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Abstract

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that thrives in the

inflamed environment of the gingival crevice, and is strongly associated with periodontal dis-

ease. The host response to P. gingivalis requires TLR2, however P. gingivalis benefits from

TLR2-driven signaling via activation of PI3K. We studied TLR2 protein-protein interactions

induced in response to P. gingivalis, and identified an interaction between TLR2 and the

cytoskeletal protein vinculin (VCL), confirmed using a split-ubiquitin system. Computational

modeling predicted critical TLR2 residues governing the physical association with VCL, and

mutagenesis of interface residues W684 and F719, abrogated the TLR2-VCL interaction. In

macrophages, VCL knock-down led to increased cytokine production, and enhanced PI3K

signaling in response to P. gingivalis infection, effects that correlated with increased intracel-

lular bacterial survival. Mechanistically, VCL suppressed TLR2 activation of PI3K by associ-

ating with its substrate PIP2. P. gingivalis induction of TLR2-VCL led to PIP2 release from

VCL, enabling PI3K activation via TLR2. These results highlight the complexity of TLR sig-

naling, and the importance of discovering protein-protein interactions that contribute to the

outcome of infection.

Author summary

Porphyromonas gingivalis is an anaerobic bacterium strongly associated with periodonti-

tis. Remarkably, P. gingivalis flourishes in the presence of inflammation and activated

innate immune cells. P. gingivalis is sensed by TLR2, however, sensing leads to escape

from macrophage bactericidal activity in a manner dependent on PI3K/Akt signaling. We

used chemical cross-linking to identify induced interacting partners of TLR2 that contrib-

ute to bacterial immune escape, and found that infection induces TLR2 association with

vinculin (VCL). Modeling the TLR2-VCL interaction highlighted critical amino acid resi-

dues of the TLR2 intracellular domain that were then experimentally validated by site-

directed mutagenesis. We then confirmed that the induced TLR2-VCL interaction
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contributes to P. gingivalis immune evasion by enabling PI3K/Akt activation. Our results

demonstrate the importance of induced TLR2 intracellular interacting partners in orches-

trating downstream signaling that influences the outcome of the host-pathogen

encounter.

Introduction

Periodontitis is characterized by severe gingival inflammation leading to resorption of the

tooth-supporting soft and hard tissue [1]. The oral microbiome in periodontitis is dysbiotic,

with increased numbers of Gram-negative anaerobic organisms that thrive in an inflammatory

environment [2]. Porphyromonas gingivalis is a Gram-negative, anaerobic, assacharolytic bac-

terium that disrupts the homeostasis of the subgingival region of the periodontium leading to

dysbiosis [3]. The initiation and advancement of periodontal tissue destruction involves plaque

formation, release of bacterial constituents, and most importantly, the host inflammatory

response [4]. P. gingivalis invades epithelial and immune cells, where it can remain viable and

replicate [5]. P. gingivalis has evolved to elude or subvert constituents of the host immune sys-

tem [6,7]. Host Toll-Like Receptor 2 (TLR2) plays a major role in epithelial and immune cell

recognition and response to live P. gingivalis, although additional TLRs and other innate

receptors also contribute to the host response to P. gingivalis or its constituents [8–12] How-

ever, TLR2 signaling is manipulated by P. gingivalis to its advantage, as evidenced by the effi-

cient clearance of the bacteria in vitro and in vivo when TLR2 is blocked or absent [8,13–15].

Furthermore, TLR2 knock-out mice are resistant to experimental periodontitis induced by P.

gingivalis infection [8]. Canonical TLR2 signaling requires the intracellular adaptor protein

Myeloid differentiation primary response (MyD88) to clear intracellular P. gingivalis [15,16].

To avoid bactericidal activity, P. gingivalis induces cross-talk between TLR2 and the comple-

ment receptor C5aR leading to a MyD88-independent signaling pathway that requires phos-

phoinositide-3-kinase (PI3K) [14,15]. In cells that possess MyD88, P. gingivalis induces

MyD88 ubiquitination and proteasomal degradation, thereby avoiding bactericidal activity

[15,17]. However, the protein-protein interactions downstream of TLR2 that determine

whether non-canonical TLR2-PI3K signaling is initiated or not, are for the most part

unknown.

Focal adhesions (FAs) connect cells to the extracellular matrix (ECM) via integrin recep-

tors, and physically connect to the actin cytoskeleton through the recruitment of numerous

FA-associated macromolecular proteins. Cytosolic components of FAs include VCL, talin, α-

actin, paxillin, tensin, zyxin and Focal Adhesion Kinase (FAK). FAs exert profound effects on

intracellular signaling by regulating signaling intermediates (e.g., Akt/PKB, MAP kinases and

small GTPases) [18]. TLR2 signaling closely associates with integrin activation, and P. gingiva-
lis interacts with TLR2/TLR1 and leads to inside-out signaling for the activation and binding

of CD11b/CD18 in macrophages [19]. Here, we used a non-biased cross-linking and mass

spectrometry approach and identified VCL as an interacting partner of TLR2 in the macro-

phage response to P. gingivalis infection. VCL is implicated in the cellular response to multiple

infectious agents, but its role in the immune evasion of P. gingivalis remains unexplored. We

elucidate structural aspects of TLR2-VCL interaction and its functional role in the response to

bacterial challenge.
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Results

TLR2 and VCL interact in response to bacterial challenge

To identify proteins interacting with TLR2 in response to P. gingivalis, THP1 macrophages

were infected with bacteria at multiplicity of infection (MOI) 10 for 30 min and then protein

interactions were stabilized using the membrane-permeable crosslinker dithiobis (succinimi-

dyl propionate) (DSP) that contains a central thiol-cleavable bond. Native TLR2 was immuno-

precipitated with anti-TLR2 bound to protein G beads from non-infected (control) and

infected cells, and TLR2-binding partners were eluted by cleaving the cross-linker with dithio-

threitol (DTT), leaving the TLR2 attached to the beads. The DTT eluate and the beads were

analyzed by mass spectrometry (MS). As expected, TLR2 was identified on the beads of precip-

itates from both control and P. gingivalis-infected cells (6 and 7 unique peptides, respectively)

and a TLR2 peptide that underwent mass shift due to half of the DSP cross-linker (carbamido-

methyl (CAM) modification) was found in both cases (S1 Table). In the DTT eluates, TLR2

was either not present or represented by only 2 peptides suggesting that the majority of the

protein remained bound to the beads. We next focused on Vinculin (VCL), a cytoskeleton pro-

tein essential for focal adhesion complex (FAC) formation, that was identified in both the bead

fraction and DTT eluate of infected cells, and that contained the CAM modification (S1

Table). To validate the induced interaction between TLR2 and VCL, TLR2 was immunopre-

cipitated from control and P. gingivalis-stimulated macrophages after cross-linking with DSP,

and the immunoprecipitates were analyzed for VCL by immunoblot (Fig 1A). In the absence

of the DSP cross-linker VCL was not immunoprecipitated with TLR2 (S1A Fig). VCL also

associates with TLR2 in primary human macrophages, however the difference between control

and P. gingivalis stimulation is less pronounced (S1B Fig). Next, the colocalization of TLR2

and VCL in response to bacterial infection or to a TLR2 ligand Pam3-Cys-Ser-(Lys)4 (PAM)

stimulation was visualized by co-immunofluorescence in THP1 macrophages (Fig 1B), and in

TLR2-YFP transfected HeLa cells, widely used for VCL studies (Fig 1C). Colocalization was

quantified by the JACoP toolbox under NIH ImageJ using Pearson and Manders’ coefficient

correlation [20]. This object-based fluorescent intensity analysis showed induced colocaliza-

tion between TLR2 and VCL in response to TLR2 stimulation in both phagocytic (THP1) and

non-phagocytic (HeLa) cells.

Computational analysis of TLR2-VCL interaction

Our results suggested that TLR2 and VCL interact directly. We next used computational meth-

odologies to study this interaction and to identify a region of TLR2 that binds VCL. Residues

located at protein interfaces present distinct physico-chemical properties that can be identified

without the presence of a hypothetical partner. We used Optimal Docking Area (ODA), a

method for the prediction of residues involved in protein-protein interactions, that identifies

regions (if any) with favorable energy change when buried in a protein-protein interface [21].

Fig 2A shows the results of ODA prediction mapped to the TLR2 TLR/IL-1 receptor (TIR)

domain structure (PDB 1FYW) [22]. Notably, ODA identifies a highly probable protein-pro-

tein interface region including residues W684 and F719 and several of their neighbors. Then,

we used both carry-on docking simulation with pyDock [23] between the 3D structures of

TLR2 TIR domain and VCL (PDB 1TR2) [24]. pyDock computes the most probable (lowest

energy) docking orientation between them. Although the docking results show different possi-

ble TIR domain orientations facing VCL with similar energy, many docking poses show W684

and F719 facing VCL (S2 Fig). Furthermore, from the 100 best PyDock conformations we

computed NIPS (Normalized Interface Propensity) values, which correlate with the frequency
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of a given residue to be located at the interface [25]. In order to find core residues of this inter-

face (residues which contribute the most to the binding free energy) [26], we defined residues

with ODA < -15 Kcal and NIP> 0.3 as core residues. In this way, we identified a cluster of

five residues W684, I685, L717, F719 and S720 which are critical for the interaction of TLR2

with VCL (see Fig 2A and Table 1). These residues lie outside the TIR domain BB-loop region

Fig 1. TLR2 physically associates with VCL in vitro. (A) Human macrophage THP1 cells were infected with P.

gingivalis (MOI 10) for 30 min followed by cross-linking with DSP (M, marker). TLR2 was immunoprecipitated (IP)

and eluates were analyzed for VCL by immunoblot (IB). Whole cell lysates (WCL) were analyzed to control for protein

input and loading. (B) THP1 cells were differentiated for three days and left untreated or infected with P. gingivalis at

MOI 10 for 30 min. Fixed cells were stained for endogenous TLR2 (green) and VCL (red), and nuclei were

counterstained with Hoechst (blue). Data are representative of three independent experiments. (C) HeLa cells were

transfected with TLR2-YFP (green). Control or treated cells (PAM vs. P. gingivalis at MOI 10 for 30 min) were stained

for endogenous VCL (red), and nuclei were counterstained with Hoechst. Images were captured using a NIKON

confocal microscope at 60X magnification. Yellow color indicates the co-localization of green and red channels. Co-

localization was quantified using JACoP/ImageJ analysis software. Data are representative of three independent

experiments. (ns: non-significant; *P� 0.05; **P� 0.01; ***P� 0.001).

https://doi.org/10.1371/journal.ppat.1011284.g001
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Fig 2. Computational predictions of protein-protein interface residues. (A) Five core residues of the TLR2 TIR

domain are colored blue and labeled (“Core” column). The top row shows the structure for the native (W684, F719),

and the second row for the alanine mutated (W684A, F719A), sequence. ODA and NIPs residue values colored on the

TLR2 TIR domain crystal structure and core residue list. ODA values are colored in grey-white-red scale (decreasing

values), where red indicates lowest energy values (residues with highest contribution to a protein-protein interface

stability). NIPs values are colored with a grey-white-orange scale (increasing values), where higher NIP values

represent a higher chance of a residue to participate in the specific TLR2-VCL interface. (B) TLR2-TIR domain

sequence showing the two residues mutated to alanine by site-directed mutagenesis (arrows), and their proximity to

TIR regions implicated in homo- and hetero-oligomerization (the BB loop and αC’ helix). Fig 2B was created with

BioRender.com.

https://doi.org/10.1371/journal.ppat.1011284.g002

Table 1. Core residues of TLR2 TIR domain critical for TLR2-VCL interaction.

WT NIPS ODA AA mutant NIPS ODA

W684 0.60 -28.1 A684 0.07 -5.68

I685 0.32 -34.9 I685 0.05 -6.8

L717 0.33 -29.2 L717 0.12 -15.3

F719 0.61 -34.0 A719 0.15 -19.8

S720 0.39 -28.4 S720 0.14 -10.3

ODA and NIPS values for WT and W684A/F719A double mutant of core protein-protein residues of TLR2-VCL

interface.

https://doi.org/10.1371/journal.ppat.1011284.t001
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that is known to play a major role in the physical associations of TLRs with cytosolic adapter

proteins (Fig 2B).

Next, W684 and F719 were mutated to Ala (A) individually or together (W684A, F719A,

and the double mutant WF to AA) in a TLR2-YFP plasmid. I686, L717, and S720 were not tar-

geted due to their proximity to W684 and F719. Since mutations can affect protein folding or

localization, we tested the function of the constructs in an NF-κB -reporter cell line in response

to the synthetic bacterial lipopeptide TLR2 ligand PAM. NF-κB activation of cells transfected

with the native TLR2 plasmid vs. each of the mutated constructs was equivalent, demonstrat-

ing that the mutated TLR2 proteins fold and localize properly (Fig 3A). Overexpression of the

TLR2-mutated proteins led to similar cellular localization (S3 Fig). HeLa cells were transfected

with wild-type or mutant TLR2-YFP and then TLR2-VCL co-immunofluorescence was ana-

lyzed by staining for endogenous VCL. Naive and mutated transfected TLR2 proteins were

expressed on the cell surface, and co-localization was measured using JACoP toolbox under

NIH ImageJ [20]. When compared to the wild-type, F719A and the double mutant failed to

co-localize with VCL, whereas W684A TLR2 co-localization was not significantly different

from the native TLR2 (Fig 3B). To rationalize these experimental findings, we modelled the

change in binding free energy (interface ΔΔG = ΔGmutant-ΔGWT) induced by the AA double

mutation using pyDock and FoldX. PyDock showed a very large change in energy of ~+12

Kcal/mol for the best three free docking results with the double AA mutant vs WF, indicating

a clear destabilizing effect, and confirming that W684 and F719 are crucial to stabilize the

interface (see Fig 2B and Table 1). Finally, FoldX computations show that the change to A of

any of those residues has almost no impact on the stability of the TLR2 TIR domain fold (ener-

gies ~0.004 for the ΔΔG upon mutation), making it reasonable to assume the impact on the

complex stability derives from TLR2-VCL impaired interaction and not from a folding

disruption.

Taken together, our computational results suggest W684 and F719 are key players for the

interaction of TLR2 intracellular domain with VCL. Their replacement considerably reduces

NIPs and ODA values for W684 and F719, but also notably for all interface core residues (see

Table 1), thus seriously impairing the ability of TLR2 to bind VCL, causing a partial or com-

plete interface destabilization and functional disruption that we see experimentally.

Split ubiquitin system validates induced TLR2-VCL interaction

To validate the inducible interaction of TLR2 with VCL in response to infection with P. gingi-
valis, we next adapted a split-ubiquitin two-hybrid system originally designed to study induc-

ible interactions between membrane proteins (Mammalian Membrane Two-Hybrid system,

MaMTH) [27,28]. In this system, TLR2 serves as the bait protein and is expressed fused with a

C-terminal fragment of ubiquitin followed by the GAL4 transcription factor (TLR2-Cub-TF).

Prey proteins are expressed fused to N-terminal ubiquitin, and upon interaction of bait and

prey proteins, pseudoubiquitin is formed and cleaved by cellular deubiquitinases, releasing the

TF. Bait and prey plasmids are overexpressed in cells that express luciferase under the GAL4

promoter (Fig 4A). To confirm that the MaMTH system can be used to study inducible inter-

actions between TLRs and their cytosolic partners, we cloned TIRAP and IRAK-4 into the bait

vector as positive and negative controls, respectively. TIRAP is an adaptor protein that inter-

acts directly with TLR2 through TIR-TIR interactions and recruits MyD88 to initiate Myddo-

some formation [29]. IRAK-4 binds to the Myddosome multiprotein complex and is critical

for TLR2 signaling, however it does not interact directly with TLR2 [30]. Bait and prey plas-

mids contain additional tags to confirm expression following transfection (S4A and Fig 4B).

HEK293T cells stably expressing luciferase following five GAL4 upstream activating sequence
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Fig 3. Site directed mutagenesis validates TLR2 residues involved in TLR2-VCL interaction. (A) NF-κB reporter-

HEK293 cells were transfected with native TLR2 (W684/F719), or each of the TLR2 mutants W684A, F719A, or

W684A/F719A together with TLR1 and MyD88, and then cells were stimulated with PAM (100ng/mL) for 4 h. Cells

were lysed and NF-kB activation was measured by luciferase activity. Percent NF-kB induction is shown relative to

luciferase values of control cells transfected in an identical manner but not activated with PAM. Data represent mean

values of three independent experiments. (B) HeLa cells were transfected with YFP-fused native (WF) TLR2, or

W684A, F719A, or AA TLR2 mutants (green). Cells were fixed and stained for VCL (red) and nuclei were stained with

Hoechst (blue). Images were captured using a NIKON confocal microscope at 60X magnification. TLR2-VCL co-

localization was analyzed using JACoP/ImageJ analysis software. Data are representative of five independent

experiments. (ns: non-significant; **P� 0.01; ***P� 0.001; ****P� 0.0001).

https://doi.org/10.1371/journal.ppat.1011284.g003
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Fig 4. MaMTH system for validating TLR2-VCL interaction. (A) Graphical summary of MaMTH split ubiquitin

system for detection of bacterially-induced TLR2-VCL interaction (B) Luciferase activity of untreated or PAM-

stimulated HEK293T cells co-transfected with TLR2-bait and the indicated positive and negative control prey

constructs. Data are representative of five independent experiments. (C) HEK293T cells co-transfected with TLR2-bait

and VCL prey plasmids were left untreated, exposed to PAM (100ng/mL), or infected with P. gingivalis (MOI 10) for 8

h. Data are representative of four independent experiments. (D) Luciferase activity in HEK293T cells co-transfected

with wild-type TLR2 bait, or mutants TLR2 bait mutants W684A, F719A or WF, together with VCL prey. Transfected

cells were untreated, treated with PAM (100ng/mL), or infected with P. gingivalis (MOI 10) for 8 h. Data are

representative of two independent experiments. (ns: non-significant; *P�0.05; **P� 0.01; ***P� 0.001;

****P� 0.0001). Fig 4A was created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011284.g004
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repeats (5×GAL4UAS-luciferase) were co-transfected with TLR2-Cub-TF and either TIRAP-

Nub (positive control) or IRAK4-Nub (negative control). Transfection with TIRAP-Nub, but

not IRAK4-Nub, induced luciferase activity significantly, reflecting the known protein-protein

interaction of TLR2 and TIRAP. PAM stimulation of transfected cells induced a further signif-

icant increase in the luciferase signal in the positive control TIRAP-Nub transfected cells, but

not the negative control IRAK4-Nub transfected cells (Fig 4B). We next transfected reporter

cells with TLR2-Cub-TF and VCL-Nub and stimulated the cells with PAM or P. gingivalis.
Bacterial infection, or stimulation with PAM, induced a significant signal in the reporter cells,

confirming the inducible interaction between TLR2 and VCL (Fig 4C). We then utilized the

assay to reconstruct the interaction of TLR2 mutants with VCL by creating different site-

directed mutations on bait-TLR2-Cub (W684A, F719A and the double mutant-AA). All the

mutants were equally expressed and localized to the membrane (S4B Fig). Consistent with the

co-immunofluorescence result, the F719A mutation significantly reduced the induced interac-

tion of TLR2 with VCL, whereas the W684A mutation did not. However, the contribution of

W684 is observed in combination with F719 since the double mutation of W684A and F719A

(AA) abolished the inducible luciferase signal completely (Fig 4D). Taken together, our results

show that bacterial infection, or PAM stimulation, induces TLR2 interaction with VCL

through specific residues of the TIR domain outside the BB loop.

Macrophage TLR2- and TLR4-dependent cytokine production is dampened

by VCL

In macrophages, TLR2-mediated sensing of P. gingivalis results in cytokine production [8].

We next examined the effect of VCL knock-down on the macrophage cytokine response to

infection with P. gingivalis in vitro, and compared this response to that induced by the proto-

typical TLR2 ligand PAM, which stimulates TLR2 in a strictly MyD88-dependent manner, and

to a TLR4 ligand, LPS (lipopolysaccharide). VCL knock-down was achieved by lentiviral

shRNA in THP1 cells (shVCL), and reduced VCL expression was confirmed by western blot

and quantitative real-time PCR (RT-PCR) (Fig 5A). Tumor necrosis factor (TNF) production

by shVCL cells was enhanced compared to control shRNA cells (shCtrl) in response to all of

the stimulants (Fig 5B), indicating that VCL reduces TLR2 and TLR4 signaling that leads to

TNF production. RT-PCR confirmed the inhibitory effect of VCL on cytokine gene regulation

in response to TLR2 or TLR4 stimulation (Fig 5C).

VCL is involved in the uptake and survival of P. gingivalis in macrophages

We next tested the role of the induced TLR2-VCL interaction in the phagocytosis and intracel-

lular fate of P. gingivalis. We compared the intracellular survival of P. gingivalis in differenti-

ated shVCL and shCtrl THP1 macrophages. Following infection, extracellular bacteria were

killed by antibiotic treatment, and macrophages were incubated for an additional hour, lysed,

and surviving intracellular bacteria were enumerated by plating lysates on blood agar. Interest-

ingly, VCL knock-down significantly increased P. gingivalis intracellular survival (Fig 5D).

Intracellular survival in shVCL macrophages was completely abrogated by blocking TLR2,

confirming that VCL suppresses the TLR2-dependent bacterial survival pathway (Fig 5D). We

next asked whether increased intracellular survival could be explained by enhanced phagocyto-

sis/P. gingivalis invasion in the absence of VCL. Differentiated shVCL THP1 and shCtrl THP1

cells were infected with fluorescein isothiocyanate (FITC)-labelled P. gingivalis and then cells

were fixed and analyzed by flow cytometry. In contrast to our expectation, VCL knock-down

strongly reduced the percentage of cells that phagocytosed P. gingivalis as well as the overall

fluorescence intensity of the population, reflecting the number of bacteria phagocytosed per
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cell (Fig 5E). Therefore, VCL is required for efficient phagocytosis of P. gingivalis. Intracellular

P. gingivalis survival is significantly higher in shVCL cells (Fig 5D) despite the reduced phago-

cytosis, suggesting that VCL strongly blocks P. gingivalis evasion from macrophage killing.

VCL negatively regulates TLR2-dependent PI3K activation

P. gingivalis blocks phagolysosomal maturation leading to improved intracellular survival in

macrophages by inducing TLR2 signaling through PI3K [14,15]. Therefore, we next deter-

mined the role of VCL in the activation of Akt phosphorylation downstream of PI3K activa-

tion, in response to P. gingivalis. We infected shVCL and shCtrl THP1 macrophages with P.

gingivalis and lysed cells at various time points after infection. At each time point following

infection, P. gingivalis induced greater Akt phosphorylation in shVCL-THP1 cells compared

to shCtrl-THP1 cells (Fig 6A). To confirm that PI3K activation is driving P. gingivalis

Fig 5. Cytokine production and bacterial survival in VCL knock-down macrophages. (A) Representative IB of VCL

and GAPDH in whole cell lysates from shCtrl and shVCL-THP1 cells, and RT-PCR showing levels of VCL expression

(B) TNF production by shCtrl and shVCL-THP1 cells challenged with P. gingivalis (MOI 10), PAM (10ng/mL), and

LPS (10ng/mL) for 4 h, was measured by ELISA. Data are representative of five independent experiments.

Unstimulated cells were used as controls (BG, background). (C) PMA-differentiated shCtrl and shVCL-THP1 cells

were challenged with P. gingivalis (MOI 10), PAM (10ng/mL), and LPS (10ng/mL) for 4 h and mRNA levels of TNF,

IL6, and IL1b were quantified by quantitative RT-PCR. mRNA from unstimulated cells collected at the same time

point was used as background (BG). Data are representative of three independent experiments. (D) Intracellular P.

gingivalis survival was determined in wild-type (WT) THP1, shCtrl-THP1 and shVCL-THP1 cells using the antibiotic

protection assay as per methods with and without prior blocking of TLR2 using T2.5 anti-TLR2 mAb (αTLR2) vs.

IgG1 isotype control. CFU were enumerated after 7 days of anaerobic growth (ND, none detected). Data are

representative of three independent experiments. (E) shCtrl and shVCL-THP1 cell phagocytosis of FITC-labelled P.

gingivalis was measured by flow cytometry (percentage of fluorescent cells above background, and geometric mean of

fluorescence). A sample histogram is shown on the left. Data representative of three independent experiments are

shown on the right. (ns: non-significant; *P�0.05; **P� 0.01; ***P� 0.001; ****P� 0.0001).

https://doi.org/10.1371/journal.ppat.1011284.g005
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intracellular survival in shVCL macrophages, similar to WT macrophages, we blocked PI3K

using LY294 (vs. a control inhibitor, LY303), and followed P. gingivalis intracellular survival.

Blocking PI3K in shVCL cells significantly decreased P. gingivalis survival (Fig 6B), correlating

with the increased PI3K-Akt activation observed in these cells. Importantly, Akt phosphoryla-

tion was enhanced in shVCL cells at baseline, prior to infection with P. gingivalis, suggesting

that VCL regulates PI3K in the steady-state. Several studies showed that the PI3K substrate

phosphoinositol-2-phosphate (PIP2) mediates phagocytosis [31], and that VCL contains PIP2

binding sites [32]. We next hypothesized that VCL sequesters PIP2 making it unavailable for

PI3K. Indeed, we found that VCL is co-localized with PIP2 in resting WT THP1 macrophages,

and dissociates from PIP2 in response to P. gingivalis (Fig 6C). Since VCL has also been shown

Fig 6. VCL negatively regulates TLR2-dependent PI3K activation. (A) shVCL and shCtrl THP1 cells were

challenged with P. gingivalis (MOI 10) at different time points and lysates were analyzed by IB for phospho-Akt (P-Akt

S473) and total Akt. Representative immunoblot of three independent experiments. (B) shCtrl-THP1 and

shVCL-THP1 cells were pre-treated with the PI3K inhibitor LY294 or the control inhibitor LY303 prior to infection

with P. gingivalis (MOI 10). Intracellular P. gingivalis survival was determined using the antibiotic protection assay.

Data are representative of three independent experiments. (C) P. gingivalis-infected and control THP1 cells were fixed

and stained for PIP2 (green), and VCL (red), and nuclei were stained with Hoechst (blue). Images were captured using

a NIKON confocal microscope at 60X magnification. PIP2-VCL co-localization was analyzed using JACoP/ImageJ

analysis software. Data are representative of two independent experiments. (D) Differentiated THP1 cells were infected

with P. gingivalis for 30 min and VCL was immunoprecipitated. Eluates were analyzed by IB with an antibody to PI3k-

p85α. Data are representative of three independent experiments. (ns: non-significant; *P�0.05; **P� 0.01;

***P� 0.001).

https://doi.org/10.1371/journal.ppat.1011284.g006
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to bind class 1 PI3K [33], we next evaluated VCL and PI3K p85α association in THP1 macro-

phages. At steady state we found that p85α and VCL are associated in WT THP1 macrophages,

and that P. gingivalis infection causes the complex to dissociate (Fig 6D). This suggests that in

addition to reducing PIP2 availability, VCL negatively regulates TLR2-PI3K activation by

directly binding PI3K p85α itself. The combined effect reduces TLR2-PI3K signaling, an effect

that is counteracted by the induction of TLR2-VCL association following infection with P. gin-
givalis (Fig 7).

Discussion

P. gingivalis is a human pathogen that thrives in the inflamed environment of the gingival crev-

ice where it is in continuous communication with innate immune cells. Macrophages sense P.

gingivalis through TLR2, however P. gingivalis manipulates the interactions downstream of

TLR2, favoring activation of PI3K and escape from killing [15] [13,14]. We used a cell-pene-

trating cross-linker followed by immunoprecipitation of TLR2 and LC-MS to identify novel

interacting partners of native TLR2 involved in the host response to P. gingivalis. Limitations

to the approach can explain why we did not recover peptides derived from the known TLR2

membrane interacting partners TLR1 or TLR6, or classical TLR2 adapter proteins such as

MyD88. Importantly, we only examined one time point of activation, and the interactome will

likely shift over time with some time-points containing more of the known TLR2 interacting

proteins. A complete map of the interactome would require stimulation at different time

points and/or using a single time point with various MOIs. Membrane proteins also require

Fig 7. Schematic illustration. In un-infected macrophages [1], VCL associates with PIP2 and p85α, preventing

activation of downstream Akt phosphorylation and thereby favoring macrophage killing of P. gingivalis when cells are

infected. TLR2 senses P. gingivalis and is induced to interact with VCL [2], which causes VCL to dissociate from PIP2

and p85α [3]. This enables PI3K conversion of PIP2 to PIP3, and subsequent phosphorylation of Akt [4], leading to

increased intracellular survival. Fig 7 was created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1011284.g007

PLOS PATHOGENS Bacterial induction of TLR2-vinculin association enables immune evasion

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011284 April 6, 2023 12 / 22

http://BioRender.com
https://doi.org/10.1371/journal.ppat.1011284.g007
https://doi.org/10.1371/journal.ppat.1011284


significant optimizations for detection by MS, due to their hydrophobic characteristics and

lipid-rich environment [34]. In addition, the amino acid compositions of some proteins

obstruct their discovery following cross-linking, since the cross-linking reactions alter the effi-

ciency of enzymatic digestion [35]. Finally, although we were able to identify VCL association

with TLR2 in primary human macrophages, TLR2 immunoprecipitation in these cells is less

optimal and our studies rely mostly on THP1 macrophages.

Our findings reveal a role for the cytoskeletal protein VCL in the outcome of the crosstalk

between P. gingivalis and human macrophages. Despite decreased phagocytosis in VCL

knock-down macrophages, significantly more live P. gingivalis are recovered from inside cells

when VCL is reduced (Fig 5D), attesting to the powerful role of VCL in thwarting the immune

evasion strategy of P. gingivalis. Mechanistically, VCL suppresses PI3K activation by sequester-

ing p85α and its substrate PIP2. The induced interaction between TLR2 and VCL diminishes

these associations, thereby enabling TLR2-PI3K signaling. Since lipopeptide activation of

TLR2 induced a similar (although weaker) interaction with VCL (Fig 4), this pathway may be

more broadly involved in the macrophage response to pathogens recognized by TLR2. Inter-

estingly, VCL is involved in the cellular response to multiple pathogens. VCL is necessary for

C. trachomatis invasion [36], and contributes to the intracellular spread of S. flexneri by con-

centrating around bacterial clusters in the cytosol [37]. On other hand, VCL is dispensable for

integrin-mediated uptake of S. aureus [38], and due to its negative effect on paxillin phosphor-

ylation, VCL blocks the early stages of HIV-1 infection [38,39]. Therefore, VCL is an impor-

tant regulator of the outcome of innate immune sensing of pathogens.

The role of VCL in TLR signaling can be understood in the broader context of interactions

between TLR signaling pathways and the cytoskeleton. VCL is a member of the FAC whose

members are associated with TLR signaling pathways. FAK interacts with the TLR adapter

proteins MyD88 and TIRAP, and is important in recruitment of MyD88 for LPS-induced cyto-

kine secretion [40]. The cell adhesion-activated tyrosine kinase PYK2 also associates with

MyD88 and tightly regulates MyD88-dependent NF-κB activation and IL-1β expression

induced by LPS in macrophages [41]. P. gingivalis itself was shown to hydrolyse actin by its

lysine protease leading to apoptosis in gingival epithelial cells (GECs) [42], and FAK and paxil-

lin are also targeted by P. gingivalis proteases, causing impaired wound healing and periodon-

tal tissue regeneration [43]. Recent studies showed that talin1 is important for the

preassembled TLR complex in dendritic cells (DCs) at steady state, and that talin1 regulates

MyD88-dependent signaling via direct interaction with MyD88 and Phosphatidylinositol

4-Phosphate-5 kinase (PI5K) [44]. The absence of talin1 reduces TLR-stimulated cytokine pro-

duction, in contrast to the absence of VCL that leads to enhanced cytokine production in

response to both TLR2 and TLR4 ligands (Fig 5B). The availability of membrane PIP2, neces-

sary for recruitment of TIRAP to TLR2 and TLR4, may explain this difference since talin1

facilitates production of PIP2 [44], whereas our data suggest that VCL may reduce PIP2 avail-

ability. In fact, VCL shifts from a closed form to an active open conformation upon monocyte

to macrophage differentiation, and the open form binds PIP2 and other FAC components

[45]. This conformational shift can thereby reduce TIRAP recruitment to the TLR signaling

complex and subsequent cytokine production.

We adapted a split-ubiquitin system designed for the study of inducible membrane protein-

protein interactions [27,28], to study TLR2 interactions with cytosolic proteins. Using known

interacting proteins of TLR2 signaling (TIRAP and IRAK4) as positive and negative controls,

we demonstrated that this system can be used to validate novel TLR interacting partners such

as VCL. The physical associations of TLRs with cytosolic adapter proteins have focused on the

BB loop of the TIR domain that is present in all TLRs and TLR adapter proteins [46,47]. The

BB-loop joins the βB and αB strands and is a critical region of interaction of the dimeric
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TIR-TIR interface for TLR interactions with adapter proteins [48]. We discovered and vali-

dated that VCL interacts directly with TLR2, however overlapping non-protein specific and

VCL-specific computational approaches indicated a region outside the BB loop as the core

region of the TIR domain interface with VCL. This approach highlights the potential protein-

protein interactions directed by the TIR domain with proteins such as VCL that lack TIR

domains. Importantly, site-directed mutagenesis studies confirmed the importance of the

region defined computationally. In particular, double mutation of W684 and F719 abolishes

any interaction of TLR2 with VCL observable by co-immunofluorescence or in the quantifi-

able split ubiquitin system. Single mutation studies indicate that F719 of the αC-helix is a

more critical residue than W684 for the TLR2-VCL interaction. This region in TLR2 or other

TLRs may be important for additional protein-protein interactions that impact on the host

response to pathogens.

Periodontal disease is characterized by a dysbiotic microbiome and inflammation, ulti-

mately leading to osteoclast activation and resorption of the alveolar bone that supports the

teeth. We revealed a role for VCL in modulating the macrophage inflammatory response and

improving bactericidal activity, effects that should be protective in periodontal disease in vivo.

However, VCL is also required for osteoclast function, as evidenced by enhanced bone volume

in osteoclast-lineage VCL knock-out mice [49]. Therefore, greater inflammation and bacterial

survival in the setting of VCL reduction would be counterbalanced by inhibition of osteoclast-

mediated bone resorption. Our findings highlight the different ways that the cytoskeletal pro-

tein VCL can influence a complex and common disease.

Materials and methods

Ethics statement

All blood samples were collected from healthy volunteers after informed consent (Hadassah

Medical Organization Helsinki committee, approval no. HMO-078520).

Reagents

LY294002 (reversible inhibitor of PI3K), LY303511 (inactive analog of LY294002), glutaralde-

hyde (GTA), digitonin, and E. coli lipopolysaccharide (LPS) were obtained from Sigma-

Aldrich (Rehovot, Israel). Paraformaldehyde (PFA) was from Biolabs (Jerusalem, Israel).

Pam3-Cys-Ser-(Lys)4 (PAM) was obtained from InvivoGen (CA, USA). ReadyTag anti-

DDDDK was from BioXcell (PA, USA). V5 Tag Monoclonal Antibody (TCM5) was from

eBioscience (CA, USA). GAPDH and β-Actin antibodies were from Cell Signaling Technology

(MA, USA).

Plasmids

pcDNA3-TLR2-YFP was a gift from Doug Golenbock (Addgene plasmid # 13016; http://n2t.

net/addgene:13016; RRID: Addgene_13016). pcDNA3-TLR1-YFP was a gift from Doug

Golenbock (Addgene plasmid # 13014; http://n2t.net/addgene:13014; RRID: Addgene_13014).

pCMV-HA-MyD88 was a gift from Bruce Beutler (Addgene plasmid # 12287; http://n2t.net/

addgene:12287; RRID: Addgene_12287) [50]. pDONR 221 Entry vector compatible for gate-

way cloning system was obtained from Dr. Maggie Levy (The Robert H. Smith Faculty of Agri-

culture, Food & Environment, The Hebrew University of Jerusalem). Bait and Prey

destination gateway cloning vectors were a kind gift from Dr. Igor Stagljar (Biochemistry, Uni-

versity of Toronto) [27,28]. pGreenFire1-NF-κB (EF1α-puro) lentivector was from System

Biosciences (CA, USA).
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Cell lines and bacterial culture

Human macrophage THP1 cells and HeLa cells were obtained from the American Type Cul-

ture Collection (ATCC, VA, USA). THP1 cells were maintained in RPMI (Sigma-Aldrich)

supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, penicillin (100 units/ml),

streptomycin (100 μg/ml), 10 mM HEPES, and 1 mM sodium pyruvate (Biological Industries,

Israel). Short Hairpin RNA (shRNA) mediated vinculin (VCL) knocked-down and shRNA

control THP1 cells were maintained in the presence of 2 μg/ml puromycin along with other

supplements. THP1 cells were differentiated with 5 ng/mL phorbol-12-myristate-13-acetate

(PMA) (Sigma-Aldrich) for 72 h to obtain mature macrophages. HEK293 cells (ATCC) were

maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich) supplemented

with 10% fetal calf serum, 2 mM L-glutamine, penicillin (100 units/ml), streptomycin (100 μg/

ml) (Biological Industries) (complete DMEM). Mammalian Membrane Two-Hybrid system

(MaMTH) modified reporter HEK293T cell line stably expressing luciferase following five

GAL4 upstream activating sequence repeats (5×GAL4UAS-luciferase) was a gift from from Dr.

Igor Stagljar (Biochemistry, University of Toronto) [27,28] and maintained in complete

DMEM. The cell lines were cultured at 37˚C, 100% humidity, and 5% CO2 atmosphere. P. gin-
givalis (strain 381) was cultured in anaerobic conditions at 37˚C in Wilkins Chalgren Anaer-

obe Broth (Oxoid Ltd, Hampshire, UK). For infection of cell lines, bacteria were collected by

centrifugation, washed with sterile PBS, and colony forming unit (CFU) were determined by

optical density (OD) at 650 nm (OD of 0.1 was determined to be 1010 CFU/mL) [8]. Bacteria

were diluted in cell culture medium and added to cells at the indicated multiplicity of infection

(MOI).

Isolation of PBMCs

Human peripheral blood mononuclear cells (PBMCs) were isolated from fresh whole blood by

Ficoll gradient centrifugation, according to the standard density gradient centrifugation meth-

ods following manufacturer’s protocol (Ficoll-Paque, Amersham Biosciences, UK). Isolated

PBMCs were differentiated into mature macrophages using macrophage colony-stimulating

factor (M-CSF, 20 ng/mL, Peprotech, Israel) for 6 days in RPMI.

Generation of lentiviral cell lines

pLKO.1 harboring shRNA specific to human VCL and control shRNA were a generous gift

from Professor Christof R. Hauck (Universität Konstanz, 78457, Konstanz, Germany).

HEK293T cells were co-transfected with corresponding pLKO.1 plasmid or pGreenFire1-NF-

κB lentivector (co-expressing GFP and luciferase in response to NF-κB activity) along with

plasmids encoding 3rd generation lentiviral components. Viral-particles were collected at 36 h

and 48 h after transfection, filtered through 0.45 μm filter, and stored at −80˚C. THP1 cells

were transduced with shRNA containing lentiviral particles and selected with 2 μg/mL puro-

mycin (Sigma-Aldrich). HEK293 cells were transduced with NF-κB reporter lentiviral particles

and selected with 2 μg/mL puromycin (Sigma-Aldrich).

Immunoprecipitation and analysis

THP1 macrophages, or primary PBMC-derived macrophages, were infected with P. gingivalis
for 30 min and then proteins were cross-linked in the live cells with DSP (dithiobis(succinimi-

dyl propionate)) (ThermoFisher scientific, MA, USA) at 4˚C for 2 h [51]. Cross-linking was

terminated by incubation with 20 mM Tris, pH 7.5, for 15 min. Cell lysates were immunopre-

cipitated with mouse anti-TLR2 antibody (clone T2.5) (Hycult Biotech, Netherland) or anti-
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VCL (Abcam, Cambridge, UK) bound to protein G beads (ThermoFisher) and eluted either

with DTT for mass spectrometry (MS) analysis or with glycine pH 2.5 for immunoblot (IB)

analysis. For MS, eluted proteins and proteins bound to the beads were digested with trypsin

and analyzed by Liquid Chromatography (LC)-MS/MS on Q-Exactive (ThermoFisher) and

then identified by Discoverer 1.4 software with the search algorithm Sequest against the

human proteome from the Uniprot database, and a decoy database (in order to determine the

false discovery rate). All the identified peptides were filtered with high confidence (above 1%

false discovery rate threshold), top rank, and mass accuracy. Common epithelial cell contami-

nants were removed. Proteins identified by single peptides were not considered as certain. MS

analysis was performed at the Smoler Proteomics Center, Technion Israel Institute of Technol-

ogy (Haifa, Israel). For IB, immunoprecipitates were analyzed for TLR2 (polyclonal anti-

TLR2, ThermoFisher), VCL (Abcam) or PI3 Kinase p85α (Cell Signaling Technology) fol-

lowed by horseradish peroxidase (HRP)-conjugated polyclonal Goat anti-rabbit IgG (Abcam).

Cytokine analysis

Cytokine levels were determined by enzyme-linked immunosorbent assay (ELISA) using

human Elisa MAX sets (Biolegend, CA, USA) for tumor necrosis factor (TNF), according to

the manufacturer’s instructions.

RNA extraction and real-time PCR

Total RNA was extracted from cells using TRIzol Reagent (Sigma-Aldrich). 1 μg RNA sample

was reverse-transcribed into cDNA using qPCRBIO cDNA synthesis kit (PCRBIOSYSTEMS,

PA, USA). The PCR primer sequences are listed in S2 Table. Quantitative PCR was performed

using SYBR green mix (Bio-Rad, CA, USA), and expression values were normalized to

GAPDH and calculated based on the Cq (ΔΔCq) method [52]

Akt Phosphorylation Assay

1x106 shVCL and shCtrl THP1 cells/well were plated in a 6 well plate and differentiated with

PMA for 72 h followed by overnight with 1% FCS. Cells were exposed to P. gingivalis for differ-

ent time periods and then cell lysates were prepared in radioimmunoprecipitation assay

(RIPA) buffer containing protease and phosphatase inhibitors (Sigma-Aldrich). Total and

phosphorylated levels of Akt were measured by IB (antibodies from Cell signaling

Technology).

Intracellular survival assay

1x106 shCtrl and shVCL THP1 cells/well were differentiated with PMA for 72 h followed by

challenge with P. gingivalis (MOI 10) for 1 h. Cells were treated with LY294002, LY303511 or

anti-TLR2 (clone T2.5) vs. IgG1 isotype control (Biolegend) for 1 h prior to challenge with P.

gingivalis. Extracellular bacteria were killed by treatment with 6 mg/mL Metronidazole

(Sigma-Aldrich) and 0.3 mg/mL Gentamycin (Biological Industries) for 1 h. The medium was

then replaced with complete DMEM, cells were incubated for 1 h and then lysed in sterile dis-

tilled water for 20 min. Lysates were plated on blood agar (Novamed, Jerusalem, Israel) in

anaerobic conditions for 7 to 10 days and CFU were enumerated.

Phagocytosis assay

P. gingivalis was labeled with fluorescein isothiocyanate (FITC) by incubating washed bacteria

with 0.1 mg/ml FITC (Sigma-Aldrich) in carbonate buffer (pH 9.5) for 20 min at room-
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temperature (RT). 4x106 shCtrl and shVCL THP1 cells were differentiated in 10 cm2 petri

dishes and infected with FITC-labeled P. gingivalis at MOI 100 for 1.5 h. Cells were extensively

washed and then collected using 5mM ethylenediaminetetraacetic acid (EDTA) (pH 7.5) at

4˚C for 1 h, followed by fixation with 4% PFA in fluorescence-activated cell sorting (FACS)

buffer containing 5mM EDTA. FITC-positive cells were analyzed by using a BD Accuri C6

Plus Flow Cytometer.

Computational docking and analysis of TLR2-VCL interaction

TLR2-VCL interaction was studied using three computational approaches: pyDockEneRes,

Optimal Docking Area (ODA) [21] and NIPS (Normalized Interface Propensity) [53], mod-

ules from the pyDock docking protein-protein package [23] which predict and evaluate the

geometry and energetic profile of protein-protein interactions. Molecular graphics and analy-

ses were performed with UCSF ChimeraX [54], developed by the Resource for Biocomputing,

Visualization, and Informatics at the University of California, San Francisco, with support

from National Institutes of Health R01-GM129325 and the Office of Cyber Infrastructure and

Computational Biology, National Institute of Allergy and Infectious Diseases.

Site-Directed mutagenesis

The primers carrying phosphorylated 5’ mutant nucleotide used to create W>A684 and

F>A719 are listed in S2 Table. PCR based site-directed mutagenesis (SDM) was performed

with back-to-back primers on bait-TLR2-Cub-V5 and pcDNA3-TLR2-YFP. PCR induced

nick was sealed with a T4 DNA ligase enzyme (NEB, MA, USA) and transformed into E. coli
DH5α (NEB). Plasmids were isolated from the bacteria and the mutations were sequence con-

firmed. Single mutant bait-TLR2-Cub-V5 and pcDNA3-TLR2-YFP plasmids were used as a

PCR template for creating double mutations (AA-TLR2), and plasmids were sequence

confirmed.

Reporter Luciferase assay

Stably transduced NF-κB-HEK293 reporter cells were seeded on 24 well plates and transiently

transfected using polyethylenimine (PEI) (Polysciences, PA, USA) at DNA to PEI ratio of 1:2.

Cells were transfected with YFP fusion proteins of native TLR2 (WF), or the mutants of TLR2

(W684A, F719A, or W684A/F719A double mutant) together with overexpression of TLR1 and

MyD88. After 18 h, transfected cells were stimulated with PAM or left untreated for 4 h fol-

lowed by lysing with cell-culture lysis reagent (Promega, WI, USA). Luciferase activity was

measured with Bright-Glo Luciferase Assay System (Promega) on a GENios Microplate Reader

(Tecan) and data were calculated as luciferase activity (relative luminescence units) relative to

control cells transfected in an identical manner but not activated with PAM.

Co-immunofluorescence

Briefly, HeLa cells were seeded at 3x104 in μ-Slide 8 well IbiDi chambers (ibidi, GmbH, Ger-

many) and transfected using PEI (Polysciences) at DNA to PEI ratio of 1:2. The transfection

cocktail was mixed well and then incubated for 15–20 min at room temperature and added

dropwise on the cells and incubated for 18 h. Cells transfected with pcDNA3-TLR2-YFP were

exposed to P. gingivalis at MOI 10 for 30 min and then fixed with 2% PFA for 15 min, followed

by blocking and staining with 1μg/ml rabbit anti-VCL (Sigma-Aldrich) followed by counter

staining with polyclonal Cy3-labeled anti-rabbit antibody (Jackson ImmunoResearch, PA,

USA). Nuclei were counter-stained with Hoechst 33342 (Santa Cruz Biotechnology, TX,
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USA). Images were obtained by the aid of a confocal NIKON Eclipse Ti microscope at 40X

and 60X (NIKON Instruments Inc, NY, USA). To study co-immunofluorescence in THP1

cells, THP1 monocytes were differentiated with PMA for 72 h and then stimulated and fixed

as for the HeLa cells. TLR2 was detected using anti-TLR2 mAb clone T2.5 (Hycult) followed

by Alexaflour 488-linked goat anti-mouse secondary antibody (Jackson ImmunoResearch),

and VCL was detected as above. For PIP2-VCL co-immunofluorescence THP1 cells were fixed

in 4% PFA/0.05% GTA and were blocked with 10 μg/ml digitonin, as in [55]. PIP2 was

detected using mouse anti-PIP2 (Abcam) and Alexaflour 488 goat anti-mouse (Jackson Immu-

noResearch). The colocalization events were quantified by the JACoP toolbox under NIH Ima-

geJ using Pearson and Manders’ coefficient correlation [20]. Six to ten fields including a

minimum of 80 cells per group were analyzed.

Bait and Prey vector cloning for MaMTH

Primers used to generate bait and prey vectors are listed in S2 Table. All cloning was done

using the Gateway Cloning System according to the manufacturer’s instructions (Invitrogen,

CA, USA). Sequences were confirmed by Sanger sequencing (Hylabs, Israel). 6x105 MaMTH-

modified HEK293T were seeded on 6-well plates and transfected with bait-TLR2 along with

prey vectors using PEI (Polysciences) at DNA to PEI ratio of 1:2. The transfection cocktail was

mixed, incubated for 15–20 min at room temperature, and added dropwise to the cells. After

18–20 h cells were stimulated by addition of PAM (10 ng/mL) or infection with P. gingivalis
MOI 10 for 4, 6, and 8 h at which point cells were lysed using 1X cell-culture lysis reagent (Pro-

mega). All repeat experiments were performed at 8 h which was the time-point of maximal sig-

nal. Luciferase activity was measured with Bright-Glo™ Luciferase Assay System (Promega) on

a GENios Microplate Reader (Tecan).

Statistical analysis

All analyses were performed using Prism v.8 software (GraphPad Software Inc. San Diego,

USA). Two-way analyses were performed by 2-Tailed t-test and multiple comparisons by one-

way ANOVA. Values are shown for data that reached a significance of P�0.05 (ns), P� 0.05

(*), P� 0.01 (**), P� 0.005 (***), P� 0.0001 (****). Bars show mean and standard deviation

(s.d).

Supporting information

S1 Fig. Immunoprecipitation of TLR2 with and without cross-linking. (A) Differentiated

THP1 cells were stimulated with P. gingivalis (MOI 10) for the indicated times followed by

immunoprecipitation of TLR2. Eluates were analyzed for VCL and TLR2, and whole cell

lysates (WCL) were analyzed for VCL. (B) Differentiated PBMCs were infected with P. gingi-
valis (MOI 10) for 30 min followed by cross-linking with DSP (M, marker). TLR2 was immu-

noprecipitated (IP) and the boiled beads were analyzed for VCL by immunoblot (IB). Whole

cell lysates (WCL) were analyzed to control for protein input and loading.

(TIF)

S2 Fig. TLR2 TIR domain-VCL in-silico docking. Five docking poses obtained from the

pyDock docking simulation are shown in distinct colors. Residues W684 and F719 are shown

in space-filling model.

(TIF)

S3 Fig. Membrane localization of TLR2 site-directed mutant constructs. HEK293 cells were

transiently transfected with native TLR2 (WF) and mutants W684A, F719A and
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AA-TLR2-YFP (green) and cells were fixed and nuclei were stained with Hoechst (blue).

Images were captured using a NIKON confocal microscope at 60X magnification.

(TIF)

S4 Fig. Expression of bait and prey constructs. (A) MaMTH-modified HEK293T cells were

transfected with respective Nub-prey vectors, and lysed after 48 h. Western blot shows the

expression of prey constructs detected using anti-flag antibody. (B) HEK293 cells were tran-

siently transfected with TLR2-Cub-V5 and mutants W684A, F719A and AA-TLR2-Cub-V5

(green) and cells were fixed and stained for nuclei with Hoechst (blue). Images were captured

using a NIKON confocal microscope at 40X magnification.

(TIF)

S1 Table. List of cross-linked proteins identified by MS. TLR2-immunoprecipitated proteins

identified by MS containing the CAM modification in resting and P. gingivalis-infected THP1

cells.

(XLSX)

S2 Table. List of the primers used in this manuscript. Primers used for the RT-PCR, site-

directed mutagenesis and Gateway cloning.

(XLSX)
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