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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:With over 300 million severe cases and 1.5 million deaths annually, invasive fungal diseases

(IFDs) are a major medical burden and source of global morbidity and mortality. The World

Health Organization (WHO) recently released the first-ever fungal priority pathogens list

including 19 fungal pathogens, considering the perceived public health importance. Most of

the pathogenic fungi are opportunistic and cause diseases in patients under immunocom-

promised conditions such as HIV infection, cancer, chemotherapy, transplantation, and

immune suppressive drug therapy. Worryingly, the morbidity and mortality caused by IFDs

are continuously on the rise due to the limited available antifungal therapies, the emergence

of drug resistance, and the increase of population that is vulnerable to IFDs. Moreover, the

COVID-19 pandemic worsened IFDs as a globe health threat as it predisposes the patients

to secondary life-threatening fungi. In this mini-review, we provide a perspective on the

advances and strategies for combating IFDs with antifungal therapies.

Conventional antifungals targets

Most serious fungal diseases are caused by Candida, Aspergillus, Cryptococcus, Pneumocystis,
and various species of Mucorales [1–3]. The current antifungal agents for invasive fungal dis-

eases (IFDs) are limited to 3 classes based on their inhibition targets: ergosterol inhibitors

(azoles and polyenes), 1,3-β-D-glucan synthase (GS) component FKS1 inhibitors (echinocan-

dins and the newly approved ibrexafungerp), and flucytosine (often used in combination with

polyenes) interfering with RNA and DNA metabolism (Fig 1).

Ergosterol inhibitors

Ergosterol is the most important sterol of the fungal cell membrane; depletion of ergosterol

damages the cell membrane resulting in cell death. Azoles inhibit the activity of lanosterol

14α-demethylase enzyme (LDM), which is required for ergosterol synthesis. The off-target

effects and the development of drug resistance remain significant concerns of azole antifun-

gals. Recent advances in azole antifungals include the approval of tetrazoles such as otesecona-

zole by the Food and Drug Administration (FDA), as well as the designation of quilseconazole

and VT-1598 as orphan drugs by the FDA [4]. These new tetrazoles have demonstrated signifi-

cantly reduced off-target effects compared to the previously used triazoles and imidazoles.
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Furthermore, opelconazole, a first-in-class inhaled antifungal drug belonging to the class of

broad-spectrum triazoles, has also received orphan drug designation from the FDA [5].

Inhaled antifungal treatment could be an attractive option due to its potential to shift the risk–

benefit ratio of treatment in a favorable direction, considering the adverse effects, problematic

drug–drug interactions, and limited exposure of the lung lumen associated with existing oral

or systemic antifungal medicines. Polyenes including nystatin, amphotericin B, and pimaricin

bind to ergosterol, resulting in fungal cell membrane disintegration. Polyenes are rarely associ-

ated with drug resistance, but their toxicity and inability to be taken orally remain great con-

cerns. Recently, the nanoparticle-based encochleated amphotericin B (MAT2203), which

offers oral availability along with reduced toxicity, is currently undergoing Phase II clinical tri-

als [6].

GS inhibitors

GS is involved in synthesizing 1,3-β-D-glucan, which is the major component of the fungal cell

wall. Since GS and 1,3-β-D-glucan are absent in humans, GS inhibitors interrupt synthesis of

the pathogen’s primary cell wall structural polymer without adverse effects or drug–drug inter-

actions associated with other antifungal agents such as azoles and polyenes. Echinocandins,

including caspofungin, micafungin, and anidulafungin, are the most widely used GS inhibitors

[7]; however, they need to be administrated intravenously once daily. Rezafungin is a novel

echinocandin with exceptional stability and solubility and a uniquely long half-life allowing for

front-loaded drug exposure with once-weekly dosing [5]. The FDA antimicrobial drugs advi-

sory committee recently recommended the approval of rezafungin for the treatment of candi-

demia and invasive candidiasis in adults. If approved, rezafungin could be the first new

Candida treatment option in over a decade. The newly approved ibrexafungerp also targets

GS but with a different mechanistic mode of action [8]. It is worthwhile to mention that

Fig 1. Targets of antifungals. Clinically approved antifungals (gold), antifungals under clinical trials (green), and antifungals in preclinical studies (black).

https://doi.org/10.1371/journal.ppat.1011322.g001

PLOS PATHOGENS

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011322 May 4, 2023 2 / 6

https://doi.org/10.1371/journal.ppat.1011322.g001
https://doi.org/10.1371/journal.ppat.1011322


ibrexafungerp is not only the first approved first-in-class oral glucan synthase inhibitor, but

also the first drug approved in a novel antifungal class in more than 2 decades. Detailed discus-

sions on the mechanisms of the clinically approved antifungals have been well documented by

Wang and colleagues [9].

Other antifungal targets

The conventional antifungals are facing serious resistance issues. Antifungal resistance is usu-

ally acquired through decreased drug–target interaction [10]. Genetic changes to the target

binding site are the major cause of antifungal drug resistance. For example, mutation of genes

encoding β-glucan synthase is responsible for most of the echinocandin antifungal drug resis-

tance. Thus, apart from improving antifungals inhibiting the traditional antifungal targets,

continued efforts have been made to seek new targets. The new antifungal targets under clini-

cal trials include glycosylphosphatidylinositol (GPI), chitin synthase, histone deacetylase,

mitochondrial-related pathways, and pyrimidine synthase (Fig 1). Several promising antifun-

gals against these targets are in clinical trials (Fig 2) [11]. Among them, pyrimidine synthase

inhibitor olorofim just received orphan drug designation from the FDA for the treatment of

coccidioidomycosis, scedosporiosis, etc. In addition to the advances on established antifungal

targets involved in the fungal cell wall/membrane synthesis, and primary cell metabolism,

great progress has been made in fungal biofilm inhibition. Andes and colleagues isolated the

aromatic polyketide antifungal natural product turbinmicin and found turbinmicin disrupted

extracellular vesicle delivery during biofilm growth, which impaired the subsequent assembly

of the biofilm matrix [12]. Moreover, basic understanding in fungal virulence is also resulting

promising targets for antifungal drug discovery and development. While still in the research

and preclinical stages, drugs targeting these novel fungal virulence pathways have great poten-

tial of becoming new classes of antifungal.

Antifungal immunotherapy in invasive fungal infection

The toxicity and increased drug resistance associated with conventional fungal chemotherapies

make the search for new antifungal therapies urgent. Immunotherapies such as those targeting

the PD-1 and CTLA-4 pathways have revolutionized cancer treatment [13]. Fungal infections

can evade the host immunity; thus, it is reasonable to assume that IFDs are amenable to immu-

notherapy. Unlike traditional chemotherapy, which relies on drugs that directly target the fun-

gus, experimental antifungal immunotherapy works by stimulating the immune system to

target and eliminate fungal infection; the immune system has a broader range of targets than

any single drug and can adapt to target new or mutated strains of the fungus. Thus, antifungal

immunotherapy may be more specific in its action, reducing the risk of off-target effects, drug

resistance, and toxicity. The interest in fungal immunology research has increased in recent

years, leading to extensive understanding of the cellular and molecular determinants of mam-

malian antifungal immunity. Fungal immunology and experimental antifungal immunother-

apy have been well illustrated in several reviews [14,15]. Antifungal immunotherapies under

development include immunotherapeutic vaccines, immunomodulatory drugs, monoclonal

antibodies, adoptive T-cell therapy. Of which, an anti-Adh1 monoclonal antibody, Ca37, was

demonstrated to be effective against Candida albicans and to act together with antifungal

drugs to reduce their minimal inhibitory concentrations [16], and the fungal immunothera-

peutic vaccine (NDV-3A) for treatment of recurrent vulvovaginal candidiasis is under Phase II

trial [17]. The recombinant human granulocyte-macrophage colony-stimulating factor

(GM-CSF) has been approved as effective adjuvant therapy for IFDs [18]. Kontoyiannis and

colleagues developed the D-CAR T cells, which can reduce the fungal burden of an
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immunocompromised invasive aspergillosis mouse [19]. In addition, the role of antimicrobial

peptides (AMPs) in treating IFDs have been well investigated; for example, peptides HIF-1α
and LL-37 can inhibit C. albicans colonization [20]. Overall, these advances in fungal immuno-

therapies hold great promise for improving the treatment of fungal infections, especially in

patients with weakened immune systems. However, more research is needed to determine the

safety and effectiveness of these treatments in humans.

Perspective

Antifungal therapy development presents more challenges than antibacterial drug develop-

ment due to the evolutionary conservation between fungal and mammalian cells. Antifungal

drugs can target either fungal-specific targets or targets shared with mammals but with

Fig 2. Clinically approved antifungal agents and experimental antifungal agents under clinical trials. Echinocandin class of antifungals is represented by

anidulafungin and rezafungin, which displays exceptional stability and solubility. Quilseconazole represents the terazole family of antifungals; opelconazole is the first-in-

class inhaled antifungal approved for clinic use. Approved antifungals are in blue, and experimental antifungals in clinical trials are in black. DHODH, dihydroorotate

dehydrogenase; ODD, orphan drug designation.

https://doi.org/10.1371/journal.ppat.1011322.g002
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structural differences between the two. Thus, understanding the resistance mechanism of cur-

rent antifungals and in-depth understanding into the pathogenic mechanism of fungal patho-

gens are essential to identify targets for antifungal therapies with novel modes of action. Other

efforts in improving antifungal therapies include the following: (1) repurposing existing drugs:

some drugs have intrinsic antifungal activity, such as immunosuppressants FK506 and cyclo-

sporin A; they could be further optimized to treat IFDs; (2) combination therapy: current com-

bination therapy is limited to chemotherapies; combination of antifungal immunotherapy and

chemotherapy could increase efficacy and reduce the risk of drug resistance; (3) discovering

antifungal natural products by antifungal target gene-directed genome mining: with the basic

understanding of antifungal targets, and the development of target genome mining, antifungal

target gene-directed genome mining would play an important role in antifungal natural prod-

uct discovery; (4) leveraging the innate resistance of antifungals in natural host to alleviate clin-

ical antifungal drug resistance; and (5) employing bioengineering and modern synthetic

technology to afford antifungal agents diversity. With the development of modern drug dis-

covery technology and extensive investigation of fungal pathogen–host interactions, more

antifungal therapies with broad spectrum of action, improved safety profile, and less drug

resistance will emerge, especially for the deadly IFDs.
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