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Abstract

Antibiotic resistance is a growing global concern in the field of medicine as it renders bacte-

rial infections difficult to treat and often more severe. Acinetobacter baumannii is a gram-

negative bacterial pathogen causing a wide range of infections, including pneumonia, sep-

sis, urinary tract infections, and wound infections. A. baumannii has emerged as a signifi-

cant healthcare-associated pathogen due to its high level of antibiotic resistance. The global

spread of antibiotic-resistant strains of A. baumannii has resulted in limited treatment

options, leading to increased morbidity and mortality rates, especially in vulnerable popula-

tions such as the elderly and immunocompromised individuals, as well as longer hospital

stays and higher healthcare costs. Further complicating the situation, multi- and pan-drug-

resistant strains of A. baumannii are becoming increasingly common, and these deadly

strains are resistant to all or almost all available antibiotics. A. baumannii employs various

clever strategies to develop antibiotic resistance, including horizontal transfer of resistance

genes, overexpression of inherent efflux pumps that remove drugs from the cell, intrinsic

mutations, combined with natural selection under antibiotic selective pressure leading to

emergence of successful resistance clones. The typical multidrug resistance phenotype of

A. baumannii is, therefore, an orchestrated collimation of all these mechanisms combined

with the worldwide spread of “global clones,” rendering infections caused by this pathogen

challenging to control and treat. To address the escalating problem of antibiotic resistance

in A. baumannii, there is a need for increased surveillance, strict infection control measures,

and the development of new treatment strategies, requiring a concerted effort by healthcare

professionals, researchers, and policymakers.

Acinetobacter baumannii is a highly resistant, globally distributed

hospital pathogen

A. baumannii is a gram-negative opportunistic pathogen, and a notorious “ESKAPE” bacteria,

the leading cause of antibiotic-resistant nosocomial infections globally [1]. A. baumannii
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causes a variety of infections including pneumonia, wound, blood and urinary tract infections

and presents a significant global burden, with up to 1.4 million cases reported annually [2].

High levels of antimicrobial resistance (AMR) commonly lead to treatment failure [3], with

resistance to last-resort beta-lactam antibiotics such as carbapenems (e.g., imipenem, merope-

nem) presenting particular concern [4,5]. Indeed, carbapenem-resistant A. baumannii tops the

World Health Organisation’s (WHO) list of pathogens prioritised for the development of new

antibiotics [6]. Key players belong to 2 major clones, namely ST1 (known as global or interna-

tional clone 1, also known as GC1 or IC1, respectively) and ST2 (known as global or interna-

tional clone 2, namely GC2 or IC2, respectively), which account for the vast majority of

outbreaks globally [7–11]. Carbapenem-resistant infection outbreaks have surged since the

start of the Coronavirus Disease 2019 (COVID-19) pandemic due to a dramatic increase in the

number of hospital and intensive care unit (ICU) admissions [12–15].

Here, we provide a snapshot of how the coalition of intrinsic and acquired resistance mech-

anisms, combined with the global spread of resistance clones, has resulted in this deadly

scourge of multidrug-resistant (MDR) A. baumannii infections spreading among hospitalised

patients. In particular, we discuss unappreciated antibiotic resistance mechanisms (e.g.,

homologous recombination), highlight their role in resistance gene acquisition, and show how

they contribute to the overall resistance and success of A. baumannii.

Mobile genetic elements play significant roles in the acquisition

and spread of antibiotic resistance genes

In A. baumannii, the emergence of AMR most often is mediated by the acquisition of antibi-

otic resistance genes via a wide range of mobile genetic elements (MGEs) including genomic

islands (GIs), transposons (Tns), integrons, insertion sequences (ISs), and plasmids [3,4].

Resistance elements (Tn, GI, IS, plasmids, etc.) can insert into chromosomes (Tn, GI, and IS

can also insert into plasmids), spreading resistance genes to new Acinetobacter cells or be

maintained on plasmids in the cells (Fig 1A and 1B).

Transposons and genomic islands

Several chromosomal GIs and Tns play a leading role in introducing antibiotic resistance

genes, including those specific to a given sequence type and others shared between all clones.

In ST1 strains, variants of AbaR-type GIs found in the chromosomal comM gene carry several

heavy metal and antibiotic resistance genes, including those conferring resistance to aminogly-

cosides [11]. The AbaR-type GIs are made of a backbone Tn and a resistance region in the

middle consisting of various complete and incomplete fragments from well-known Tns [16].

In ST2 strains, which are, by far, the most abundant sequence type globally, resistance genes

are located on different GI types, namely AbGRI1-5. These GIs contain genes that confer resis-

tance to several antibiotic families, including aminoglycosides, carbapenems, and beta-lactams

[17–21]. Like AbaR-type islands in ST1 strains, AbGRI1 variants also consist of a Tn backbone,

which is related to the backbone of AbaR-type islands, and occupy the exact chromosomal

location as AbaR-type islands [21]. AbGRI2, AbGRI3, and AbGRI4 are also chromosomal GIs

made of DNA segments, flanked and formed by IS26 and several antibiotic aminoglycosides

and extended-spectrum ß-lactam resistance genes [17,20]. However, other clones, such as

ST79 and ST85 strains, harbour variants of Tn7, which play a significant role in the acquisition

and spread of diverse antibiotic resistance genes, including for amikacin (aphA6) and carbape-

nem (blaNDM) [22,23].

In addition to the clone/ST-specific genomic resistance islands, a range of shared composite

Tns that are sequence-type agnostic play a crucial role in the acquisition and dissemination of
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resistance genes across A. baumannii. For example the small Tns Tn2006, Tn2007, Tn2008,

and Tn2009 mobilising the oxa23 carbapenem resistance gene [4,9], or AbaR4, the 16-kb GI

that carries Tn2006 (containing oxa23), are widely spread across different clones [4,5].

Plasmids

It is becoming increasingly clear that plasmids are also responsible (in addition to GIs) for

shuffling important antibiotic resistance genes around within A. baumannii [24]. Although

previously underappreciated, it has now been established that several (unusual) plasmid types

play a significant role in the spread of resistance genes. For example, the small plasmid pRAY

(6 kb) and its variants are widely distributed in Acinetobacter spp., carry the aadB gene, and

are the most common cause of resistance to gentamicin and tobramycin in A. baumannii [25].

Further, conjugative plasmids have facilitated the spread of the oxa23 (carbapenem) and the

aphA6 (amikacin) resistance genes, using the RP-T1 (formerly Aci6; encoding a Rep belonging

to Pfam03090) replication initiation protein and the MPFF conjugation system, respectively

[24,26–28]. Other large exotic conjugative plasmids such as those related to pA297-3, pAB3, or

Fig 1. Schematic representation of mechanisms involved in antibiotic resistance of A. baumannii. (A) indicates the acquisition of a

plasmid that carries antibiotic resistance genes; (B) is an schematic of antibiotic resistance gene acquisition via insertion of a composite Tn

onto the chromosome (marked “Chr”); (C) indicates the insertion of ISAba1 (IS) upstream of the chromosomal ampC gene, providing the

gene a strong promoter and therefore enhancing expression level leading to resistance to third-generation cephalosporins; (D) is a schematic

of acquiring a resistance region (GI, T, etc.) via its flanking sequences—of any length—via homologous recombination [25]. ARG, antibiotic

resistance gene; GI, genomic island; IS, insertion sequence; Tn, transposon.

https://doi.org/10.1371/journal.ppat.1011520.g001
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pD46-4, which encode the MPFI conjugation system, also carry a wide range of common anti-

biotic resistance genes, including oxa23, strAB, and sul2 [29,30]. Conjugative plasmids related

to pA297-3 family have also been attributed to pathogenicity and regulation of virulence deter-

minant (e.g., in urinary tract infections) [31]. Moreover, variants of small plasmid types that

encode the Rep_3 replication initiation proteins (Pfam01051) are also crucial in acquiring and

disseminating the oxa24 and oxa58 carbapenem resistance genes [24,32].

Homologous recombination is a significant yet overlooked

mechanism of resistance acquisition

Homologous recombination (HR) is a type of host-mediated genetic recombination through

which segments of DNA (up to hundreds of kb) are exchanged between 2 shorter identical (or

very similar) DNA sequences (down to tens of bps) [33,34]. HR plays an important, yet often

overlooked, role in bacterial genomes’ evolution and horizontal gene acquisition [33,34].

Recently, the effects of HR on resistance spread in A. baumannii are becoming elucidated. For

example, while resistance to third-generation cephalosporins is known to occur via the inser-

tion of ISAba1 upstream of the intrinsic chromosomal ampC gene (Fig 1C), the IS can be

acquired either via direct IS insertion, as mediated by classical transposition, or from DNA

exchange with a different strain, as mediated by HR between large DNA segments present in

several ST1 and ST25 lineages [35–37]. In another example, the AbGRI3 island (approximately

20 kb), which includes several resistance genes (armA, aphA1, msr-mph(E), sul1, aadA1, and
catB8) and is common in ST2 strains, is acquired from another ST2 (GC2) via HR, as part of a

larger (>56 kb) DNA chromosomal segment by ST1 strains [37]. HR has been shown to be

responsible for a non-ST2 A. baumannii hospital isolate acquiring a genomic resistance island

(AbGRI5, carrying the armA, msr-mph(E), sul1, blaPER-1, aadA1, cmlA1, aadA2, blaCARB-2, and

ere(B) resistance genes) from ST2 (GC2) [18]. Finally, it has been shown that the classic gyrA
and parC mutations that lead to fluoroquinolone resistance are freely exchanged throughout

A. baumannii isolates by acquiring DNA segments containing the mutated alleles, via HR [37].

Although these examples highlight some impacts of HR on the acquisition and evolution of

resistance genes, further investigations across the broad range of sequence types and geograph-

ical areas are needed to determine the full, potentially large, role of HR in A. baumannii
resistance.

Intrinsic mechanisms of antibiotic resistance

One resistance mechanism classically associated with A. baumannii is their impressive suite of

efflux transporters, which actively pump antibiotics and biocides out of the periplasm via pro-

ton motive force before cell damage occurs. There are 5 major classes of efflux pump families

associated with resistance in A. baumannii, namely, resistance-nodulation-division (RND; e.g.,

AdeABC), major facilitator superfamily (MFS; e.g., TetA, AmvA), multidrug and toxic efflux

(MATE; e.g., AbeM), the small multidrug resistance (SMR; e.g., AbeS), and ATP binding cas-

sette (ABC; e.g., MacAB/TolC). The most significant resistance-associated pumps in A. bau-
mannii are part of the RND family efflux pumps, which have broad specificity and are present

in most strains [38]. The most common resistance pumps are encoded by adeABC, adeFGH,

and adeIJK [39,40]. In addition to the presence and absence of these efflux pumps, the regula-

tion of their activity can dictate resistance; some are constitutively expressed, and some are

tightly regulated and activated in response to specific drugs or environmental cues. For exam-

ple, the adeABC operon encodes AdeA (membrane fusion protein), AdeB (multidrug trans-

porter), and AdeC (outer membrane protein) to form a pump spanning the inner and outer

membrane (Fig 2A), and its expression is regulated by the AdeRS TCS in response to
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fluoroquinolone exposure (Fig 2) [41]. However, constitutive overexpression of adeABC
results in broader resistance (to aminoglycosides, tetracyclines, chloramphenicol, β-lactams,

and tigecycline) and can occur as a result of ISAba1 insertion upstream of adeABC (Fig 2B) or

via point mutations in adeR or adeS, having major clinical implications [42–44]. Interestingly,

inherent efflux activity seems to act in a strain-dependent context, where certain pumps are

expressed in different strains; for example, AdeABC appears to be more active in ATCC17978,

whereas AdeIJK is more active in AB5075 (GC1) for drug resistance [40,45].

However, other intrinsic resistance mechanisms are employed by the A. baumannii cells to

evade antibiotic action, including target site modification via single point mutations, where

the active site of the drug is modified to render it ineffective [46] or IS insertion to change reg-

ulation as is seen across several antibiotic classes.

Resistance to colistin and other polymyxins

Colistin and other polymyxins are a last resort within our arsenal of antibiotics that largely

remained effective against MDR A. baumannii. However, increasing levels of resistance are

being recorded, and several molecular drivers have been identified that underpin this last-line

resistance. Colistin resistance is due to point mutations in key genes that cause the bacterium

to alter the sugar moieties of or even completely shed its lipooligosaccaride (LOS), resulting in

the colistin being unable to bind to its target [47,48]. In the case of LOS loss, this was found to

be due to ISAba11 disrupting the Lipid A biosynthesis genes lpxA/C. Interestingly, the loss of

LOS seems to be an A. baumannii-specific resistance strategy, as other gram-negative bacteria

never lose their lipopolysaccharide (LPS), but only use Lipid A modification. Other mutations

target specific downstream effectors that affect lipid and membrane production and stability,

including lpxA [49] and the mla operon [50].

Fig 2. Intrinsic resistance mechanisms. (A) AdeABC pump (of the RND family) is the most important for efflux-mediated drug resistance in A. baumannii. (B)

Regulation of AdeABC is mediated by AdeRS, where ISs and single point mutations can disrupt these genes and result in overexpression. IM, inner membrane; IS,

insertion sequence; LOS, lipooligosaccaride; OM, outer membrane; RND, resistance-nodulation-division.

https://doi.org/10.1371/journal.ppat.1011520.g002
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Colistin resistance mutations arise in two-component systems (TCSs) that control the pro-

duction and modification of LOS, namely in PhoPQ, PmrAB [51], BaeSR [50], or StkSR [52].

For example, pmrA/B TCS controls pmrC expression, which encodes a pEtN transferase to

modify the Lipid A, providing resistance. So far, 68 amino acid changes have been identified for

A. baumannii across this system that mediates colistin resistance [53], and the mutations only

need to be present in a subset of the population, presenting as colistin heteroresistance [54].

Recently, colistin resistance has also been described as been carried on plasmids, via the

mcr gene, and this has been demonstrated for A. baumannii from clinical isolates and even

environmental samples [55].

Resistance to carbapenems and third-generation cephalosporins

Unlike most gram-negative bacteria (e.g., Enterobacterales), in A. baumannii, resistance to

carbapenems is due to the acquisition of carbapenem-hydrolysing oxacillinase-encoding (class

D) genes such as oxa23, oxa24, and oxa58 [4]. Of these, oxa23 is by far the most abundant in

many countries, while oxa24 and oxa58 appear to be more dominant in specific regions. The

oxa23 gene moved by Tn2006-9, with Tn2006 being the most abundant Tn that spreads this

gene [4]. Other carbapenem resistance genes such as metallo-ß-lactam resistance genes are

also reported but remain rarely seen [4].

Genes encoding the extended-spectrum beta-lactamases (ESBLs) are responsible for resis-

tance to extended-spectrum beta-lactam antibiotics in most gram-negative bacteria. However,

in A. baumannii, it occurs via insertion if an ISAba1 (or ISAba125) upstream of the chromo-

somal ampC gene, which provides the gene with a strong promoter enhancing the suppression

level and, therefore, high levels of resistance to third-generation cephalosporins, as well as

resistance to beta-lactam inhibitors, like sulbactam [56]. This occurs either via the classic inser-

tion of ISAba1 upstream of the chromosomal ampC gene or as indicated above, by an acquisi-

tion of an exogenous DNA segment containing an ISAba1-activated ampC gene via

homologous recombination replacing large segments of the chromosome [36].

Resistance to aminoglycosides and fluoroquinolones

Aminoglycoside resistance occurs by the acquisition of genes encoding different families of

aminoglycoside modifying enzymes often carried by composite Tns (e.g., Tn6020 carrying the

aphA1 kanamycin, neomycin, and gentamicin resistance gene) or gene cassettes (e.g., the

aacC1 gentamicin resistance gene found on class 1 integrons) in major global clones (ST1 and

ST2) [16,57].

Fluoroquinolone resistance is mainly due to the generation of point mutations in the active

sites of the gyrA and parC genes that encode the cell’s DNA gyrase and topoisomerase IV

enzymes, which are required for cell replication and survival. Mutations often occur by fluoro-

quinolone selective pressure. However, mutations can also be obtained via the acquisition of

DNA segments—that include the mutations—by HR from an exogenous source (a strain that

belongs to a different ST) [37].

Complex evolutionary pathways lead to multiple antibiotic

resistance gene acquisitions combined with the global spread of

resistant clones

The literature on antibiotic resistance of A. baumannii commonly highlights that A. bauman-
nii has an incredible ability to develop resistance to many antibiotics. Although true, a major

driver of resistance is also due to the clonal global expansion of successful resistant strain.
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Notably, while new resistant clones are emerging and isolates are continually gaining resis-

tance genes, the bulk of the global MDR A. baumannii infections are still due to a few success-

ful clones that are disseminated globally, typically those belonging to global clones GC1

(represented by ST1) and GC2 (represented by ST2) and a few additional sequence types, e.g.,

ST10, ST15, ST79, and ST85 [4]. Those belonging to ST15, ST25, ST79, and ST85 are impor-

tant and most prevalent in certain geographical regions (e.g., ST85 in the Middle East or ST79

in South America) [4,58–64]. It is important to note that multidrug resistance is often the

result of the accumulation of a characteristic suite of antibiotic resistance genes for each clone,

which then spreads. For example, clone-specific GIs often carry multiple resistance genes and

insert into the chromosomes rendering cells resistant to several antibiotics in a single event. In

contrast, nonspecific (shared) resistance elements (Tn, GI, plasmids, etc.) can be incorporated

into both the chromosomes and plasmids and help accumulate the resistance genes leading to

a complex picture. For example, it has been shown that AbaR-type islands (with several resis-

tance genes) entered a single member of global clone 1 (GC1) in the mid-1970s (before it was

globally distributed) and continued to evolve in situ forming many variants [16]. Thus, at least

in ST1 strains, multi-, extensive-, and pan-drug resistance is the result of many acquisition/

deletion events initiated by the acquisition of GIs, and other resistance determinants via

homologous recombination providing the huge selective advantage to spread globally, fol-

lowed by additional decorations of subsequent Tns or plasmids that carry carbapenem resis-

tance genes. Several other globally distributed sequence types (ST2, ST25, ST79, and ST85)

have also achieved multiply-extensive and pan-drug resistance phenotypes through completely

different evolutionary paths. However, they share a common feature in which gene acquisi-

tion, either via MGEs or homologous recombination, and single base mutations, or mutation

acquisition via homologous recombination, play a pivotal role in driving the resistance

phenomenon.

It should be emphasised that in addition to numerous clever intrinsic and acquired mecha-

nisms, the global spread of few highly successful clones and their lineages drive A. baumannii
into becoming the globally successful and near-impossible-to-treat pathogen than it is today.

Together with the current lack of new antibiotics to treat resistant strains combined with

the uncertainty about the discovery and effectiveness of new antibiotics, improved infection

control policies, increased surveillance, and new treatment strategies are urgently needed. This

requires a concerted global effort by researchers, healthcare professionals, policymakers, and

governments.
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