house with Repro-

Sil-Pur 200 C18 (particle size of 3 μm and pore size of 200 Å; Dr. A. Maisch, Ammerbruch).

Three μL of sample at 4˚C was injected with the system operating at 10 μL/min and using a

gradient that started at 30% solvent B, reached 100% solvent B at 8 minutes, and remained at

100% solvent B for 45 min. At 45 min, composition was returned to 30% solvent B and the col-

umn was regenerated for 15 min. Samples were prepared for HPLC injection by mixing 5 μL

of lipid extract with 2.5 μL of an internal standard mixture (all from Cayman Chemicals) con-

sisting of 2.5 ng LPC(O-16:0-D4/0:0), 2.5 ng LPC(O-18:0-D4/0:0), 1.25 ng PC(O-16:0-D4/2:0)

and 1.25 ng PC(O-18:0-D4/2:0) in EtOH, and 16 μL of Solvent A. Transition lists were estab-

lished using precursor ion scan interrogating a diagnostic fragment ion at m/z 184.1, corre-

sponding to the phosphorylcholine headgroup of the protonated molecular ion ([M+H]+).

Once all detectable species were established in precursor ion discovery mode, targeted lipid

quantification was performed using selected reaction monitoring (SRM), monitoring transi-

tions from [M+H]+ with the product ion 184.1. ESI-MS/MS acquisition and instrument con-

trol were performed using Analyst software (version 1.6.3, SCIEX). The ion source operated at
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5500 V and 0˚C. Nebulizer/heated gas (GS1/GS2), curtain gas, and collision gas (all nitrogen)

were set to 20/0 psi, 20 psi, and medium, respectively. Compound parameters (de-clustering

potential, entrance potential, collision energy, and collision cell exit potential) were individu-

ally optimized for each transition. MultiQuant software (version 3.0.2 AB SCIEX) was used for

peak picking and processing quantitative SRM data. Bayesian Annotations for Targeted Lipi-

domics (BATL v2.7, https://www.complimet.ca/shiny/batl/) was used to assign peaks [84].

Peak areas were normalized to both cell number and either LPC(13:0/0:0) or SM(d18:1/

18:1-D9) for PCs and SMs, respectively to account for extraction efficiency and instrument

response. Data are expressed as nmol or pmol equivalents per 106 cells.

The identities of all lipid species in our samples were structurally determined from quality

control samples composed of an equi-volume pool of all samples analyzed. SRM was used as a

survey scan to trigger information dependent acquisition of EPI spectra in the linear ion trap.

After acquisition, the EPI fragment spectra were analyzed to determine structural identities of

the lipids.

Wound healing

3T3-L1 fibroblasts were passaged in complete DMEM, plated in ImageLock plates (Essen Bio-

science) and grown to confluency. Macrophages were pre-treated with vehicle or HC3 for 24

h, washed with PBS, and supernatants were collected after a further 24 h in complete

DMEM ± 20 ng/mL IL-4. A scratch wound was made in each well of 3T3-L1 fibroblasts, wells

were gently washed with warm PBS, and supernatants were added to 4 or 5 replicate scratch

wound wells. Wound healing was monitored hourly for >24 h on an IncuCyte ZOOM system

(Essen Bioscience).

Flow cytometry

Macrophages were plated in 6-well plates and treated with DMSO or HC3 (250 μM) for 48 h.

After washing with PBS, cells were gently scraped or lifted with 10 mM EDTA in PBS. For

naïve in vivo experiments, peritoneal exudate cells (PECs) were recovered in a total of 6–8 mL

of ice-cold PBS. For collection of peritoneal cellular aggregates, the inflated peritoneal cavity

was vigorously massaged and cut open over a funnel [31]. Peritoneal aggregates were allowed

to settle out of the lavage fluid for at least 20 min on ice and suspended PECs were aspirated

with a plastic Pasteur pipette. Peritoneal aggregates and dissected omenta were digested in

0.25 mg/mL collagenase IV (Sigma) and 0.25 mg/mL DNase I (ThermoFisher) in RPMI-1640

(Wisent) with 5 mM HEPES for 15 min at 37˚C. Cell suspensions were blocked and stained

with anti-CD16/32 (93, BioLegend) and Zombie Aqua dye (BioLegend) in PBS for 30 minutes

on ice. Surface staining in PBA-E (1% BSA, 2 mM EDTA, 0.05% NaN3 in PBS) was done for

20 minutes on ice. Cells were then fixed with 2% paraformaldehyde in PBS or Fix/Perm buffer

(ThermoFisher) for 15 minutes. Intracellular staining was performed by permeabilization for

5 minutes on ice with 0.5% saponin in PBA-E (PBA-S) or permeabilization buffer (Thermo-

Fisher) and subsequent staining with antibodies diluted in PBA-S. For intracellular phospho-

protein staining, cells were fixed directly after harvesting with -20˚C phospho-flow fix buffer

(4% paraformaldehyde/90% methanol in PBS). Surface antibodies were purchased from BioLe-

gend or ThermoFisher: F4/80-PE (BM8), F4/80-AF488 (BM8), F4/80-PE-Dazzle594 (BM8),

PD-L1-BV421 (10F.9G2), PD-L2-PE (TY25), RELMα-PerCP-eF710 (DS8RELM), Egr2-APC

(erongr2), CD38-eF450 (90), pSTAT6(Tyr641)-APC (CHI2S4N), CD11b-APC-eF780 (M1/

70), Ly-6C-PE-Cy7 (HK1.4), Ly-6G-AF647 (1A8), Ly-6G-FITC (1A8), CD19-Pacific Blue

(6D5), SiglecF-SB600 (1RMN44N), CD86-FITC (GL1), MHCII-PE (M5/114.15.2). Unconju-

gated polyclonal rabbit anti-RELMα (Peprotech) was detected with goat anti-rabbit AF647
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plus (ThermoFisher). Cells were washed and resuspended in PBA-E and acquired using LSR

Fortessa or FACSCelesta flow cytometers (BD) and analyzed using FlowJo v10.7.2 (BD).

For in vivo helminth experiments, PECs were recovered in a total of 5 mL of ice-cold PBS.

Cells were blocked with 0.6 μg Rat IgG and 0.6 μg anti-CD16/32 (93) for 5 minutes and stained

for 30 minutes with antibodies to Ly6G (1A8), CD3e (145-2C11), PD-L1 (MIH6), CD86 (GL-1),

CD4 (RM4-5), MERTK (2B10C42), CD301b (LOM-14), PD-L2 (TY25), CD5 (53–7.3), Ly6C

(HK1.4), MHCII (M5/114.15.2) (BioLegend, San Diego, CA); CD8 (3B5), CD11b (M1/70) (Invi-

trogen); SiglecF (E50-2440) (BD Bioscience); CD206 (MR5D3) (BioRad). Cells were then

washed and analyzed on a Novocyte (ACEA Biosciences) followed by data analysis using FlowJo

v10.8.1 (BD). Frequencies or geometric mean fluorescence intensity (gMFI) were calculated.

Transcript and protein expression

Total RNA was isolated from BMDM using the TriPure reagent protocol (Roche Life Sciences).

Isolated RNA was re-suspended in RNase/DNase-free water (Wisent). QuantiNova™ reverse

transcription kit (Qiagen) or ABM All-in-one RT kit (ABM) was used to synthesize cDNA

according to manufacturer’s instructions. To determine transcript expression, the Quanti-

Nova™ Probe PCR kit (Qiagen) was used in combination with hydrolysis primer-probe sets

(ThermoFisher) or BrightGreen Express MasterMix (ABM) with custom-designed primers

(ThermoFisher). Comparative qPCR reactions were run on the Roto-Gene Q (Qiagen) or Stra-

tagene MX3005p (Agilent). Relative transcript expression was determined using the delta-delta

Cq method and normalized to Actb [85]. Following treatments, macrophage protein expression

and phosphorylation status were assessed by immunoblotting as previously described [4].

For RNA-seq analysis, total RNA was isolated from BMDM using Tripure reagent and chlo-

roform and subsequently purified using spin columns (PureLink RNA Mini, ThermoFisher)

according to manufacturer instructions. Messenger RNA was purified from total RNA using

poly-T oligo-attached magnetic beads. After fragmentation, the first strand cDNA was synthe-

sized using random hexamer primers followed by the second strand cDNA synthesis. The

library was ready after end repair, A-tailing, adapter ligation, size selection, amplification, and

purification. The minimum Q30 score was 90.96%.

Dextran sodium sulfate (DSS)-induced colitis

Mice were provided 2–2.5% dextran sodium sulfate (MW 40–50 kDa, MP Biomedical) in

drinking water ad libitum and treated intraperitoneally with vehicle (40% DMSO in PBS) or

RSM-932a (3 mg/kg) every other day for 6 days and sacrificed at day 7. Colons were dissected

out and measured with uniform tension by hanging the caecum from a clamp and applying a

weight to the distal end. Liver, white adipose tissue, and 0.5-cm pieces of colon were snap-fro-

zen in liquid N2 or fixed in 10% neutral-buffered formalin (Sigma-Aldrich). Feces was col-

lected daily and hemoccult was assessed by luminescence with ECL substrate (BioRad).

RELMα ELISA

Recombinant RELMα, polyclonal rabbit anti-RELMα capture, and polyclonal biotinylated

rabbit anti-RELMα detection antibodies (all Peprotech) were used according to a previously

described protocol [62].

Heligmosomoides polygyrus (Hp) infection model
Hp life cycle was maintained in mice, as previously described [86, 87]. Mice were orally

gavaged with 200Hp L3 stage larvae or with PBS (naive group). Egg burden was measured at
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indicated day post-infection by counting eggs in feces with McMaster slide. To enumerate L5

stageHp, the small intestines of infected mice were cut longitudinally, and larvae were isolated

by fine forceps. Isolated larvae were counted on the petri dish with grids under the dissection

microscope.Hp infection experiments were conducted at least twice and as indicated in the

figure legends.

RSM-932A

RSM-932A (Cayman Chemical, Ann Arbor, MI) was reconstituted to 30 mg/mL in DMSO.

For in vivo injection, RSM-932A was further diluted with DMSO and PBS to 1.5 mg/mL. Mice

were injected intraperitoneally with 3 mg/kg of RSM-932A or 40% DMSO in PBS (vehicle

group). In vivo injection experiments were conducted at least 3 independent times and as indi-

cated in the figure legends.

RNA-seq data analysis

Raw paired-end reads were trimmed of adapters using fastp [88] before being aligned on the

mouse genome (assembly GRCm38) using STAR [89] in local mode and retaining only read

pairs with mapq score of 40. Duplicate reads were marked but retained using Picard [90].

Reads aligning to exons were counted and summarized to genes using Subread featureCounts

[91, 92]. Only genes with at least 10 counts in at least two samples were retained for further

analysis. Differential expression testing was performed in R/Bioconductor [93] using edgeR

and the glmQLFTest function [94]. For differential expression calls, a log2 fold-change value

of 1 or -1 combined with a Benjamini-Hochberg-calculated FDR value less than 0.05 was

judged significant [95]. Differentially expressed gene sets (up- or down-regulated genes with

log2 fold-change of at least 1 or -1 and FDR lower than 0.05) were searched for potential

enrichment in gene functional terms. The R/Bioconductor packages ReactomePA [96] and

clusterProfiler [97] were used to search for enrichment in Reactome terms [98]. In these analy-

ses, the search universe was limited to genes filtered for minimum expression.

Extracellular flux analysis

BMDM were plated in 96-well culture plates (Agilent) at 7.5x104 cells/well in complete

DMEM. Cells were treated with DMSO, HC3, or RSM-932a at different concentrations ± 20

ng/mL IL-4 for 24 h. Extracellular flux analysis was performed on XFe96 (Agilent) using an

adapted MitoStress Test Kit (Agilent). Cartridge ports were loaded with 10x concentrations of

drugs: 15 μM oligomycin, 140 μM BAM15 (Cayman Chemicals), and 10μM rotenone/10 μM

antimycin A/20 μM Hoechst 33342. BAM15 is a mitochondrial uncoupler with improved

induction of maximal respiration compared to FCCP [99]. RSM932a was loaded in place of

rotenone/antimycin A in some wells. Data were normalized by cell counts obtained by nuclear

Hoechst 33342 quantification on an EVOS FL Auto 2 (ThermoFisher) microscope and Qupath

(University of Edinburgh). Bioenergetics were calculated using a worksheet template [26].

Transmission electron microscopy

BMDM were plated in 6-well plates and treated with DMSO or RSM-932a ± 20 ng/mL IL-4 for

24 h. Cells were lifted by gentle scraping in 10mM EDTA in PBS and fixed in 4% paraformal-

dehyde/3.5% glutaraldehyde overnight. Cell pellets were embedded in agarose and blocks were

sectioned at 50-μm thickness using a Lecia VT1000S vibratome. Resin blocks were sectioned at

80-nm thickness using a Leica EM UC6 ultramicrotome and placed on microgrids. Sections
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were imaged on a JEM-1400plus instrument (JEOL) at 80 kEV and 5600x or 27600x

magnification.

Immunofluorescence staining

Intestinal tissue was stored overnight in 4% PFA at 4˚C. After 24 hours, tissue was removed

from 4% PFA and incubated for 24 hours in 30% sucrose. Intestines were blocked in OCT

and sectioned at 10 μm. Tissue sections were incubated with polyclonal rabbit anti-CD86

(ThermoFisher), RELMα (Peprotech), APC-conjugated anti-RELMα (DS8RELM; Invitro-

gen), anti-F4/80 (CI:A3-1), and biotinylated anti-CD206 (C068C2; BioLegend) antibodies

overnight at 4˚C. Tissue sections were then incubated with Cy2-conjugated streptavidin

(Jackson ImmunoResearch), Cy3-conjugated goat anti-rabbit antibodies (Abcam), TRITC-

conjugated chicken anti-rabbit IgG (Invitrogen), or Cy5-conjugated donkey anti-rat IgG

(Life Technologies) for 2 hours at 4˚C and mounted with VECTASHIELD HardSet Anti-

fade Mounting Medium (Vector Laboratories) followed by imaging with BZ-X800 micro-

scope (Keyence). Positive cells were counted by QuPath 0.3.2 (University of Edinburgh)

[100].

Statistical analysis

Statistical analysis was performed in GraphPad Prism version 9.5.1 for Windows (GraphPad

Software). The number of times individual tests were replicated, and biological sample sizes

(number of mice) are described in figure legends.

Supporting information

S1 Fig. Choline-containing phospholipid species in polarized macrophages. A-I) Sum of

phospholipid subclasses. A) Plasmenyl-lysophosphatidylcholines (LPC(P)), B) plasmanyl-

LPCs (LPC(O)), C) platelet activating factors (PAF). D) D) Heatmap of sphingomyelin (SM),

plasmanyl-PAFs (PC(O)-PAF), PC(O), PC(P), LPC, LPC(O), and LPC(P). Heatmap statistics

are shown as fold change over the average of M[0]. n = 5. One-way ANOVA with Dunnett’s

test vs M[0] for multiple comparisons (* p< 0.05, ** p< 0.01, **** p< 0.0001).

(TIF)

S2 Fig. IL-4 up-regulates choline metabolism in macrophages. A) Saturation curves showing

rate of 3H-choline uptake at increasing concentrations of unlabeled choline. n = 8. Michaelis-

Menten least squares fit regression (**** p< 0.0001). B) Inhibition of 3H-choline uptake by

HC3. n = 4 (M[0]) or 5 (M[IL-4]). Four parameter log(inhibitor) vs. response regression F test

(** p< 0.01). C) Pulse-chase to determine the rate of PC degradation. n = 3. Linear regression

with F test for slopes (ns).

(TIF)

S3 Fig. Choline uptake and phosphorylation are required for normal IL-4 signaling and M

[IL-4] phenotype. A-C) Macrophages were treated with vehicle (DMSO) or RSM-932a (5 μM)

for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h. Relative expression of M[IL-4]

hallmark genes Retnla, Arg1,Mrc1, normalized to Actb and compared to M[0]. n = 3–4, repre-

sentative of 3 experiments. Unpaired t test (** p< 0.01). D-E) Macrophages were treated with

vehicle (DMSO) or HC3 (250 μM) for 6 h, washed, then treated with IL-4 (20 ng/mL) for 24 h.

Relative expression of Retnla or Il4ra (E) normalized to Actb and compared to M[0]. n = 3. F)

Macrophages were treated with vehicle (DMSO) or RSM-932a (5 μM) for 24 h, washed, then

treated with IL-4 (20 ng/mL). Expression of IL-4 signaling molecule pSTAT6 (Tyr641) com-

pared to β-actin. Representative of n = 5. G) Macrophages were treated with vehicle (DMSO)
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or HC3 (250 μM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h. Expression of

intracellular Egr2 or surface CD38. n = 3, representative of 2 experiments. H) Left, schematic

of wound healing assay with conditioned media. Right, Macrophages were treated with vehicle

(DMSO) or HC3 (250 μM) for 24 h, washed, then treated with IL-4 (20 ng/mL) for 24 h and

conditioned media was collected. Confluent 3T3-L1 fibroblast monolayers were scratched,

and media was replaced with macrophage conditioned media. Images of wound healing over

time, quantified by wound density. n = 3, representative of 2 experiments. Sum-of-squares F

test of non-linear fit of growth curves (**** p< 0.0001). Lower, snapshots of 3T3-L1 fibroblast

wounds at different timepoints. Schematics were created using BioRender.

(TIF)

S4 Fig. Reactome pathway analysis. A-D) Reactome pathway analysis of genes up-regulated

by HC3 (A) or RSM (C) in M[IL-4] or down-regulated by HC3 (B) or RSM (D), sorted by

gene count enrichment for each Reactome pathway.

(TIF)

S5 Fig. Mitochondrial changes induced by inhibiting choline metabolism. A) Densitometry

of complex III and I from Fig 4B. Two-way ANOVA with Dunnett’s test for multiple compari-

sons. B) Bioenergetics analysis of ATP produced through oxidative phosphorylation (ATPOX-

PHOS) or glycolysis (ATPGlyco). Macrophages were treated for 1 h or 5 min with RSM (0.2, 1, or

5 μM) prior to Mito Stress Test assay as in Fig 4C–4F. Measurements (n = 3 in triplicate) were

normalized per 103 cells. Mixed-effects analysis with Tukey’s test for multiple comparisons

(ATPOXPHOS: # p< 0.05, ## p< 0.01, ### p< 0.001; ATPGlyco: ** p< 0.01). C) Mito Stress

Test assay of extracellular flux with sequential treatments of 1.5 μM oligomycin, 14 μM

BAM15, and 1 μM rotenone/1 μM antimycin A/Hoechst 33342. Oxygen consumption rate

(OCR; B) or extracellular acidification rate (ECAR; C) of M[0] or M[IL-4] treated with RSM (1

or 5 μM) in place of rotenone/antimycin A during the last injection. D) Histograms and geo-

metric MFI of tetramethylrhodamine methyl ester (TMRM) staining of macrophages treated

with inhibitors or vehicle (DMSO).

(TIF)

S6 Fig. In vivo consequence of inhibiting choline metabolism. A) Gating strategies for peri-

toneal cells. B) Schematic of 3-day in vivo choline kinase inhibition. Mice were treated intra-

peritoneally with vehicle (40% DMSO in PBS) or RSM-932a (3 mg/kg) on day 0 and 2 and

sacrificed on day 3. n = 3–4. C) Intracellular RELMα expression in live CD11b+ F480hiMH-

CIIlo, F480loMHCII+, F480−, Ly6G+ PMN, and CD11blo peritoneal cells. Two-way ANOVA

with Šı́dák’s test for multiple comparisons (*** p< 0.001). D-G) Expression of Emr1 (Adgre1/

F4/80), Retnla, Chil3, orMrc1 in WAT. Unpaired t test (* p < 0.05, ** p< 0.01). H) Schematic

of DSS-induced colitis. Mice were given 2–2.5% DSS in drinking water and treated with vehi-

cle (40% DMSO in PBS) or RSM-932a (3 mg/kg) every other day for 6 days and sacrificed on

day 7. I) Body weight was measured daily. n = 8–9, representing 2 independent experiments. J)

Colon length on day 7. Reference naïve colon length in dashed line (8.025cm) from n = 4

mice. Unpaired t test (*** p< 0.001). K) Hemoccult detected in feces collected on day 6 nor-

malized to weight. n = 4–5, representative of 2 experiments. Mann Whitney U test (*
p< 0.05). Schematics were created using BioRender.

(TIF)

S7 Fig. Expression of activation markers in peritoneal macrophages during helminth infec-

tion. A) Gating strategy of peritoneal cell populations. B) Enumeration of MHCIIhi and

MCHIIlo large and small peritoneal macrophages among live PECs. n = 4–5, representative of

2 experiments. Unpaired t test (** p< 0.01, **** p< 0.0001). C-F) CD86, D) CD206, E)
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PD-L1, or F) PD-L2 in MHCIIhi and MCHIIlo large and small peritoneal macrophages.

Unpaired t test (*, p< 0.05, ** p< 0.01, *** p < 0.001, **** p< 0.0001).

(TIF)

S8 Fig. In vivo choline kinase inhibition during secondary intestinal helminth infection

alters peritoneal cell populations and macrophage alternative activation. A-D) Enumera-

tion of A) B-1 cells, B) monocytes, C) neutrophils, D) peritoneal macrophages among live

PECs. n = 4–5. Unpaired t test (** p< 0.01, **** p< 0.0001). E-F) CD86, or G) CD206 expres-

sion (gMFI) on peritoneal macrophages. n = 4–5, representative of 2 experiments. Unpaired t

test (**** p< 0.0001).

(TIF)

S9 Fig. Long-term Chkα inhibition in a chronic model of H. polygyrus. A) Schematic of sec-

ondary infection. Mice were infected with 200H. polygyrus L3 larvae through oral gavage and

intraperitoneally injected with vehicle (40% DMSO in PBS) or RSM-932a (3 mg/kg) every

other day from day 2. Mice were treated with pyrantel pamoate (1 mg) at day 25, challenged

with 200H. polygyrus L3 larvae at day 42, and sacrificed at day 52 (D-G). For a long-term

chronic infection (C), mice were infected with 200H. polygyrus L3 larvae and intraperitoneally

injected with vehicle (40% DMSO in PBS) or RSM-932a (3 mg/kg) two or three times per

week. Then, mice were treated with pyrantel pamoate (1 mg) at day 93 and challenged with

200H. polygyrus L3 larvae at day 107 and sacrificed at day 117. B-D) Eggs in feces were

counted at multiple time points after long-term chronic infection, and the area under the

curve (AUC) calculated (C). D) adult worms were isolated from the small intestine and enu-

merated at 52 DPI. n = 4–5 mice, representative of 2 experiments. Two-way ANOVA with

Šı́dák’s test for multiple comparisons or unpaired t test (* p< 0.05). E-F) Detection of perito-

neal fluid and F) serum RELMα by ELISA in naïve andH. polygyrus-infected mice. n = 3–5

per group, representative of 2 experiments. Unpaired t test (** p< 0.01, **** p< 0.0001). G-I)

Representative immunofluorescent images of intestinal tissue stained for CD86, CD206, and

RELMα against DAPI counterstain. Scale bar 50 μm. Quantification of CD206+ (H) or CD86+

(I) per DAPI+ cell. n = 5, representative of 2 experiments. Unpaired t test (** p< 0.01). Sche-

matics were created using BioRender.

(TIF)

S10 Fig. Graphical abstract. Created using BioRender.

(TIF)

S1 Data. Raw data file.

(XLSX)
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