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Abstract

Ebola (EBOV) and Marburg viruses (MARV) cause severe hemorrhagic fever associated
with high mortality rates in humans. A better understanding of filovirus-host interactions
that regulate the EBOV and MARYV lifecycles can provide biological and mechanistic
insight critical for therapeutic development. EBOV glycoprotein (eGP) and MARYV glyco-
protein (MGP) mediate entry into host cells primarily by actin-dependent macropinocyto-
sis. Here, we identified actin-binding cytoskeletal crosslinking proteins filamin A (FLNa)
and B (FLNb) as important regulators of both EBOV and MARYV entry. We found that entry
of pseudotype psVSV-RFP-eGP, infectious recombinant rVSV-eGP-mCherry, and live
authentic EBOV and MARYV was inhibited in filamin A knockdown (FLNaKD) cells, but
was surprisingly enhanced in filamin B knockdown (FLNbKD) cells. Mechanistically, our
findings suggest that differential regulation of macropinocytosis by FLNa and FLNb likely
contributes to their specific effects on EBOV and MARYV entry. This study is the first to
identify the filamin family of proteins as regulators of EBOV and MARYV entry. These find-
ings may provide insight into the development of new countermeasures to prevent EBOV
and MARYV infections.

Author summary

Filoviruses utilize host proteins to successfully infect cells and complete their lifecycles.
Identification of host proteins that regulate the EBOV and MARYV lifecycles may allow us
to find possible therapeutic targets to protect against these deadly viruses. Here, we identi-
fied actin-binding cytoskeletal proteins filamin A and B as regulators of EBOV and
MARYV entry. We show that filamin A is a positive regulator while filamin B is a negative
regulator of both EBOV and MARYV entry. In sum, our findings reveal a role for host cyto-
skeletal-associated filamin proteins in the entry stage of the filovirus lifecycle, potentially
identifying filamin proteins as broad spectrum therapeutic targets for prevention and
treatment of EBOV and MARV.
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Introduction

EBOV and MARYV remain global public health threats that warrant urgent development of
antiviral therapeutics [1-5]. The filoviruses target many cell types, including monocytes, mac-
rophages, and dendritic cells, and viral entry and uptake is mediated by the surface glycopro-
tein via the process of macropinocytosis [4,6—10]. As host proteins also play critical roles in
regulating (positively or negatively) filoviral entry, a better understanding of the interplay
between the virus and host may enable us to identify therapeutic targets to combat these deadly
pathogens.

While much has been learned regarding the molecular aspects of filovirus entry through the
use of surrogate viruses and assays, a more comprehensive understanding of the role of host
proteins in both positive and negative regulation of early stages of the filovirus lifecycle is
needed. For example, positive regulators such as T-cell Ig mucin domain 1 (TIM-1) signal to
trigger the macropinocytosis program required to internalize EBOV virions after eGP attach-
ment, while host receptor NPC1 is required to trigger fusion of the viral and endolysosomal
membranes. Additionally, the Tyro3 receptor tyrosine kinase family-Axl, Dtk, and Mer-in
have been shown to be involved in entry of both EBOV and MARV [11-14].

The plasma membrane is the site of entry for both EBOV and MARV, and thus the dynam-
ics of the plasma membrane and its associated cytoskeletal proteins will likely play key roles in
regulating this early stage of filovirus infection. The filamin proteins comprise a family of three
members, filamin A (FLNa), B (FLNDb) and C (FLNc), that localize in part to the plasma mem-
brane. The N-terminal region of filamins contains an actin-binding domain, followed by a
rod-like domain consisting of 24 tandem repeats that function in crosslinking cortical actin fil-
aments into a dynamic, three-dimensional structure. These proteins also function as molecular
scaffolds by connecting numerous functionally diverse proteins [15-17]. The filamin proteins
are known to connect the actin cytoskeleton with several cellular receptors, such as dopamine
D2 and androgen receptors on the plasma membrane, as well as numerous 8 integrin proteins
to the cytoskeleton for cell mechanoprotection [18]. FLNa and FLNb also differentially regu-
late the RhoA GTPase, which is directly involved in promoting macropinocytosis, the process
in which EBOV enters cells [7,19-21]. Additionally, while FLNa is ubiquitously expressed in
many cell types, FLNb is highly expressed in vascular endothelial cells, a cell type often targeted
during filovirus infection [15,22-26]. Although the actin cytoskeleton plays a key role in filo-
viral entry [7,20,27,28], the role of the actin-binding filamin proteins in the EBOV and MARV
lifecycles remains to be determined.

Here, we report on a previously undescribed role for FLNa and FLNDb in the filovirus life-
cycle: eGP and mGP-meditated entry of EBOV and MARYV, respectively. We used pseudotype
VSV-RFP-eGP, replication-competent recombinant rVSV-mCherry-eGP, and authentic
EBOV and MARY to transduce/infect HT-1080 WT, filamin A knockdown (FLNaKD), and
filamin B knockdown (FLNbKD) cells to assess the role of filamin A and B proteins in entry/
infectivity. Our findings indicated that knockdown of FLNa inhibited viral infectivity, suggest-
ing FLNa is an important positive regulator of viral entry. In contrast, knockdown of FLNb
enhanced viral infectivity, suggesting that expression of FLNb may restrict viral entry. We cor-
roborated these findings using an siRNA approach to knockdown endogenous FLNa or FLNb
in HEK293T cells followed by quantification of pseudotype VSV-RFP-eGP entry. Importantly,
we showed that siRNA knockdown of endogenous FLNa in primary human macrophages
resulted in a significant decrease in both EBOV and MARV infectivity. Toward the mechanism
of action, we used flow cytometry and confocal microscopy to show that the filamin proteins
regulate macropinocytosis to potentially impact macropinocytosis-mediated entry of EBOV
and MARYV. Our findings imply that FLNa and FLND proteins affect filovirus entry inversely
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by modulating macropinocyctosis. In sum, we identified filamin proteins as novel regulators
of both EBOV and MARYV entry, and thus filamins may serve as broad-spectrum therapeutic
targets to prevent infectivity and reduce transmission.

Results
Filamin proteins regulate infectivity of authentic EBOV and MARV

To investigate whether filamin A and/or B proteins regulate filoviral infectivity, we utilized
HT-1080 cell lines in which endogenous FLNa or FLNb was knocked down using an shRNA
approach [15]. We confirmed stable shRNA knockdown of FLNa and FLNDb in FLNaKD and
FLNDBKD cells, respectively, with immunoblotting using anti-FLNa and anti-FLNb antibodies
(Fig 1A). We used an MTT assay to evaluate any potential differences in growth rate across the
cell types. We found that the FLNa and FLNb knockdown cells had no significant growth rate
or proliferation difference from those of the WT parental cell line (Fig 1B).

We then infected WT HT-1080, FLNaKD, and FLNbKD cells with authentic EBOV (multi-
plicity of infection [MOI] = 0.1) and stained for eGP expression in infected cells at 24 hours
post infection (Fig 2A). We observed that EBOV infectivity in FLNaKD cells was decreased
significantly, whereas EBOV infectivity in FLNbKD cells was enhanced significantly as com-
pared to WT HT-1080 control cells (Fig 2A). We quantified the number of infected cells in
multiple independent experiments as shown in Fig 2B.

We also infected WT HT-1080, FLNaKD, and FLNbKD cells with authentic MARV
(MOI = 0.1) and stained for mVP40 expression in infected cells at 24 hours post infection (Fig
2C). We also observed that MARYV infectivity in FLNaKD cells was decreased significantly,
although to a lesser extent than EBOV. Additionally, we observed that MARYV infectivity in
FLNDKD cells was enhanced significantly as compared to WT HT-1080 control cells (Fig 2C).
We again quantified the number of infected cells in multiple independent experiments as
shown in Fig 2D. Somewhat surprisingly, these findings suggested that FLNa and FLNb had
opposite effects on filovirus infectivity.
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Fig 1. Analysis of FLN KD cells (A) Representative Western blot showing stable siRNA knockdown of FLNa in
FLNaKD cells (lane 2) and FLNb in FLNbKD cells (lane 3). Both FLNa and FLNDb are expressed in WT HT-1080 cells
(lane 1). (B) MTT assay showing no significant growth rate or proliferation differences between WT and the filamin
KD cells at 24, 48, and 72 hours post-seeding. Statistical analysis of 4 independent experiments using 2-sample student
t-test is shown.

https://doi.org/10.1371/journal.ppat.1011595.g001
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Fig 2. Filamin proteins regulate filovirus infectivity. (A) Representative images of WT HT-1080, FLNaKD and FLNbKD cells infected with EBOV at

MOI = 0.1 for 24 hours and treated with anti-eGP antibody to detect infected cells (red) and Hoechst dye to stain nuclei (blue). (B) Infection efficiency in WT
HT-1080, FLNaKD and FLNbKD monolayers at 24 hours post-EBOV infection was determined as the number of infected cells/number of nuclei. The numbers
of infected cells in FLNKD samples are reported relative to the number in WT cells and are averages + standard deviations of 3 independent experiments. (C)
Representative images of WT HT-1080, FLNaKD and FLNbKD cells infected with MARV at MOI = 0.1 for 24 hours and treated with anti-mVP40 antibody to
detect infected cells (red) and Hoechst dye to stain nuclei (blue). (D) Infection efficiency in WT HT-1080, FLNaKD and FLNbKD monolayers at 24 hours post-
MARY infection was determined as the number of infected cells/number of nuclei. The numbers of infected cells in FLNKD samples are reported relative to
the number in WT cells and are averages + standard deviations of 6 independent experiments for FLNaKD samples and 3 independent experiments for
FLNDbKD samples. A one-way ANOVA followed by Dunnett’s multiple comparison test for one variable was used to assess a statistical difference between
infection efficiencies in WT HT-1080 and FLNaKD or FLNbKD cells. *** = p value <0.0001 was determined for each sample pair analyzed.

https://doi.org/10.1371/journal.ppat.1011595.9002

Filamin proteins regulate entry of psVSV-RFP-eGP pseudotypes

To determine whether the distinct roles of FLNa and FLNb knockdown on live filovirus infec-
tivity could be specificially linked to virus entry mediated by the surface glycoprotein, we used
VSV pseudotypes expressing EBOV eGP (psVSV-RFP-eGP). WT HT-1080, FLNaKD or
FLNDBKD cells were transduced with psVSV-RFP-eGP pseudotypes expressing red flourescent
protein (RFP), and RFP" cells were visualized and quantified at 24 hrs post-transduction. In
repeated experiments, we observed that entry of psVSV-RFP-eGP pseudotypes, as determined
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Fig 3. Filamin proteins regulate entry of psVSV-RFP-eGP pseudotypes. (A-C) Representative images of
psVSV-RFP-eGP pseudotype particle entry (MOI = 3) into HT1080-W'T, FLNaKD, and FLNbKD cells, with
psVSV-RFP-eGP positive cells shown in green within a single representative 96 well. (D-F) Representative images of
psVSV-RFP-deltaG with G particle entry (MOI = 1) into HT1080-W'T, FLNaKD, and FLNbKD cells, with
psVSV-RFP-deltaG with G positive cells shown in green within a single representative 96 well. (G) Graph showing the
average percent of psVSV-RFP-eGP particle entry, as compared to psVSV-RFP-deltaG with G particle entry, relative to
HT1080-WT cells at 24 hour post transduction from 3 independent experiments. Statistical analysis was performed
using a 2-sample student t test; * = p value <0.05, ns = not significant.

https://doi.org/10.1371/journal.ppat.1011595.9003

by quantification of RFP™ cells, was reduced significantly in FLNaKD cells as compared to that
observed in WT HT-1080 cells (Fig 3). In agreement with live virus data, entry of psVSV-RFP-
eGP particles was enhanced significantly in FLNbKD cells as compared to that in WT HT-
1080 control cells (Fig 3). We did not observe any significant inhibition or enhancement of
entry of VSV G-containing pseudtoypes (psVSV-deltaG with G) into FLNaKD or FLNbKD
cells (Fig 3G), likely due to mechanistic differences in entry of VSV G-containing particles (via
endocytosis; [29,30] vs. EBOV GP-containing particles (via macropinocytosis; [7]. In sum, the
phenotypes observed for entry of psVSV-RFP-eGP pseudotypes into FLNa and FLNb knock-
down cells closely mimicked those observed for infectivity of live filoviruses, suggesting that
expression of endogneous FLNa and FLNDb positively and negatively regulate filovirus GP-
mediated entry, respectively.

Filamin proteins regulate infectivity of infectious VSV recombinant (rVSV-
eGP-mCherry) virus

In a complementary approach, we asked whether infectivity of an infectious VSV recombinant
virus was affected in the FLN knockdown cells in a manner similar to that of live EBOV and
MARYV and the psVSV-RFP-eGP pseudotypes. We utilized a replication competent VSV
recombinant virus (rVSV-eGP-mCherry) that encodes EBOV eGP on its surface in place of
VSV G, and also encodes mCherry in a separate ORF as a marker of infectivity. WT HT-1080,
FLNaKD, and FLNbKD cells were either mock-infected, or infected with rVSV-mCherry-eGP
for 10 hours, and viral infectivity was quantified by fluorescence microscopy (Fig 4). To con-
firm infection, we detected eGP protein by Western blotting specifically in virus infected cells,
and the levels of eGP were reduced in FLNaKD cells as compared to those in control and
FLNDKD cells (Fig 4A). Quantification of mCherry positive cells from five independent exper-
iments revealed a similar trend as described above, in that infectivity of rVSV-eGP-mCherry
was decreased in FLNaKD cells, whereas infectivity was enhanced in FLNDKD cells as com-
pared to infectivity in WT HT-1080 cells (Fig 4B). These data are consistent with those
described above using authentic EBOV and MARV and the psVSV-RFP-eGP pseudotypes,
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Fig 4. Filamin proteins regulate infectivity of infectious recombinant rVSV-eGP-mCherry. (A) Representative
Western blot showing the expression of the indicated proteins in HT-1080 WT, FLNaKD, or FLNbKD cells mock
infected or infected with recombinant virus rVSV-eGP-mCherry. (B) Bar graph showing the average relative entry of
recombinant rVSV-mCherry-eGP from 5 independent experiments. Statistical analysis was performed using 2 sample-
student t test, * = p value <0.05, ** = p value <0.01.

https://doi.org/10.1371/journal.ppat.1011595.9004

and thus we conclude that FLNa and FLNDb proteins distinctly regulate GP-mediated infectiv-
ity and entry into HT-1080 cells.

Filamin proteins regulate entry of psVSV-RFP-eGP pseudotypes into Hela
cells

To demonstrate that the effect of FLN proteins on filoviral infectivity/entry was not unique to
the HT-1080 cell line, we used siRNA to knockdown expression of endogenous FLNa and
FLND in Hela cells, followed by transduction with psVSV-RFP-eGP pseudotypes to assess
entry. Briefly, HeLa cells received non-specific siRNA, FLNa-specific siRNA, or FLNb-specific
siRNA followed by transduction with psVSV-RFP-eGP pseudotypes (Fig 5A). We found that
entry of psVSV-RFP-eGP particles was inhibited in FLNa siRNA knockdown cells, whereas
entry of psVSV-RFP-eGP particles was enhanced in FLNb siRNA knockdown cells as com-
pared to non-specific siRNA controls (Fig 5B). These results suggest that the regulatory effects
of FLNa and FLNDb proteins observed for live filoviral infectivity/entry is not unique to the
HT-1080 cells, and further highlights the disparate mechanisms by which FLNa and FLNb reg-
ulate filoviral GP-mediated entry.

Filamin proteins regulate infectivity of EBOV and MARYV in primary
human macrophages

Macrophages are known to be a primary and early target cell for EBOV and MARYV infection
[31,32]. Therefore, we sought to determine whether knockdown of FLNa would affect filovirus
infection of primary human macrophages. We transfected FLNa-specific or non-specific
siRNA into monocyte-derived macrophages (MDMs) and then infected with authentic EBOV
or MARV. We did acheive efficient knockdown of endogenous FLNa with three individual
FLNa-specific siRNAs (Fig 6A), as compared to a non-specific siRNA control. Notably, both
EBOV and MARV infectivity was significantly inhibited in primary human macrophages
treated with FLNa-specific siRNAs compared to that in control siRNA treated cells
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Fig 5. siRNA assay to assess entry of psVSV-RFP-eGP pseudotype into HeLa cells. (A) Representative Western blot
showing detection of the indicated proteins in cells receiving no siRNA, control siRNA, FLNa-specific siRNA, or
FLNb-specific siRNA. Cells were non-transduced, or transduced with psVSV-RFP-eGP pseudotypes as shown. (B) Bar
graph showing relative psVSV-RFP-eGP particle entry into FLNKD cells as compared to WT cells in 4 independent
experiments. Statistical analysis was performed using 2-sample student t test; ** = p value < .01.

https://doi.org/10.1371/journal.ppat.1011595.9005
(Fig 6B and 6C). These results further validate the role of endogenous FLNa in regulating
entry of EBOV and MARYV into a biologically relevant primary human target cell.

Filamin proteins regulate macropinocytosis

Filovirus entry is mediated primarily by macropinocytosis [7], an actin-dependent endocytosis
mechanism that allows cellular uptake of extracellular fluids and soluble macromolecules into
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Fig 6. siRNA knockdown to assess infectivity of authentic EBOV and MARYV in primary human macrophages. (A)
Representative Western blot showing detection of the indicated proteins in macrophages receiving control siRNA or
three individual FLNa-specific siRNAs (1, 2, and 3). (B) Bar graph showing the relative number of infected cells to
non-specific siRNA controls after infection with EBOV-GFP (MOI = 0.2) at 24 hours post infection in 3 independent
experiments. (C) Bar graph showing relative number of infected cells to non-specific siRNA controls after infection
with MARV (MOI = 0.2) at 24 hours post infection in 3 independent experiments. A one-way ANOVA followed by
Dunnett’s multiple comparison test for one variable was used to assess a statistical difference between infection
efficiencies in cells transfected with non-specific siRNA vs. FLNa-specific siRNAs. **** = p value <0.0001 was
determined for each sample pair analyzed.

https://doi.org/10.1371/journal.ppat.1011595.9006
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Fig 7. Differing rates of uptake by macropinocytosis observed in FLN KD cells as compared to HT1080-WT cells (A) Graph showing average percent
dextran-Alexa568 (MW 10K) positive cells after 5 minutes of co-incubation with EGF in 3 independent experiments by flow cytometry. Statistical analysis
performed using 2-sample student t test; * = p value <0.05 (B) Representative confocal images showing nuclei stained with Hoechst (blue) and co-incubated
with dextran-Alexa568 (MW 10K) and EGF (red) of HT1080-WT (top row), FLNaKD (middle row) and FLNbKD cells (bottom row). (C) Graph showing
average number of dextran-Alexa568 (MW 10K) positive particles per cell in HT1080-WT and FLNKD cells fixed after 5 minutes of co-incubation with EGF
(from 5 independent experiments). Statistical analysis was performed using 2-sample student t test; * = p value <0.05, ** = p value <0.01 (D) Graph showing
average number of dextran-TRITC (MW 70K) positive particles per cell in HT1080-WT and FLNKD cells fixed after 30 minutes of co-incubation with EGF
(from 3 independent experiments). Statistical analysis was performed using 2-sample student t test; * = p value <0.05, ** = p value <0.01.

https://doi.org/10.1371/journal.ppat.1011595.9007

large vacuoles. Thus, we reasoned that the mechanism by which the FLN proteins regulate
infectivity/entry of EBOV and MARV may involve their ability to modulate the process of
macropinocytosis. To determine whether the observed differences in filovirus entry in the
FLNKD cells may be due, in part, to the effect of filamin-regulated macropinocytosis, we used
flow cytometry to measure fluid-phase macropinocytosis of fluorescently-tagged 10K dextran-
Alexa568 into endothelial growth factor (EGF)-stimulated FLNKD and WT cells at 5 minutes
post incubation (Fig 7A). We used the 10K dextran-Alexa568 and a 5 minute incubation
period to decrease the likehood of quantifying false positives of endosomes internalized by a
clathrin-mediated pathway, as has been reported previously [33-36] Notably, we observed that
the percent of fluorescent dextran taken up via macropinocytosis was reduced significantly in
the FLNaKD cells as compared to that in WT HT-1080 cells (Fig 7A). In contrast, we observed
that the percent of fluorescent dextran taken up via macropinocytosis was significantly
enhanced in the FLNbKD cells compared to that taken up by WT HT-1080 cells (Fig 7A).

We used confocal microscopy to quantify internalized macropinosomes containing 10K
dextran-Alexa568 in FLNKD vs HT-1080 WT cells at 5 minutes post incubation. Representa-
tive confocal microscopy images of WT HT-1080, FLNaKD and FLNbKD cells incubated with
10K dextran-Alexa568 and EGF are shown (Fig 7B). The bar graph represents the average
number of dextran positive punta/cell from 5 independent experiments (Fig 7C). Our results
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show that the FLNaKD cells contained significantly fewer dextran positive macropinosomes
than did the WT HT-1080 cells, whereas the FLNDKD cells contained significantly more dex-
tran positive macropinosomes than did the WT HT-1080 cells.

In a complementary approach to further ensure that we were measuring uptake of dextran
particles by macropinocytosis, we used confocal microscopy to quantify macropinosomes con-
taining 70K dextran-Tetramethylrhodamine (TRITC) into FLNKD and HT-1080 WT cells.
The 70K dextran-TRITC has been reported to enter cells via clathrin- and dynamin-indepen-
dent macropinocytosis [37,38]. Similar to our previous findings, the FLNaKD cells contained
significantly fewer 70K dextran positive macropinosomes than did the WT HT-1080 cells,
whereas the FLNbKD cells contained significantly more 70K dextran positive macropino-
somes than did the WT HT-1080 cells (Fig 7D). Together, these data suggest that the mecha-
nism by which the FLNa and FLNb proteins inversely regulate filovirus entry may reflect their
ability to similarly regulate the process of macropinocytosis at the plasma membrane.

Discussion

Filoviruses rely on the integrity and dynamics of the host cytoskeletal architecture at the
plasma membrane to facilitate entry into host cells. EBOV and MARV GPs are the viral pro-
teins responsible for mediating attachment, entry, and fusion into target cells. However, a
growing list of host cell proteins recently identified may also be important facilitators of these
early events of the filovirus lifecycle. For example, DC-SIGN/L-SIGN, LSECtin, hMGL,
Bl-integrin and Tyro3 family receptors have been implicated as attachment factors, and cellu-
lar receptors like TIM-1 may function as a signal to trigger the macropinocytosis program
required to internalize EBOV virions following GP attachment [7,13,14,21,39-41]. Macropi-
nocytosis is characterized by actin-dependent membrane ruffling associated with the forma-
tion of macropinosomes of approximately 0.5-10 pm in diameter. Macropinocytosis and the
dynamic flexibility of the actin cytoskeleton beneath the plasma membrane enable the cell to
take up large substances, such as the long, filamentous filovirus virions [21]. Here we have
identified actin-crosslinking filamin proteins A and B as novel regulators of filovirus entry/
infectivity. Intriguingly, FLNa and FLNb appear to have opposing effects on EBOV and
MARY entry, such that expression of FLNa is important for efficient filovirus entry whereas
expression of FLNb may act as a barrier to restrict or negatively regulate entry. When we inves-
tigated the roles of FLNa and FLNb in regulating macropinosome formation in HT-1080 cells,
we observed the same opposing effects on macropinocytosis as we did for EBOV and MARV
entry. Notably, knockdown of endogenous FLNa reduced the efficiency of cellular uptake of
two dextran markers, whereas knockdown of endogenous FLNb enhanced uptake of the same
markers of macropinocytosis. Mechanistically, these findings suggest that FLNa and FLNb
likely modulate filovirus entry by regulating the process of macropinocyctosis.

The opposite effects of FLNa and FLND on entry and infectivity of EBOV and MARV was
somewhat surprising since the filamin proteins share a high degree of homology between the
conserved exon/intron structure. These two filamin isoforms physically interact and heterodi-
merize, suggesting a mechanism to regulate each other’s function, with loss of expression of
one leading to upregulation of the other [19,42]. However, an antagonistic relationship
between FLNa and FLNb occurs during the process of cell migration and spreading, whereby
they differentially regulate the RhoA GTPase. RhoA is directly involved in promoting cell pro-
trusions and macropinocytosis, with increased activity at the cell plasma during vesicle closure
[19,43]. Additionally, we know from the literature that FLNa co-localizes with host protein
Phafin2 on forming macropinosomes and dissociates together with actin. Phafin2 is expressed
abundantly in dendritic cells and helps to strip away the dense actin/filamin coat from
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internalized macropinosomes allowing them to efficiently traffic through the cell to form the
mature endosomal form [34]. Thus, the potential role and opposing effects of FLNa and FLNb
on filovirus entry may indeed be linked to the process of macropinocytosis.

Alternatively, there are other filamin interactors that could be linked to the filovirus life-
cycle and affect entry and infectivity of the virus. For example, FLNa promotes entry of HIV-1
by linking viral receptors to the actin cytoskeleton and by modulating the antiviral factor
tetherin [44,45]. In addition, FLNa interacts with viral NS3 and NS5A proteins in chronic hep-
atitis C virus (HCV) infection, and can act as an adapter protein to the adenoviral and coxsack-
ieviral receptor, Integrin B1 [44,46,47]. It is tempting to speculate that a FLNa-p1 integrin
interaction may play a role in filovirus entry since 1 integrin expression has been linked to
eGP-mediated entry of EBOV [41,48,49]. Alternatively, RNAse-L is a well-known member of
the host innate immune system that interacts with FLNa to form a barrier to entry of Sendai
virus [50,51]. Based on our findings, one could speculate that a similar restrictive barrier to
filovirus entry may result from an RNAse-L/FLNb interaction. Furthermore, it is known that
FLNDb, but not FLNa, plays a scaffolding role in IFN signaling and can be modified by IFN-
stimulated gene 15 (ISG15) [23]. Whether or not the effect of FLNb knockdown on enhancing
EBOV and MARY infectivity may be due, in part, to FLNb-mediated regulation of antiviral
immune defenses remains to be determined [22,23,52].

Our identification of FLNa and FLNb proteins as novel regulators of plasma membrane
driven stage of EBOV and MARYV entry provide new insights into the complex roles that host
proteins play in regulating the filovirus lifecycle. A better understanding of this interplay
between filoviral proteins and FLN proteins will be critical for our overall understanding of
the biology and pathogenesis of filoviruses and other emerging pathogens, as well as for the
future development of effective, host-directed antiviral therapies. Further investigation into
possible pharmalogical inhibition of FLNa activity during early filovirus infection, for example,
may benefit the development of a broad-spectrum, multifunctional antiviral therapeutic.

Material and methods
Cell lines, plasmids, and reagents

HelLa, HEK293T, HT-1080 WT, FLNaKD and FLNbKD cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) (Corning) supplemented with 10% fetal bovine serum
(FBS) (Gibco), penicillin (100 U/mL)/streptomycin (100 ug/mL) (Invitrogen). Cells were
grown at 37°C in a humidified 5% CO, incubator. FLNaKD and FLNbKD cells were generated
from parental HT-1080 cells as described previously [15]. The primary antibodies used in this
study include mouse anti-FLNa (Santa Cruz), rabbit anti-FLNb antibody (Millipore), rabbit
anti-LaminB1 (Abcam), rabbit anti-eGP (Invitrogen), mouse anti-GFP (Rosche) and mouse
anti-B-actin (Proteintech). Dextran-Alexa568 (MW 10K) and Dextran-TRITC (MW 70K)
were purchased from Invitrogen. VSV M protein was detected using mouse anti-VSV-M
monoclonal antibody 23H12 (kindly provided by D. Lyles, Wake Forest, Winston-Salem, NC,
USA). FLNa-specific siRNA, FLNb-specific siRNA and control siRNA pools were purchased
from Santa Cruz and Origene. The rVSV-eGP-mCherry virus [53] was kindly provided by P.
Bates (UPenn School of Medicine).

MTT assay

Cell proliferation was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) colorimetric assay. Briefly, cells were seeded in 96-well plates and
incubated for 24, 48, and 72 hours, and cells were washed with phosphate-buffered saline
(PBS) and then incubated in MTT solution for 3 hours. After dimethyl sulfoxide was added
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into each well, the absorbance was measured at 490 nm to determine cell viability with a
microplate reader.

EBOYV and MARY infection and staining

Experiments with live viruses were performed in the BSL-4 laboratory at Texas Biomedical
Research Institute (Texas Biomed, San Antonio, TX) in accordance with standard operating
procedures and protocols approved by the Institute’s Biohazard & Safety and Recombinant
DNA Committees. The NCBI accession numbers for filoviruses used in these studies were
NC_002549 (EBOV variant Mayinga), KF990213 (recombinant EBOV variant Mayinga,
encoding GFP), and NC_001608 (Marburg virus strain Musoke). The virus stocks were
obtained from the Texas Biomed repository, grown as before [54,55], and viral titers were
determined using standard plaque assays.

Briefly, HT-1080 WT and FLNKD cells grown in 96-well plates were incubated with EBOV
or MARV at MOI = 0.1 in triplicate for 1 hour, then washed and overlaid with fresh medium.
After 24 hours, cells were fixed and were treated with an antibody to viral GP (clone 4F3; IBT
Bioservices) or mVP40 (IBT Bioservices) to detect infection and Hoechst 33342 dye (Thermo-
fisher) to stain nuclei. Sample photographs acquired by Nikon Ti-Eclipse microscope (Nikon,
Tokyo, Japan) were analyzed by CellProfiler software (Broad Institute) to determine infection
efficiency, calculated as the number of infected (GP-positive or mVP40-positive) cells over the
total number of cells (nuclei), for each condition.

Each experiment was repeated three times. A one-way ANOVA followed by Dunnett’s mul-
tiple comparison test for one variable was used to assess a statistical difference between infec-
tion efficiencies in WT and FLNKD cells. A p value was determined for each sample pair
analyzed, and the difference was considered statistically significant if p<0.05.

psVSV-RFP-eGP propagation

psVSV-RFP-eGP pseudotyped particles were generated using a VSV platform that incorpo-
rates the EBOV GP protein into VSV envelopes by transfection of HEK293T cells with pCG1
EBOV GP expression plasmid (kindly provided by P. Bates, UPenn School of Medicine). At 30
hours post transfection, the eGP expressing cells were transduced for 4 hours with
psVSV-REP-deltaG pseudotyped with G (kindly provided by P.Bates, UPenn School of Medi-
cine). At 28-30 hours post transduction, the media containing the psVSV-RFP-eGP pseudo-
type particles was harvested and clarified by centrifugation twice at 4,000 rpm for 15 minutes.
Viral particles were additionally clarified by ultracentrifugation at 36,000rpm for 2 hours and
then stored at —80°C until use. Both psVSV-RFP-deltaG pseudotyped with G and
psVSV-RFP-eGP express RFP.

rVSV-eGP-mCherry infection

HT-1080 WT and FLNKD cells were seeded at 1 x10° cells overnight in 6-well plates. rVSV-
eGP-mCherry (MOI = 0.1 ~5 %107 REU /ml) was added to cells for 1 hour at 37°C, virus inoc-
ulum was removed, and the cells were washed once with 1x DPBS. DMEM with 1% methylcel-
lulose was added to the cells at 37°C for 10 hours. Cells were washed 3 times with DPBS and
either harvested for Western blotting or fixed with 4%PFA for 15mins at room temperature.
Unfixed cell extracts were harvested with RIPA and the indicated proteins were detected by
Western blotting. Briefly, unfixed cells were harvested and lysed RIPA buffer and clarified for
5 min at 15,000 rpm. Cell lysates were suspended in loading buffer with boiling, fractionated
by SDS-PAGE and EBOV GP and actin proteins were detected using specific antisera. For
fixed cells, mCherry expression was visualized and quantified on a fluorescent microscope.
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siRNA knockdown and psVSV-RFP-eGP transduction

HeLa cells in Opti-MEM (Thermofisher) in 6-well plates were transfected twice with either
control siRNAs or FLNa-specific or FLNb-specific siRNAs (siRNA pools purchased from
Santa Cruz Biotechnology) at a final concentration of 50 nM by using Lipofectamine Invitro-
gen at 2-day intervals. A total of 1.0 pg of eVP40 DNA was transfected with the second round
of siRNAs. HeLa cells were then transduced with psVSV-RFP-eGP pseudotypes at MOI = 1
(~1x10° red fluorescent units per well) added to Opti-MEM and incubated with cells for 1
hour at 37°C. Pseudovirus inoculum was removed, and the cells were washed once with 1x
DPBS. RFP expression was visualized and quantified on a fluorescent microscope at 24 hours
post transduction. Cell extracts were then harvested and the indicated proteins were detected
in cell samples by Western blotting.

Primary human macrophages

Peripheral blood was collected from healthy adult human donors according to the University
of Texas Health-approved IRB protocol 20180013HU to prepare monocyte-derived macro-
phages (MDMs) as we described previously [56]. MDMs were cultured in RPMI medium sup-
plemented with 10% autologous serum at 37°C in a humidified 5% CO2 incubator.

siRNA treatments in MDMs and immunoblotting

To deplete MDMs of FLNa, cells plated in 96-well or 12-well plates were transfected with three
individual siRNA duplexes targeting the gene to a final concentration of 25 nM of FLNa siR-
NAs or the same concentration of a non-specific siRNA control (Origene). The transfections
were performed in triplicate, using TransIT-X2 reagent (Mirus), following the manufacturer’s
recommendations. After 48 hours, the siRNA treatments in 96-well plates were removed, and
the MDMs were infected with EBOV-GFP or MARYV at a MOI of 0.2 for 24 hours. The cells
were stained and analyzed as above. FLNa protein depletion was assessed by immunoblotting
as previously described [55].

Macropinocytosis assay

HT-1080 WT and FLNKD cells were seeded overnight in 12-well plates and then media was
replaced with Opti-MEM without phenol-red for 3 hours at 37°C. 5ul of DMSO was added to
negative control 30 mins prior to addition of 0.5 mg/ml of 10 K dextran-Alexa568 (Invitrogen)
with 100 ng/ml of endothelial growth factor (EGF) for 5 minutes at room temperature. Cells
were washed twice with cold 1x DPBS and fixed with IC Fixation buffer (Invitrogen) for 10
minutes at room temperature. Cells were collected in DMEM with 1% FBS at 4°C overnight.
Flow cytometry was performed with LSRFortessa (BD Biosciences) and data analyzed using
FlowJo software (FlowJo, LLC). For confocal microscopy, cells were seeded on 35mm MatTek
dishes and treated as previously described with 0.1mg/ml of dextran-Alexa568 (MW 10K) and
100ng/ml of EGF. Cells were fixed with 4% PFA and stained with Hoechst. Images were
acquired using a laser scanning confocal microscope (Leica SP5-FLIM Inverted), equipped
with 63x oil immersion objective. Images were processed using Fiji and 3-5 fields per sample
were randomly selected with 5-10 cells per visual field for dextran particle analysis.
HT1080-WT and FLNKD cells were fixed in 4 well chamber cover glass slides (Cellvis) after 30
minutes of co-incubation with 1.0 mg/ml dextran-TRITC (MW 70K) and 20 ng/ml EGF.
Images were acquired using a laser scanning confocal microscope with 100x oil immersion
objective and 6-7 fields per sample were randomly selected with 5-25 cells per visual field for
dextran particle analysis by Fiji. In brief, red channel was converted to 8-bit grey scale and
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background subtraction was used after threshold fluorescence was set. Size filter was set to an
area of 0.2-20.0 um” to exclude non-macropinosome structures for particle counts [33], and
Hoechst staining of nuclei was used to calculate average number of dextran™ particles per cell
within an image.
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