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Abstract

Background

SARS-CoV-2 emerged as a new coronavirus causing COVID-19, and it has been responsi-

ble for more than 760 million cases and 6.8 million deaths worldwide until March 2023.

Although infected individuals could be asymptomatic, other patients presented heterogene-

ity and a wide range of symptoms. Therefore, identifying those infected individuals and

being able to classify them according to their expected severity could help target health

efforts more effectively.

Methodology/Principal findings

Therefore, we wanted to develop a machine learning model to predict those who will develop

severe disease at the moment of hospital admission. We recruited 75 individuals and ana-

lysed innate and adaptive immune system subsets by flow cytometry. Also, we collected

clinical and biochemical information. The objective of the study was to leverage machine

learning techniques to identify clinical features associated with disease severity progres-

sion. Additionally, the study sought to elucidate the specific cellular subsets involved in the

disease following the onset of symptoms. Among the several machine learning models

tested, we found that the Elastic Net model was the better to predict the severity score

according to a modified WHO classification. This model was able to predict the severity

score of 72 out of 75 individuals. Besides, all the machine learning models revealed that
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CD38+ Treg and CD16+ CD56neg HLA-DR+ NK cells were highly correlated with the

severity.

Conclusions/Significance

The Elastic Net model could stratify the uninfected individuals and the COVID-19 patients

from asymptomatic to severe COVID-19 patients. On the other hand, these cellular subsets

presented here could help to understand better the induction and progression of the symp-

toms in COVID-19 individuals.

Author summary

The continuous threat of SARS-CoV-2 or other potential future viral pandemics have

made necessary predictive methods for patient management, especially for patients that

will develop severe clinical conditions once hospitalized. Since the beginning of the

COVID-19 pandemic, large amounts of clinical and immunological data have been

obtained. In this manuscript, we utilized several machine learning models based on clini-

cal data and immune cellular subsets obtained by flow cytometry to predict those individ-

uals that could progress to severe COVID-19. Non-infected individuals were compared to

those presenting symptoms, tested at the Emergency Service, and followed until their hos-

pital discharge or death due to the SARS-CoV-2 infection. Here, the Elastic Net model

permitted us to determine variables that could predict individuals that will present more

severe disease progression. This work could serve two purposes. Firstly, it could help clini-

cians to stratify individuals who are at risk of developing severe COVID-19. Secondly, it

could assist researchers in determining the specific immune subsets implicated in the

severity of the disease.

Introduction

The SARS-CoV-2 was a novel coronavirus that emerged in December 2019, and since the

beginning of 2020 was responsible for the pandemic of COVID-19 (Coronavirus Disease

2019). According to the World Health Organization, in March 2023, more than 760 million

infections and 6.8 million deaths were reported associated with SARS-CoV-2 infection world-

wide (data obtained from World Health Organization: https://covid19.who.int/).

During the first COVID-19 wave, according to the Chinese Center for Disease Control and

Prevention report, 81% of individuals presented a mild disease, 14% severe disease, 5% critical

and a case-fatality rate of 2.3% [1]. These findings were comparable to what was observed in

another study in the United States of America, with 14% of individuals hospitalized, 2% of

admission to Intensive Care Unit (ICU) and 5% deaths of total infected individuals [2]. How-

ever, the clinical spectrum of infected patients has changed over the pandemic (after vaccina-

tion, reinfections, and regarding the SARS-CoV-2 variants). According to a study about the

Omicron variant, 46.7% of infected individuals were asymptomatic [3]. Besides, other studies

have observed that the individuals infected with Omicron had a lower risk of severe COVID-

19, ICU admission and mortality in comparison with the Delta variant [4–11], Alpha variant

[4, 5] and Wuhan original strain [12]. However, symptomatic infections and deaths related to

COVID-19 are still being reported and are still a problem for society and healthcare systems,

especially in managing hospitalized patients.
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A meta-analysis work reviewed 152 studies and identified six symptoms with the highest

prevalence related to COVID-19: fever (in 58.66% of infected individuals), cough (54.22%),

dyspnea (30.82%), malaise (29.75%), fatigue (28.16%) and sputum (25.33%) [13]. However,

other symptoms are less prevalent but can be implicated in the severity of the COVID-19.

Therefore, predicting those individuals that could need intensive care is still necessary because

the spread of the virus is still responsible for thousands of daily infections. This spreading is

partially responsible for the saturation of the healthcare systems and for preventing the proper

treatment of patients once hospitalized, which could lead to the deterioration of the health

and, eventually, fatality [14]. Moreover, the availability of tools to decipher the immune fea-

tures that contribute to severe disease progression is pivotal in understanding the disease’s

mechanisms and its immune response. Thus, tools that can predict severity in early infected

individuals at the moment they go to the Hospital Emergency Department and explain why

some patients are expected to have severe COVID-19 could be useful. This could be important

not only for SARS-CoV-2 but also for future viral-associated respiratory pathologies, and to

devote greater healthcare efforts to improve their clinical situation.

Several groups developed machine learning models (LASSO [15, 16], XGBoost [17, 18] or

Random Forest [17, 18]) to predict severity in infected patients and already determined key

features correlated with COVID-19 severity, such as, lymphopenia [16, 19–21], and high levels

of ferritin [19], C-Reactive Protein [18–20], lactate dehydrogenase [14–16, 19, 20], neutrophils

[16, 21, 22], D-Dimer [16, 18, 22, 23], IL-6 [17, 24], IL-10 [17, 24], and some features of quanti-

tative computed tomography (CT) [16, 25]. However, although the SARS-CoV-2 infection

directly influences the immune system, no study has used immune subsets to develop a

machine learning model to predict severity, except for neutrophils and lymphocyte counts.

Here we propose the Elastic Net model as a new machine-learning solution to stratify

patients according to their expected severity. Additionally, this model has the potential to aid

researchers in elucidating the significance of specific immune subsets that have been linked to

the severity of the disease. As a result, this approach highlights 2 specific immune subsets

highly implicated in the prediction of severity which could help expand the range of known

predictor features.

Results

Selection of the better machine learning model and clinical characteristics

that are associated with the more robust model

The data utilized in the models was collected within the first 18 hours since the admission to

the Emergency Service. The variables collected, which are listed in S1 Table, included personal

characteristics, symptoms experienced since the onset of infection, biochemical parameters,

cytokine levels measured in plasma, and the percentage and absolute numbers of immune sub-

sets measured in peripheral blood via flow cytometry (S2 Table). After processing the data as

described in the Materials and Methods section, we tested several models, including Elastic-

net, linear GP with ARD, Lasso, Random Forest and Linear Ridge Regression, to determine

which one best predicted the COVID severity across different patients and detected features

related to different cohorts. We calculated the average for the mean absolute error (MAE),

mean squared error (MSE) and R2 score for all predictions produced by each model. The

results showed an improved LOO performance in terms of R2 for the Elastic Net model, with

an MAE of 0.657, an MSE of 0.870, and an R2 score of 0.723 (Table 1).

Moreover, analyzing these 5 models that yielded an R2 score over 0.6, we identified the fea-

tures that consistently were considered most relevant (with the greatest weight) across all these

models, detailed in Fig 1A and 1B. Fig 1A refers to which features have a greater impact on the
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Table 1. Characteristics of the machine learning models’ results. The table shows the Mean Absolute Error (MAE), Mean Squared Error (MSE) and R2 score for those

machine learning models that yielded an R2 score over 0.6.

MAE MSE R2

GP_linear_ARD 0.748 1.165 0.630

Elastic_Net 0.657 0.870 0.723

Lasso 0.770 1.020 0.676

Random_Forest_Regressor 0.862 1.259 0.600

Kernel_Ridge_Linear 0.797 1.201 0.618

https://doi.org/10.1371/journal.ppat.1011432.t001

Fig 1. Most important features among the machine learning models and relevance of comorbidities. Median

importance (a) and frequency of apparition of features (b) across all the machine learning models tested. The presence

of comorbidities is one of the most important features, and the percentage of comorbidities in each Severity Score

group indicates a positive correlation (c). Correlation between age and the frequency of comorbidities (d). Kruskal-

Wallis test and Dunn’s correction were done in graph (c). Shapiro-Wilk test was done for the normality test, and

Spearman correlation was done in graph (d). *p< 0.05, **p< 0.01, *p< 0.001.

https://doi.org/10.1371/journal.ppat.1011432.g001
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model’s accuracy, and it is calculated from multiple models and cross-validation iterations to

obtain a more precise and reliable estimate. Fig 1B presents a measure of which features are

more consistent and appear more frequently in the different models and the LOO iterations.

This information can be useful for identifying important and reliable features in the dataset and

for improving the accuracy of the model by removing features that are not relevant or consis-

tent. Besides, these results confirm that linear models are a good choice for this problem provid-

ing similar or better results than nonlinear ones. In summary, comorbidities and high ferritin

levels, which were already described as related to COVID-19 severity [19, 26, 27], were associ-

ated in all the machine learning models tested as highly relevant for the severity prediction. On

the other hand, the frequency of CD38+ Treg and the absolute number of CD16+ CD56neg

HLA-DR+ NK were also determined to predict severity adequately. Both subsets were also iden-

tified as relevant when a sensitivity analysis was conducted (S1 Fig). Out of the 575 features

studied, both subsets were among the 30 most relevant features.

Patient’s characteristics and importance of comorbidities in the COVID-19

severity

Among all the variables studied, we focused on the age of individuals since it is well-studied

that older people presented a higher severity of COVID-19 [1, 15, 21, 28, 29]. As expected, our

cohort analysis revealed that the machine learning model and sensitivity analysis identified age

as a relevant factor for predicting disease severity (Fig 1A and 1B and S1 Fig). The median age

was strongly correlated with the Severity Score, with a higher severity in older people. Pearson

correlation between age and Severity Score indicated an r coefficient of 0.4617 (p-

value < 0.0001, Table 2).

It is also described that comorbidities such as obesity, dyslipidemia, or previous pulmonary

diseases are factor risks in the severity of COVID-19 [26, 27]. We then studied the percentage of

volunteers presenting at least one comorbidity considered as a factor risk previous to the infec-

tion by the SARS-CoV-2. We observed that despite 25% of volunteers in Score 1 presented at

least one comorbidity, more than half showed comorbidities in the rest of the score groups. The

frequency of individuals presenting comorbidities reached 100% of volunteers in Score 5&7

(Score 2; 58.33%, Score 3; 66.67%, Score 4; 70.58%, Fig 1C and Table 2). Also, the Spearman cor-

relation between the percentage of volunteers with comorbidities and the Severity Score was

r = 0.5585 (p< 0.0001, Table 2). Besides, a highly positive correlation between age and the num-

ber of comorbidities was observed as expected (r = 0.5076, p< 0.0001, Fig 1D). However, here

we couldn’t conclude if comorbidities, age or a combination of both are directly implicated in

the severity of COVID-19. Indeed, older individuals presented more comorbidities. However,

despite the strong correlation between both features, the presence of comorbidities has the high-

est weight in all the machine learning models tested than age (Fig 1A and 1B).

The machine learning model allowed us to predict SARS-CoV-2 infected

individuals regarding their Severity Score

Among all machine learning models tested, the Elastic Net model was identified as the best

machine learning model to predict the Severity Scores of the different patients. Compared to

other tested models, the Elastic Net model was the one that best adapted to our data, present-

ing an R2 score of 0.723 and an MAE of 0.675 (Table 1).

Applying the Elastic Net model to the whole data of all the patients, we could observe that the

model correctly predicted the COVID-19 Severity Score for most of the individuals. In Fig 2A,

the orange line indicates the actual value attending to the patient’s oxygen therapy requirement,

while the blue line indicates the predicted value provided by the Elastic Net model. Although
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most of the patients were accurately predicted, we considered that those with a variation of ± 1.5

in the score were misclassified, resulting in 4 individuals out of 75 individuals. Patient A was ini-

tially classified in Score 1, but the model calculated a Score of 3.1. However, this patient was mis-

classified because he received an oxygen therapy of 3L, so his real score should be 3, according to

what was obtained by the model. The other three patients misclassified by the model were: Patient

B had a real Score of 4 but the model classified him as the Score of 0, Patient C had a Score of 5,

but the model provided a Score of 2.13, and Patient D was classified with a Score of 4.74, when

his real Score was 7. Therefore, out of the 75 individuals, only 3 individuals were predicted in

Table 2. Detailed characteristics of individuals regarding their Severity Scores. For each Severity Score group, it is detailed the number of individuals, age, sex, and a

list of comorbidities related to SARS-CoV-2 infection. Symptoms indicate the number of symptoms developed by each individual since the beginning of the infection to

the admission into the Emergency Service. Time in days between symptoms onset and hospitalisation and days between hospitalisation and hospital discharge. Chi-

squared test was used for the analysis of gender. For age, Pearson correlation and p-value, and for comorbidities, days between symptoms onset and hospitalisation, and

days between hospitalisation and hospital discharge/death, Spearman correlations and p-values are detailed.

Score 0 Score 1 Score 2 Score 3 Score 4 Score 5&7 P value

Number of individuals 16 8 12 15 17 7

Age (years) 41.81

(± 3.25)

27.87

(± 2.37)

43.25

(± 3.73)

53.46

(± 4.52)

51.70

(± 3.62)

64.71

(± 4.51)

r = 0.4617

p-value < 0.0001

Sex (male/female) 5/11 3/5 3/9 8/7 11/6 3/4 0.202

Ethnic

European 16 5 3 8 6 5

Latin 0 3 8 6 10 2

African 0 0 1 1 1 0

Comorbidities, (%) 1 (6.25) 2 (25) 7 (58.33) 10 (66.67) 12 (70.58) 7 (100) r = 0.5585

p-value < 0.0001

Obesity 1 1 2 4 4 3

Dyslipidemia 0 0 3 4 6 2

Arterial Hypertension 0 0 2 5 5 1

Diabetes 0 0 1 0 2 1

Pulmonary disease 1 1 1 3 4 2

Hepatic disease 0 0 3 1 0 1

Heart disease 0 1 0 1 4 1

Cancer 0 0 0 1 1 2

Symptoms

Low fever (<38˚C) - 5 11 9 12 5

Fever (�38˚C) - 5 9 6 9 1

Cough - 2 9 10 10 3

Throat pain - 3 1 1 3 1

Dyspnoea - 2 4 8 9 5

Asthenia - 2 4 5 6 2

Headache - 5 5 4 7 2

Diarrhoea - 3 5 4 5 3

Nausea - 1 2 2 2 1

Vomiting - 1 2 4 4 1

Myalgia - 2 8 3 8 1

Ageusia - 1 3 3 1 0

Anosmia - 1 2 2 3 0

Time (Days +/- SEM) between symptoms onset

and hospitalisation

- - 8.91 +/- 2.49 6.47 +/- 1.25 5.81 +/- 0.80 5.14 +/- 1.01 r = -0.1562

p-value = 0.2838

Time (Days +/- SEM) between hospitalisation

and hospital discharge/death

- - 5.17 +/- 1.19 7.67 +/- 1.27 11.24 +/- 1.54 30.57 +/- 11.38 r = 0.5400

p-value < 0.0001

https://doi.org/10.1371/journal.ppat.1011432.t002
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Fig 2. Elastic net model to predict Severity Score. (a) Severity Score predictions by Elastic Net model (light blue) and

the ground truth values (orange) on unbalanced and rounded data at each interaction. Misclassified individuals are

indicated with letters from A to D. (b) Severity Score predictions by Elastic Net model (red) and the ground truth

values (dark blue) on unbalanced and rounded data at each interaction including only the clinical and personal data.

(c) Severity Score predictions by Elastic Net model (red) and the ground truth values (dark blue) on unbalanced and

rounded data at each interaction including only the immunological data. MAE for the mean absolute error, MSE for

the mean squared error, and R^2 score were calculated for all predictions.

https://doi.org/10.1371/journal.ppat.1011432.g002
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another Score group, resulting in an error of the machine learning model of 4%. This incorrect

classification could be explained by the heterogeneity of the COVID-19-related symptoms and

immune subsets.

Therefore, the Elastic Net model would allow for predicting the severity of the COVID-19

infection from the very moment they were admitted to the emergency department. Neverthe-

less, because immune subset analysis is not a routine analytic in hospitals, we were interested

in running the Elastic Net model using only clinical features and personal data (Fig 2B), as well

as only immunological features (Fig 2C). It was striking to observe that clinical features and

personal data alone were not able to predict severity, as the model using only these variables

had an R^2 of around zero. Conversely, the immunological features provided good prediction

(R^2 = 0.66), but it was the combination of immunological and clinical variables that yielded

the best performance (R^2 = 0.72). Therefore, this predictive model may be more appropriate

for research on the importance of initial immune cell subsets and cytokine concentrations at

the onset of the disease, in conjunction with clinical/personal data, rather than for detecting

patients from a clinical perspective.

When verifying how cytokines and biochemical markers were modulated regarding the

severity score, we could observe that PCR, procalcitonin, IL-6, IL-8, TNF-α, IL-10, IL-13 and

CXCL10 were positively correlated with the severity score, as expected (Table 3).

An unsupervised analysis identified a metacluster related to CD38+ Treg cells

As observed in a previous section, two cellular subsets can predict a worse outcome for indi-

viduals (Fig 1A and 1B). This information may not be easily accessible for clinicians to make

decisions about hospitalization as flow cytometry panels are time-consuming and expensive.

Nevertheless, from an investigative standpoint, it is intriguing to identify possible cellular sub-

sets that could be associated with disease progression. To perform a deeper analysis of the Treg

cells, we used the OMIQ software to perform an unsupervised analysis of the data regarding T-

cell subsets. After running the opt-SNE and FlowSOM analysis on total CD3+ T cells, we

obtained a multidimensional reduced image where an abundance of metaclusters obtained by

the FlowSOM was represented. We identified that the CD38+ Treg cells (determined by man-

ual gating using FMO to determine the positivity and negativity of the signals, S2 Fig) were

overlapping in part the metacluster 23 (MC-23), determined by unsupervised analysis (Fig

3A), which was significantly and positively increased in term of abundance (subset percentage

regarding total CD3+ T cells) in the most severe scores (Fig 3B). Metacluster 23 was then sub-

sampled and analyzed using the CITRUS algorithm to identify any new subclusters that might

be differentially expressed between the groups. From this MC-23, 6 clusters’ abundances were

found to be different between Severity Scores (c85, c87, c88, c89, c78 and c77, Fig 3C), espe-

cially the c89 cluster showing an abundance increase in all severity Score groups > 1. More-

over, only cluster c89 overlapped almost the entire CD38+ Treg subset (Fig 3D). We studied

the expression intensity of each marker in cluster c89, which was found to be CD4+ CD8neg

CD127neg and CD25int, indicative of a general Treg phenotype (S3 Fig) and was also

described as CD38+ CD27+ CCR6neg CCR10neg HLA-DRneg and CD45RAneg (Fig 3F).

Surprisingly, this cluster also presented an intermediate CXCR3 expression, a marker not gen-

erally associated with the CD38+ Treg subset (Fig 3F and S3 Fig).

The frequency of CD38+ Treg but not absolute numbers were positively

correlated to the severity score

We were interested in comparing these results with those obtained by manual gating since the

CD38+ Treg cell was a cellular subset among the most repeated and important features in all
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the machine learning models tested, especially in the Elastic Net model, and in the sensitivity

analysis.

Attending to the percentage of Treg expressing CD38 in these individuals (defined as CD38+

Treg, gated on total Treg subset), we observed that Score 0 presented a basal frequency of CD38+

Table 3. Levels of classical COVID-19 biomarkers with the highest importance among the machine learning models. Mean ± SEM levels are reported for biochemical

markers including C-reactive protein, D-dimer, ferritin, procalcitonin, lactate dehydrogenase (LDH), fibrinogen, prothrombin time, alanine aminotransferase (ALT), and

aspartate aminotransferase (AST), as well as cytokines such as IL-1β, IL-6, IL-8, TNF-α, CCL2, IL-12p70, IL-10, IL-13, IL-17A, CXCL10, GM-CSF and IFN-γ for each

Severity Score group. Some information is missing for biochemical markers in Score 0 and Score 1 because they were not measured during their admission to the Emer-

gency Service. Pearson correlations were performed between biomarkers and severity score. p = p-value and r = correlation coefficient. In bold, when p< 0.05 which is

considered as significant.

Score 0 Score 1 Score 2 Score 3 Score 4 Score 5&7 Spearman r

Number of individuals 16 8 12 15 17 7

C-reactive protein (mg/dL)

[0–0.5]

- 0.4

(± 0.14)

8.84

(± 2.24)

6.05

(± 1.17)

7.52

(± 1.46)

14.83

(± 2.91)

r = 0.3459

p = 0.0097

D-dimer (ng/mL)

[0–250]

- 171.50

(± 59.80)

290.45

(± 58.09)

266.07

(± 45.65)

447.94

(± 200.64)

287.33

(± 81.87)

r = -0.0447

p = 0.7600

Ferritin (μg/L)

Range [19–285]

- - 559.57

(± 186.70)

453.08

(± 123.97)

642.44

(± 202.75)

1245.83

(± 640.51)

r = 0.1648

p = 0.3032

Procalcitonin (μg/ml)

Range [< 0.5]

- - 0.09

(± 0.03)

0.05

(± 0.01)

0.07

(± 0.01)

0.97

(± 0.80)

r = 0.3399

p = 0.0147

Lactate dehydrogenase (LDH, U/L)

Range [135–219.5]

- 182.50

(± 61.06)

288.44

(± 47.13)

291.15

(± 32.82)

275.19

(± 23.81)

331.67

(± 54.16)

r = 0.1851

p = 0.2180

Fibrinogen (mg/dL)

Range [150–450]

- 438.75

(± 119.17)

733.42

(± 39.62)

675.53

(± 25.93)

685.00

(± 52.40)

783.57

(± 69.53)

r = 0.2084

p = 0.1304

Prothrombin time (s)

[10.5–13.5]

- 11.67

(± 3.50)

13.18

(± 0.30)

13.31

(± 0.39)

12.96

(± 0.23)

23.20

(± 9.85)

r = 0.1241

p = 0.3712

Alanine aminotransferase (ALT, U/L)

[5–36]

- 23.00

(± 6.96)

42.33

(± 9.51)

57.13

(± 10.51)

46.59

(± 10.37)

43.57

(± 10.00)

r = 0.08535

p = 0.5395

Aspartate aminotransferase (AST, U/L)

[10–34]

- - 112.67

(± 36.65)

63.60

(± 12.91)

60.13

(± 13.58)

69.33

(± 22.38)

r = 0.0858

p = 0.6900

IL-1β (pg/ml) 0.54

(± 0.05)

0.73

(± 0.09)

0.65

(± 0.15)

0.51

(± 0.04)

0.61

(± 0.09)

0.56

(± 0.08)

r = 0.01743

p = 0.8820

IL-6 (pg/ml) 1.20

(± 0.19)

5.85

(± 1.25)

26.45

(± 11.44)

16.94

(± 3.69)

25.08

(± 9.78)

75.80

(± 49.94)

r = 0.5942

p < 0.0001

IL-8 (pg/ml) 6.67

(± 0.60)

57.43

(± 25.93)

51.58

(± 43.42)

10.79

(± 1.03)

13.31

(± 2.46)

17.20

(± 2.37)

r = 0.3235

p = 0.0046

TNF-α (pg/ml) 7.71

(± 0.40)

14.97

(± 1.58)

11.92

(± 1.68)

13.56

(± 1.22)

13.15

(± 1.78)

13.00

(± 0.91)

r = 0.3547

p = 0.0018

CCL2 (pg/ml) 188.21

(± 17.21)

943.81

(± 287.20)

321.93

(± 87.87)

361.47

(± 67.87)

428.84

(± 136.19)

368.23

(± 93.39)

r = 0.1537

p = 0.1880

IL-12p70 (pg/ml) 1.29

(± 0.02)

1.74

(± 0.35)

1.67

(± 0.22)

1.49

(± 0.11)

1.36

(± 0.06)

1.60

(± 0.26)

r = 0.0906

p = 0.4391

IL-10 (pg/ml) 2.38

(± 0.11)

4.98

(± 1.14)

7.98

(± 1.16)

11.72

(± 2.11)

18.43

(± 7.86)

17.01

(± 3.16)

r = 0.7046

p < 0.0001

IL-13 (pg/ml) 43.41

(± 18.04)

21.40

(± 11.13)

14.78

(± 4.98)

10.09

(± 1.35)

12.48

(± 3.02)

9.90

(± 2.63)

r = -0.2651

p = 0.0225

IL-17A (pg/ml) 2.10

(± 0.00)

2.50

(± 0.41)

2.62

(± 0.52)

2.32

(± 0.13)

2.29

(± 0.10)

2.39

(± 0.19)

r = 0.2043

p = 0.0808

CXCL10 (pg/ml) 89.28

(± 10.13)

1120.57

(± 281.15)

943.53

(± 163.75)

1037.47

(± 154.00)

1149.82

(± 142.42)

1629.43

(± 137.73)

r = 0.6376

p < 0.0001

GM-CSF (pg/ml) 2.43

(± 0.29)

1.71

(± 0.15)

11.03

(± 4.99)

9.41

(± 4.48)

5.09

(± 0.90)

2.00

(± 0.27)

r = 0.2569

p = 0.0261

IFN-γ (pg/ml) 0.68

(± 0.07)

3.13

(± 1.02)

25.89

(± 8.78)

13.41

(± 3.39)

7.26

(± 1.90)

7.45

(± 2.30)

r = 0.4077

p = 0.0003

https://doi.org/10.1371/journal.ppat.1011432.t003
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Fig 3. Unsupervised analysis of the T-cell flow cytometry panel. (a) Multidimensional reduced map generated after

opt-SNE analysis in CD3+ cells. In light yellow is indicated total CD3+ T cells, in red the CD38+ Treg subset, and in

blue the Metacluster 23 (MC-23). The blue circle points to the CD38+ Treg cells. (b) Frequency of MC-23 in each

Severity Score group. For each group, the box indicates the lower quartile q1 and the upper quartile q3, and the

whiskers the maximum and minimum values. The dotted line indicates the mean, and the continuous line represents

each group’s median. (c) Abundances of the 6 clusters by the CITRUS algorithm (gated on total CD3+ T cells) in all

the Severity Score groups. Multiple t-tests corrected by multiple comparisons using the Bonferroni-Dunn method.

Only statistical significance for the C89 cluster was shown. (d) Clusters are represented in a multidimensional reduced

map generated after opt-SNE analysis in CD3+ cells. c89 cluster (green) is found to overlap with CD38+ Treg cells

(pink). In the top graph, the CD38+ Treg subset is positioned above the c89. In the bottom graph, c89 is positioned

above the CD38+ Treg subset. (e) Intensity expression for every marker in the c89 cluster, with all data from all the

individuals, concatenated. High expression is indicated in red, low in blue, and intermediate in cyan-green-yellow.

https://doi.org/10.1371/journal.ppat.1011432.g003
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Treg, progressively increasing according to the severity score, with a significant and strong posi-

tive correlation (r = 0.6667; p< 0.0001, Fig 4A). However, attending to absolute numbers of

CD38+ Treg, no significant change was observed regarding the severity (r = -0.2196; p = 0.0583,

Fig 4B). We analyzed the percentage and absolute numbers of total Treg cells to determine if the

same behavior as CD38+ Treg was observed. On the contrary, the frequency of total Treg (gated

on CD4+ T-cells) remained equal in every severity score and non-infected individuals

(r = 0.0588; p = 0.6162, Fig 4C). In brief, despite the total Treg absolute numbers decreased with

Fig 4. Analysis by manual gating of CD38+ Treg and total Treg cells. Graphs represent individual values and

correlation between Severity Score groups and subset percentages (a) and absolute numbers (b) of CD38+ Treg.

Percentage (c) and absolute numbers (d) of total Treg cells. Percentage (e) and absolute numbers (f) of total

lymphocytes. Spearman correlation was done for each cellular subset. p = p-value and r = correlation coefficient. In

bold, when p< 0.05 which is considered as significant.

https://doi.org/10.1371/journal.ppat.1011432.g004
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increasing disease severity (r = -0.5872, p< 0.0001, Fig 4D), the CD38+ Treg absolute numbers

were maintained (Fig 4B).

The loss of total Treg absolute numbers could be associated with the lymphopenia com-

monly observed in COVID-19 patients. Indeed, we determined, as already reported, that total

lymphocytes in frequency and absolute numbers were diminished in all SARS-CoV-2 infected

patients compared with the basal level of the non-infected individuals (Score 0) and were

strongly and negatively correlated with the severity score (r = -0.5196; p< 0.0001, Fig 4E, and

r = -0.6009; p< 0.0001, Fig 4F). Therefore, the maintained absolute numbers of CD38+ Treg

cells and its increase in frequency associated with severity score could be related to a specific

role of this specific cellular subset during the disease progression.

Unsupervised analysis, sensitivity analysis and manual gating (flow cytometry) support the

machine learning tests discovery and the determination of a cellular subset as a biomarker for

the severity of COVID-19.

An NK cell subset was negatively correlated with the COVID-19 severity

All the machine learning models highlighted that along with CD38+ Treg cells, the other rele-

vant subset related to the severity was the CD16+ CD56neg HLA-DR+ NK subset, where the

HLA-DR+ NK subset is related to the adaptive immune response [30]. Among several func-

tions, NK cells are implicated in fighting viral infection and make the connection to the adap-

tive immune system by producing cytokines and other molecules and are a key cell type in

COVID-19 [31].

We performed the unsupervised analysis on total leukocytes to detect NK cells. After opt-

SNE and FlowSOM, the Metacluster 11 (Fig 5A) and especially Metacluster 11B (MC11-B, Fig

5A) was shown to overlap the region where the CD16+ CD56neg HLA-DR+ NK subset was

identified (Fig 5B). The MC11-B was significantly different between Score 0 and 1 groups and

individuals with score > 1, with a lower CD16+ CD56neg HLA-DR+ NK frequency in higher

scores (Fig 5C). As expected, these cells expressed high levels of CD16 and HLA-DR markers

but surprisingly, this subset also highly expressed the CD11c marker (Fig 5D).

By manual gating, we defined total NK cells as CD3neg lymphocytes expressing CD56+ or

CD16+, excluding the double negative subset CD56neg and CD16neg (Fig 5E, left panel).

Then, NK cells can be divided into three subsets; CD16+ CD56low/neg NK, CD16+ CD56+

NK, and CD16+ CD56++ NK, which were already described in the literature (Fig 5E, right

panel [32]). Studying the expression of the HLA-DR activation marker on CD16+ CD56neg

NK cells, a clear reduction in their absolute numbers was observed (r = -0.7337, p< 0.0001,

Fig 5F, left panel). The absolute number of total NK cells showed a similar negative correlation

(r = -0.4880, p< 0.0001, Fig 5F, right panel), although the reduction in CD16+ CD56neg

HLA-DR+ NK was more drastic. Altogether, the decrease in the absolute numbers of total and

specific NK subsets could be related to the general lymphopenia occurring in COVID-19 or

even to specific NK cell death induced by the SARS-CoV-2 infection.

Therefore, the unsupervised analysis supported the results obtained by the machine learn-

ing model and highlighted the implication of these subtypes as biomarkers to predict COVID-

19 severity.

Discussion

As the pandemic has progressed over the past years, the clinical course of infected patients has

been modified, with a reduced hospitalization, severity of disease, and mortality rate. However,

the pandemic is not over, and thousands of new infections and deaths are reported daily.

Because of this, developing new tools to predict the evolution of COVID-19 patients at the
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Fig 5. Multi-analysis of the CD16+ CD56neg HLA-DR+ NK subset. (a) Multidimensional reduced map generated

after opt-SNE analysis in leukocytes. In light yellow are indicated leukocytes, and MC11-A (blue), MC11-B (green) and

MC11-C (red). (b) Multidimensional reduced map generated after opt-SNE analysis in leukocytes. In light yellow are

indicated leukocytes and in blue CD16+ CD56neg HLA-DR+ NK cells. (c) Bar graph with individual values, and

mean ± SEM of the abundance of MC11-B. 1-way ANOVA, corrected for multiple comparisons using Dunn’s method.

*p< 0.05 (d) Mean expression ± SEM of each marker of the NK-DC panel on the CD16+ CD56neg HLA-DR+ NK

subset in all Severity Score groups. (e) Dot plots indicate the gating strategy to select total NK cells by positive

expression of CD56 or CD16 in CD3neg lymphocytes (left panel). Gated on total NK cells, CD56 expression permits

the differentiation of three NK subsets; CD16+ CD56low/neg NK, CD16+ CD56+ NK and CD16+ CD56++ NK cells

(right panel). (f) The left panel represents individual values and correlation between Severity Score groups and absolute

numbers of CD16+ CD56neg HLA-DR+ NK. The right panel represents individual values and the correlation between

Severity Score groups and absolute numbers of total NK Spearman correlation was done for each graph. p = p-value

and r = correlation coefficient. In bold, when p< 0.05 which is considered as significant.

https://doi.org/10.1371/journal.ppat.1011432.g005

PLOS PATHOGENS Machine learning for optimizing COVID-19 individuals’ severe score association

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011432 June 13, 2023 13 / 23

https://doi.org/10.1371/journal.ppat.1011432.g005
https://doi.org/10.1371/journal.ppat.1011432


moment of hospitalization and, thus, stratifying individuals into severity score groups could

help to focus healthcare efforts on those patients who are expected to have more severe disease.

Moreover, facilitating the identification of the specific cellular subsets involved in disease pro-

gression could enable the understanding of the pathology’s mechanisms and thus, the develop-

ment of more effective vaccines and treatments in the future. We propose that the Elastic Net

model could be used as an effective machine learning model to predict the Severity Score.

Among the several machine learning tested, like Lasso, Random Forest or Kernel Ridge, with

the data from our cohort of 75 individuals, we observed that the Elastic Net model had better

characteristics than the others, presenting the highest R2 score and the lower MAE and MSE.

Moreover, accepting an error of ± 1.5 Severity Score, out of 75 individuals, the Elastic Net cor-

rectly predicted the COVID severity in 72 individuals, which means that the model presented

high deviations in only 4% of the cases. Unlike the rest of the studies that have developed

machine learning models to predict severity as listed in the introduction, in our model, we

included healthy individuals as a control of the model and infected asymptomatic or individu-

als that did not require oxygen therapy. This implementation makes our proposal more robust

and helpful than other models because it considers the full spectrum of potential individuals in

the pandemic and their specific features. Therefore, this approach could discharge infected

patients who do not require oxygen, improving the use of medical equipment and healthcare

efforts.

However, we not only wanted to develop a machine learning model capable of predicting

the severity score of the different patients but also to help determine immunological features

that could be pivotal for the progression of the disease. Among all models tested, several fea-

tures were highly implicated in predicting severity. Some of them were found previously, for

example, the presence of previous comorbidities, especially pulmonary diseases [26, 27], high

levels of ferritin [19], or IL-6 levels [17, 24]. Going more in-depth into the immune system, we

found 2 specific subpopulations highly correlated with COVID-19 severity.

Regulatory T cells expressing the CD38 marker (CD38+ Treg) was a subset whose percent-

age increased according to severity, while the absolute number of cells remained stable. Treg is

a unique subset of T-cells, responsible for immunological homeostasis, self-tolerance, and pre-

vention and regulation of hyperactivation of the immune system [33–36]. Because of this, it

was expected that Treg could be important in COVID-19 severity since mild and severe cases

presented hyperinflammation. However, Galvan-Peña et al. found that Tregs in severe

COVID-19 patients presented a transcriptional signature similar to tumour Tregs, and patients

with severe disease presented higher levels of total Treg cells [37]. Moreover, this Treg pre-

sented more expression of functional markers like Ki67, CTLA-4, GITR, TCF-1, and higher

FOXP3 MFI, in those patients with severe disease compared to mild disease [38]. It has also

been described that the IL-10-producing-Treg subset was increased in severe patients and

could be responsible for truncating adaptive immune responses, allowing infection to persist

and thus causing over-reliance on innate responses [39]. In line with this work, we showed

that IL-10 concentration in plasma was positively correlated with the more severe score indi-

viduals. Moreover, our results align with those observed by Søndergaard et al. [40], where Treg

expressing CD38 marker were increased related to COVID-19 severity. The Treg-expressing

CD38 subset has been described as a Treg subset with a high immunosuppressive ability [41,

42], and the expression of CD38, in this case, could explain the activation of the Treg and com-

plete the list of functional markers described by Vick et al. [38]. Also, Vick et al. described that

these Treg had also increased expression of CXCR3, a marker needed to migrate to tissues

[38]. We also detected this marker in the CD38+ Treg subset through the unsupervised algo-

rithm. Altogether, this could indicate that severe patients have activated Tregs in the blood,

with levels increased according to severity. However, it was interesting to note that CXCL10
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and CXCL9 were found to increase in peripheral blood in severe patients and could retain the

retention of the CXCR3+ Treg in the periphery, preventing the migration to tissues [38].

Regarding NK cells, CD16+ CD56neg HLA-DR+ NK absolute numbers decreased when

the COVID-19 severity increased. CD16+ CD56neg NK is a type of NK cell with a mature and

cytotoxic phenotype implicated in resolving viral infections [31, 43]. However, some studies

demonstrated that these NK cells overexpressed several markers related to a dysfunctional

phenotype in severe COVID-19, like CD39 [44], PD-1 [44, 45], NKG2A [44, 46], DUSP2 [47],

CD69 [45, 47], CD38 [47], LAG-3 [45] and TIM-3 [45]. Moreover, these cells are also

described as hyporesponsive to the production of TNF-α, IFN-γ, IL-2 and granzyme, related

to their cytotoxic function [48, 49]. We did not analyse these markers in our cohorts, but it

would be interesting to analyse the presence of these markers as related to a dysfunctional phe-

notype. Additionally, HLA-DR was described as a functional marker in NK cells by Erokhina

et al. [30, 50], and HLA-DR+ NK cells were presented to produce proinflammatory cytokines,

degranulate, and easily proliferate in response to stimuli. The loss of such a subset could be

due to a massive cell death after performing their function. One can assume that in severe

COVID-19 individuals with hyper-inflammation, those who have exhibited a higher level of

functionality and therefore, higher levels of pro-inflammatory response against the virus, may

show lower levels of presence in the periphery.

Aranami et al. [51] described that patients with Multiple Sclerosis with NK expressing high

levels of CD11c had a better remission than patients with lower levels of CD11c, suggesting

that CD11c is a functional NK marker too. In this work, we observed an increase in scores 1, 2

and 3 but a decrease in score 5&7 individuals, showing that a higher level of CD11c on CD16

+ CD56neg HLA-DR+ NK could predict a less severe progression and the loss of this marker

could predict a more severe progression. Therefore, the decrease in the expression of this

marker regarding severity could indicate that NK cells are dysfunctional or experience selec-

tive cell death. Altogether, this work supports the idea that reduced levels of CD16+ CD56-

HLA-DR+ NK cells in those that will experience a more severe COVID-19 could be due to the

fact that the SARS-CoV-2 infection triggers alterations in NK and, subsequently, the dysfunc-

tion and apoptosis of these cells.

One of the major limitations of the study is the heterogeneity of the individuals included in

this study. It could be worth considering that individuals who present at the hospital early in

the course of their infection could receive prompt medical attention and thus be less suscepti-

ble to developing a severe form of the disease. Nevertheless, the patients further included in

WHO score 2 presented themself to the hospital with a median of 8 days after symptoms onset

and those in WHO score 5–7 waited around 5 days, even if not significantly different between

severity groups (Table 2). This data implies that the patient terminating in the less severe score

did not get to the hospital in the early phase of the infection. Even though this fact could be an

important confounding factor, this work aimed to identify those who were at risk of develop-

ing the severe disease at the time of Urgency Service screening to assist physicians in determin-

ing which patients should be hospitalized based on the relevant biomarkers regardless of the

symptoms they may present. Another limitation of this work is the low number of individuals

included since the number of patients in some scores is reduced, preventing the machine

learning models from correctly learning these minority cohorts. Therefore, including more

individuals from all Severity Score groups, especially in Scores 1 and 5&7, could improve the

model and make it more precise.

It is important to note that using a comprehensive flow cytometry analysis is a very tedious,

expensive and time-consuming technique, and it is not employed in the clinical routine.

Although this data cannot easily be used in other models, we observed that in our machine

model, the best performance was reached when all the variables of the study were included
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(clinical, personal, and flow cytometry data), highlighting the importance of the flow cytome-

try data. In addition, the use of cytometry data helped us to identify immune subpopulations

related to the severity of COVID-19 that could be valuable for investigating the underlying

mechanisms by which the presence or absence of these subsets may impact the clinical evolu-

tion of patients.

With this work, we present a machine learning model that could help to stratify mild or

severe COVID-19 patients, as previously published, at the hospitalization time. Even though

this model may not be applicable in a clinical setting, it can aid researchers in evaluating which

immunological subsets may contribute to protection against severe progression, as well as

those that may be associated with disease evolution. Moreover, we proposed two cellular sub-

sets as the better features to stratify patients according to severity, beyond biochemical param-

eters, that could help to better understand the induction and progression of the severity

symptoms in COVID-19.

Materials and methods

Ethics statement

Written informed consent was obtained under the Declaration of Helsinki Protocol. Accord-

ing to their guidelines, the "Comité de Ética de la Investigación con Medicamentos (CEIm) del

Hospital General Gregorio Marañón" approved the study (COV1-20-007).

Patients and blood samples

Blood samples were obtained from 75 individuals, 16 of them were healthy donors, and 59

were infected by SARS-CoV-2 between September 2020 and August 2021 when they were

admitted to the Urgency Service at the General University Hospital Gregorio Marañón,

Madrid, Spain. SARS-CoV-2 infection was confirmed with a positive test (PCR or antigen

test). The clinical data and peripheral blood samples in our study were collected at the time of

presentation at the Emergency Service during the COVID-19 and non-COVID-19 patient

screenings done by PCR or antigen test. Individuals were invited to participate in the study

and provided their consent before blood samples were taken. Subsequently, patients were hos-

pitalized or discharged to recover at home based on their symptoms. The WHO scores were

evaluated retrospectively based on the clinical evolution of hospitalized patients. The blood

samples were processed within the first 18 hours. The clinical course of each patient was

obtained through the Health Care Information System (HCIS). The maximum oxygen therapy

required during the hospitalisation was used to classify patients into eight different cohorts,

detailed in Table 4, adapted from the classification of the World Health Organization (WHO,

Table 4. Classification of individuals according to oxygen therapy during COVID-19. Individuals were classified

with an adaptation of the WHO Severity Score into 8 cohorts. Score 0 refers to the non-infected individuals. The

remaining scores refer to individuals infected by SARS-CoV-2. From Score 1 to 7, the highest oxygen requirement is

described according to the highest Severity Score.

Score 0 No SARS-CoV-2 infection

Score 1 SARS-CoV-2 infection without limitation of ordinary activities

Score 2 SARS-CoV-2 infection hospitalised but without oxygen therapy

Score 3 SARS-CoV-2 infection hospitalised with maximum oxygen therapy of 2L

Score 4 SARS-CoV-2 infection hospitalised with minimum oxygen therapy of 3L

Score 5 SARS-CoV-2 infection hospitalised with non-invasive ventilation or high flow ventilation

Score 6 SARS-CoV-2 infection hospitalised with intubation or mechanical ventilation

Score 7 SARS-CoV-2 infection hospitalised leading to death

https://doi.org/10.1371/journal.ppat.1011432.t004
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[52]). The symptoms listed in Table 2 correspond to the symptoms developed since the onset

of the symptoms to the day of hospital admission, via a questionnaire, and not just the symp-

toms that they presented on the day of Hospital arrival. The listed symptoms are not a recollec-

tion of the symptoms that they experienced during their hospitalization. Detailed information

about patients’ characteristics is provided in Table 2 and the data collection, including clinical

characteristics and flow cytometry analysis, can be found in S2 Table. Since none of the

patients needed intubation or mechanical ventilation, Score 6 was not represented. Because of

the reduced number of individuals in Scores 5 and 7, we decided to group all the patients in

Score 5&7 group.

Cell surface marker staining and cytokines analysis in plasma

Whole blood samples were labelled for surface markers with the fluorochrome-labelled anti-

bodies distributed in four cytometry panels to detect 150 subsets of innate and adaptive cells,

besides their differentiation and activation status, following the already published protocols

[53]. Whole blood was stained with an antibody mix for each panel, and after incubation, red

blood cells were lysed using RBC Lysis/Fixation Solution (Bio-Legend). After the lysis, stained

blood was analysed by flow cytometry using a MACSQuant Analyser 16 cytometer (Miltenyi

Biotec). Flow cytometry gating strategy for each panel is detailed in S4–S7 Figs (S4 Fig: a gating

strategy for T lymphocytes panel; S5 Fig: a gating strategy for B lymphocytes panel; S6 Fig: a

gating strategy for innate cells panel; and S7 Fig: a gating strategy for T lymphocytes panel 2).

For controversial marker signals, Fluorescence Minus One (FMO) were done and listed in

S2A Fig for T- and Tfh-Tgd-lymphocytes panels, S2B Fig for B-lymphocytes panel, and S2C

Fig for innate immune cells’ panel.

With the rest of the whole blood, we centrifuge it and keep plasma at -80˚C until their anal-

ysis. Cytokines in plasma were analysed using the microfluidic ELISA equipment ELLA-Pro-

tein Simple (Biotechne), measuring the concentration of cytokines in two different cartridges,

the first cartridge could evaluate 4 cytokines simultaneously (IL-1b, IL-6, IL-8, and TNF-α)

and the second cartridge could evaluate 8 cytokines simultaneously (CCL2, IL-12p70, IL-10,

IL-13, IL-17A, CXCL10, GM-CSF and IFN-γ).

Data pre-processing

For each of the 75 individuals, a total of 575 variables were collected containing patient charac-

teristics and their blood sample information (S1 Table). In order to adequately process the

available patient data with any machine learning model, we have had to apply several pre-pro-

cessing steps. In particular, we first one-hot encoded the categorical variables (Blood Type and

Ethnicity). Later we imputed missing data, a prevalent problem among collected features: 2

variables presented over 60% missing data, 9 variables between 30–50%, 22 variables between

20–30%, and 4 variables between 1–2%. For this purpose, for binary variables, the most fre-

quent value expressed in the variable range was used as the imputation estimate and for

numeric variables, we used K-NN imputation if the numeric variable to be imputed was

strongly correlated (over 0.7 absolute correlation rate) with other variables and, otherwise, the

imputation was carried out with the mean of the available data for the variable to be imputed.

Finally, to homogenise the range of all variables, non-binary variables were normalised to zero

mean and unitary standard deviation. The sensitivity analysis of the features using the pytole-

maic toolbox (https://pypi.org/project/pytolemaic/).
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Machine learning model

To automatically predict COVID-19 severity, we have used an Elastic Net regression model

[54]. Although the problem to be solved is to classify patients into six cohorts, we have posed

the problem as a regression problem with values between 0 and 7.

Additionally, we have thought it appropriate to use a linear model, since we have a problem

with 575 variables or input features and no more than 75 patients, so it is possible to find a lin-

ear solution to it, and using nonlinear models can lead to overfitting. Furthermore, the fact of

using an Elastic Net that incorporates an L1 regularisation gives us an additional advantage, as

it eliminates unnecessary variables and allows us to automatically detect the factors that differ-

entiate patients between different cohorts.

To evaluate these advantages, in the experimental analysis, we have included other baseline

methods, such as Kernel Ridge regression (with both linear and RBF kernel), Lasso regression,

Random Forest, and linear Gaussian Process, which can provide linear and nonlinear solutions

and feature relevance/selection capabilities. All the models under study have been evaluated

with a Leave One Out (LOO) train/test scheme and an inner LOO has been included for the

cross-validation of the model parameters. For the Elastic Net, Kernel Ridge and Lasso Regres-

sion models, alpha values in the set [0.01, 0.1, 1, 100, 1000] were cross-validated. In addition,

for the Elastic Net model, L1 ratio values in the set [0.1, 0.3, 0.5, 0.7, 0.9] were cross-validated.

In the case of the Random Forest model, maximum tree depth values in the set [2, 4, 8, 16, 32]

were cross-validated.

Unsupervised flow cytometry analysis setting

Cytometry data was used to perform a deeper analysis using OMIQ software (https://www.

omiq.ai/). For the analysis of the T-cell panel, unsupervised analyses were done on CD3+ T-

cells. After the compensation and scaling of all markers in this panel, 330.000 CD3+ lympho-

cyte events were selected proportionally for each Score group (Score 0, 1, 2, 3, 4 and 5&7).

Later, we performed the algorithm opt-SNE, a modified version of the t-SNE (t-distributed

Stochastic Neighbour Embedding) that allows characterising high-dimensional data into two

dimensions. Opt-SNE settings were: Max Iterations; 1000, opt-SNE End; 5000, Perplexity; 30,

Theta; 0.5, Components; 2, Verbosity; 25, with Random Seed. After opt-SNE, we performed a

FlowSOM, a clustering algorithm that generates metaclusters; grouping cells sharing simili-

tudes. FlowSOM settings were: xdim; 15, ydim: 15, rlen; 100, running elbow metaclustering.

CITRUS (cluster identification, characterization, and regression) is an algorithm for the fully

automated discovery of statistically significant clusters, stratifying biological signatures. CIT-

RUS settings were: Min Cluster Size Percent; 0.05, Cross Validation Folds; 1, Regression Meth-

ods; pamr, sam.

We also compensated and scaled the markers in the panel of innate immune cells, and the

unsupervised analyses were done on gated leukocytes. 450.000 leukocyte events were analysed

under proportional sampling between groups (Score 0, 1, 2, 3, 4 or 5&7). Later, we performed

opt-SNE with the following settings: Max Iterations; 7000, opt-SNE End; 7000, Perplexity; 100,

Theta; 0.5, Components; 2, Verbosity; 25, with Random Seed. After opt-SNE, we performed

FlowSOM with settings: xdim; 10, ydim: 10, rlen; 100, running elbow metaclustering. CITRUS

settings were: Min Cluster Size Percent; 0.01, Cross Validation Folds; 1, Regression Methods;

pamr, sam.

The abundance, in the unsupervised methods, refers to the frequency of clusters, metaclus-

ters or cellular subsets, regarding the total events analysed.
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Software and statistical analysis

Flow cytometry data were analysed using Kaluza software (version 2.1, Beckman Coulter).

Graphs were made using GraphPad Prism (version 8.0, GraphPad). Different machine learn-

ing models, as well as data pre-processing, were implemented using Python 3.7 and, in particu-

lar, using sklearn library [55]. Statistical analyses of cellular subsets were conducted using

GraphPad Prism and SPSS (version 25.0, IBM). Graphs represented mean value ± SEM (Stan-

dard Error of the Mean). Each figure legend describes the specific statistical test used to evalu-

ate the experiments.

Supporting information

S1 Fig. 30 most important features were identified through sensitivity analysis out of a

total of 575 features. The mean sensitivity of the 30 most relevant features was shown among

the entire set of 575 features. The two cellular subsets that were identified as determinants

across all the machine learning models tested are highlighted with orange rectangles. Out of

the 575 features tested, 419 were considered non-relevant, and 156 were deemed relevant, with

the 30 most relevant features displayed on the graph.

(PPTX)

S2 Fig. Fluorescence Minus One (FMO) controls for markers in the four flow cytometry

panels. Classical staining is represented in black, and FMO staining for each marker is indi-

cated in red. For T lymphocytes and Tfh-Tgd panels (A), gates were set in total CD3+ lympho-

cytes. For the B lymphocyte panel (B), gates were set in total lymphocytes. For the innate

immune cells’ panel (C), gates were set on total leukocytes, except for BDCA-3 FMO, which

was analysed on total DCs.

(PPTX)

S3 Fig. The intensity of expression of cellular markers. Intensity expression for every marker

in the CD38+ Treg subset, with all data from all the individuals, concatenated. High expression

is indicated in red, low in blue, and intermediate in cyan-green-yellow.

(PPTX)

S4 Fig. Traditional manual gating strategy for the analysis of the T-cell panel. A representa-

tive example of flow cytometry dot plots determined from whole blood labelled from one indi-

vidual in the study is represented. The subsets, including Naive/CMem/EMem/TemRA

subsets, as well as CD38 and HLA-DR expression, were analyzed in CD4+, CD8+ T lympho-

cytes and Treg cells.

(PPTX)

S5 Fig. Traditional manual gating strategy for the analysis of the B-cell panel. A representa-

tive example of flow cytometry dot plots and histograms determined on whole blood labelled

from one individual in the study is represented. The entire B-cell analysis was conducted in

the CD3neg lymphocytes CD19+ CD20+ gate. For the activation status, CD25+, CD80+/CD86

+, and CD25+ CD80+/CD86+ expressions were analyzed for each population. Within CD25+,

CD80+/CD86+, and CD25+ CD80+/CD86+ subpopulations, PD-1 expression was also ana-

lyzed.

(PPTX)

S6 Fig. Traditional manual gating strategy for the analysis of the innate immune cells’

panel. A representative example of flow cytometry dot plots and histogram determined from

whole blood labelled from one individual in the study is represented. Dendritic cells were ana-

lyzed as a LIN- HLA-DR+ subset, where LIN- refers to total leukocytes that are negative for
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CD3+, CD14+, CD20+ and CD56+ markers.

(PPTX)

S7 Fig. Traditional manual gating strategy for the analysis of the Tfh-Tgd panel. A repre-

sentative example of flow cytometry dot plots and histograms determined from whole blood

labelled from one individual in the study is represented. Tfh cells were analyzed within the

CD4+ T lymphocytes. CD28, TCRgd and PD-1/ICOS expression were analyzed in CD4+,

CD8+ and CD4/CD8 double positive and double negative T-lymphocyte subsets.

(PPTX)

S1 Table. Variables collected for the study.

(XLSX)

S2 Table. Clinical and Flow Cytometry data for all individuals.

(XLSX)
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