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Abstract

Subverting the host immune response to inhibit inflammation is a key virulence strategy of

Yersinia pestis. The inflammatory cascade is tightly controlled via the sequential action of

lipid and protein mediators of inflammation. Because delayed inflammation is essential for

Y. pestis to cause lethal infection, defining the Y. pestis mechanisms to manipulate the

inflammatory cascade is necessary to understand this pathogen’s virulence. While previous

studies have established that Y. pestis actively inhibits the expression of host proteins that

mediate inflammation, there is currently a gap in our understanding of the inflammatory lipid

mediator response during plague. Here we used the murine model to define the kinetics of

the synthesis of leukotriene B4 (LTB4), a pro-inflammatory lipid chemoattractant and

immune cell activator, within the lungs during pneumonic plague. Furthermore, we demon-

strated that exogenous administration of LTB4 prior to infection limited bacterial proliferation,

suggesting that the absence of LTB4 synthesis during plague contributes to Y. pestis

immune evasion. Using primary leukocytes from mice and humans further revealed that Y.

pestis actively inhibits the synthesis of LTB4. Finally, using Y. pestis mutants in the Ysc type

3 secretion system (T3SS) and Yersinia outer protein (Yop) effectors, we demonstrate that

leukocytes recognize the T3SS to initiate the rapid synthesis of LTB4. However, several Yop

effectors secreted through the T3SS effectively inhibit this host response. Together, these

data demonstrate that Y. pestis actively inhibits the synthesis of the inflammatory lipid LTB4
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contributing to the delay in the inflammatory cascade required for rapid recruitment of leuko-

cytes to sites of infection.

Author summary

Yersinia pestis targets the host’s innate immune response to inhibit inflammation. Because

the generation of a non-inflammatory environment is required for infection, defining the

mechanisms used by Y. pestis to block inflammation is key to understanding its virulence.

Lipid mediators are potent signaling molecules required for timely initiation of host

inflammation. While previous studies have demonstrated that Y. pestis inhibits inflamma-

tion, there is a gap in our understanding of the inflammatory lipid mediator response dur-

ing plague. Here we show that Y. pestis inhibits the production of one of these critical lipid

mediators, leukotriene B4, by host immune cells. Furthermore, we identify both the sig-

nals that induce LTB4 production by leukocytes and the mechanisms used by Y. pestis to

inhibit this process. Together, these data represent the first comprehensive analysis of

inflammatory lipids produced during pneumonic plague and improve our current under-

standing of how Y. pestis manipulates the host immune response to generate a permissive

non-inflammatory environment required to colonize the mammalian host.

Introduction

Yersinia pestis causes the human disease known as the plague. Although typically characterized

as a disease of our past, in the aftermath of the 3rd plague pandemic, Y. pestis became endemic

in rodent populations in several countries, increasing the potential for spillover into human

populations through contact with infected animals and fleas [1–3]. Human plague manifests in

three forms: bubonic, septicemic, or pneumonic plague. Bubonic plague resulting from flea

transmission arises when bacteria colonize and replicate within lymph nodes. Septicemic

plague results when Y. pestis gains access to the bloodstream, either directly from a flea bite or

via dissemination from an infected lymph node, and results in uncontrolled bacterial replica-

tion and sepsis. Finally, secondary pneumonic plague, wherein Y. pestis disseminates to the

lungs via the blood, results in a pneumonia that can promote direct person-to-person trans-

mission via aerosols. While treatable with antibiotics, if left untreated, all forms of plague are

associated with high mortality rates, and the probability of successful treatment decreases the

longer initiation of treatment is delayed post-exposure [3–6]. Regardless of the route of infec-

tion, one of the key virulence determinants for Y. pestis to colonize the host is the Ysc type 3

secretion system (T3SS) encoded on the pCD1 plasmid [5,7]. This secretion system allows

direct translocation of bacterial effector proteins, called Yops, into host cells [5,8,9]. The Yop

effectors target specific host factors to disrupt normal host cell signaling pathways and func-

tions [10–15]. Because the T3SS and Yops are required for mammalian but not flea infection,

the expression of the genes encoding these virulence factors are differentially expressed within

these two hosts [5,8,16,17]. The primary signal leading to T3SS and Yop expression is a shift in

temperature from that of the flea vector (<28˚C) to that of the mammalian host (>30˚C). Dur-

ing mammalian infection, Y. pestis primarily targets neutrophils and macrophages for T3SS-

mediated injection of the Yop effectors [18–20]. The outcomes of Yop injection into these cells

include inhibition of phagocytosis, reactive oxygen species (ROS) synthesis, degranulation by

neutrophils, and inflammatory cytokine and chemokine release required to recruit circulating
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neutrophils to infection sites [21–26]. Importantly, previous work suggests that inhibition of

neutrophil influx and establishing a non-inflammatory environment is crucial for Y. pestis vir-

ulence [27,28]. Therefore, defining the molecular mechanisms used by Y. pestis to subvert the

host immune response is fundamental to understanding the pathogenesis of this organism.

Moreover, defining the host mechanisms targeted by Y. pestis to inhibit inflammation can also

provide novel insights into how the host responds to bacterial pathogens to control infection.

A cascade of events tightly regulates inflammation to ensure rapid responses to control

infection and effective immune resolution after clearance of pathogens to limit tissue damage

[29,30]. This inflammatory cascade is initiated by synthesizing potent lipid mediators and is

sustained and amplified by the subsequent production of protein mediators [31,32]. Polyun-

saturated fatty acid (PUFA)-derived lipid mediators are potent modulators of the innate and

adaptive immune responses [30,33]. Of these, the eicosanoids, including the leukotrienes and

the prostaglandins, are key regulators of the inflammatory cascade during infection [31,32].

Leukotriene B4 (LTB4) is rapidly synthesized from arachidonic acid upon activation of 5-lipox-

ygenase (5-LOX), cytosolic phospholipase A2 (cPLA2), 5-LOX activating protein (FLAP), and

LTA4 hydrolase (Fig 1A) [34]. Upon synthesis and release, LTB4 is recognized by the high

affinity BLT1 receptor on immune cells to promote chemotaxis and initiate the inflammatory

cascade leading to production of pro-inflammatory cytokines and chemokines [31,32,35–39].

Together these inflammatory mediators promote the recruitment of circulating leukocytes to

infected tissue [32]. Importantly, because of its critical role in initiating the inflammatory cas-

cade, disruption in the timely production of LTB4 can slow the subsequent downstream release

of cytokines and chemokines and the ability of the host to mount a rapid inflammatory

response required to control infection.

Despite active proliferation of Y. pestis within the lungs in the mouse model, there appears

to be an absence of pro-inflammatory cytokines, chemokines, and neutrophil influx for the

first 36 hours of primary pneumonic plague [11–15]. This phenotype dramatically differs from

pulmonary infection with attenuated mutants of Y. pestis lacking the T3SS or Yop effectors or

by other pulmonary pathogens, such as Klebsiella pneumoniae, which induce significant

inflammation within 24 hours of bacterial exposure [11–15]. Surprisingly, despite the impor-

tance of lipid mediators in initiating the inflammatory cascade, the role of inflammatory lipids

during plague has not been previously investigated. However, using human peripheral blood

neutrophils, Pulsifer et al. previously demonstrated that Y. pestis can actively inhibit the syn-

thesis of LTB4 in vitro in a T3SS/Yop-dependent manner, suggesting that LTB4 synthesis may

be inhibited during plague [26]. In this study, we expand on these observations by investigat-

ing LTB4 synthesis by the mammalian host in response to Y. pestis. Using the murine model of

plague, we demonstrate dysregulation in the production of LTB4 by Y. pestis and provide the

lipidomic profile of other host inflammatory lipids during the initial 48 h of pneumonic

plague. We further show that exogenous treatment with LTB4 inhibits bacterial proliferation

in the murine model. Using Y. pestis mutants, we also discovered that leukocyte interactions

with the Y. pestis T3SS triggers LTB4 synthesis, but synthesis is inhibited by multiple Yop effec-

tors secreted via the same T3SS. Together, these data suggest that modulation in the produc-

tion of host inflammatory lipids is an additional virulence mechanism used by Y. pestis to

inhibit the rapid recruitment of immune cells needed to control infection.

Results

LTB4 synthesis is delayed during pneumonic plague

Based on our previous observations that Y. pestis inhibits LTB4 synthesis by human neutro-

phils [26], we sought to determine if LTB4 was synthesized during infection using the murine
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Fig 1. LTB4 synthesis is blunted during pneumonic plague. (A) The LTB4 synthesis pathway. (B-I) C56BL/6J mice were infected with 10 x the LD50 Y.

pestis KIM5+ and lungs were harvested at the indicated times (n = 5) to measure host lipids by LC-MS. UI = samples from uninfected animals. (B) LTB4

concentrations. (C) 20-hydroxy LTB4 concentrations. (D) LTB4 concentrations. (E) 20-hydroxy LTB4 concentrations. (F) 5-HETE concentrations. (G)

PGE1 concentrations. (H) PGE2 concentrations. (I) PGA2 concentrations. Each symbol represents an individual mouse and the box plot represents the

median of the group ± the range. Changes in lipid concentrations were compared to the UI sample using (B-C) One-way ANOVA with Dunnett’s post
hoc test or (D-I) the LIMMA—Moderated t-test. ns = not significant, * = p� 0.05, ** = p� 0.01, *** = p� 0.001, # = p� 0.0001.

https://doi.org/10.1371/journal.ppat.1011280.g001
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model of pneumonic plague. C57BL/6J mice were intranasally infected with Y. pestis KIM5+

and LTB4 was measured in the lungs during the non-inflammatory stage of disease (6, 12,

and 24 h post-infection). We did not observe a statistically significant increase in LTB4 synthe-

sis at any time point, with only 3 of the 15 samples having elevated LTB4 concentrations over

the entire 24 h period (Fig 1B). Moreover, we did not observe a significant increase in

20-hydroxy LTB4 (Fig 1C), which is the direct degradation product of LTB4 (Fig 1A). To con-

firm these results, LTB4 was measured in the lungs from a second independent group of

C57BL/6J mice, this time expanding the analysis to include the pro-inflammatory stage of dis-

ease (36 and 48 h post-infection). Again, we did not observe statistically significant increases

in LTB4 or 20-hydroxy LTB4 during the first 24 h of infection (Fig 1D and 1E). However, by 36

h post-infection, both lipids were statistically elevated compared to uninfected samples

(p� 0.05). Moreover, we observed a significant increase in 5-HETE as early as 6 h post-infec-

tion (Fig 1F; p� 0.01), which can result if 5-LOX does not complete the synthesis of LTA4

from arachidonic acid [40,41]. While the synthesis of LTB4 appears absent during the first 24 h

of infection, the synthesis of other inflammatory lipids increased during the same period,

including the prostaglandins, which are another group of eicosanoids whose synthesis is regu-

lated via the cyclooxygenase pathway (Fig 1G–1I). Globally, we observed significant changes in

the synthesis of 63 lipids during pneumonic plague, including lipids generally considered to be

pro-inflammatory (18 lipids), anti-inflammatory (41 lipids), or pro-resolving (4 lipids) (S1

Table) [42,43]. Together these data indicate LTB4 synthesis is delayed during pneumonic

plague.

BLT1-/- mice are not more susceptible to pneumonic plague than C57BL/6J

mice

LTB4 is recognized by the high-affinity G-protein coupled receptor BLT1, which is expressed

primarily by innate and adaptive immune cells [38,44]. LTB4-BLT1 engagement leads to host

inflammatory immune responses such as chemotaxis, cytokine release, phagocytosis, and ROS

production that contribute to the clearance of pathogens [35,45]. Mice deficient in the expres-

sion of BLT1 cannot effectively respond to LTB4 signaling and are generally more susceptible

to infection [39,46,47]. Because we did not observe LTB4 synthesis during the early stages of

pneumonic plague, we hypothesized that BLT1-/- mice would not be more susceptible to Y.

pestis infection. To test this hypothesis, we intranasally infected C57BL/6J and BLT1-/- mice

with Y. pestis KIM5+ and measured bacterial numbers in the lungs at 12 and 24 h post-infec-

tion. Bacterial numbers were not significantly higher in BLT1-/- mice than C57BL/6J mice (Fig

2A). Furthermore, independent experiments with a Y. pestis strain with a luciferase bioreporter

(Y. pestis CO92 LuxpcysZK), which allows for monitoring bacterial proliferation via optical

imaging and host survival in the same group [48], showed no significant differences between

the two mouse lines in bacterial proliferation at later time points or in the mean-time to death

(Fig 2B and 2C). These data indicate that the loss of LTB4-BLT1 signaling in BLT1-/- mice does

not impact the infectivity of Y. pestis, further supporting that LTB4 synthesis and signaling is

disrupted during pneumonic plague.

Exogenous LTB4 treatment limits Y. pestis proliferation in vivo
Because LTB4 synthesis and signaling appears to be disrupted during infection, we next asked

if exogenous administration of LTB4 could alter infection. To test this hypothesis, we used a

previously described peritoneal model that allows for accurate administration of LTB4 and

easy recovery of both elicited leukocytes and bacteria via lavage [49]. As described previously,

intraperitoneal administration of LTB4 resulted in an increase in the neutrophil population
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within the peritoneal cavity in C57BL/6J mice as early as 1 h post-administration (Figs 3A and

S1) [49]. When challenged intraperitoneally with Y. pestis KIM5+ after LTB4 administration,

we observed a significant decrease in the number of viable bacteria recovered from LTB4-

treated animals, approaching the limit of detection, as compared to PBS-treated animals 3 h

Fig 2. BLT1-/- mice are not more susceptible to pneumonic plague than C57BL/6J mice. (A) C57BL/6J (green circles) or BLT1-/- (purple squares) mice were

infected intranasally with 10 x the LD50 of Y. pestis KIM5+ and lungs were harvested at 12 and 24 h post-infection. Bacterial proliferation within the lungs was

determined by CFU enumeration. Each symbol represents an indivdual mouse and the box plot represents the median of the group ± the range. Combined

data from two independent experiments. (B-C) C57BL/6J (green circles) or BLT1-/- (purple squares) mice were infected intranasally with 10x the LD50 of Y.

pestis CO92 LUXpcysZK. (B) Bacterial proliferation in the lungs as a function of bioluminescence. Each symbol represents an indivdual mouse and the box plot

represents the median of the group ± the range. Combined data from two independent experiments. (C) Survival curves of mice from B (n = 15). For A and B,

T-test with Mann-Whitney’s post hoc test indicated no statistically significant (ns) differences between C57BL/6J and BLT1-/- groups. For C, Log-Rank anlysis

revealed no statistically signficant (ns) differences in surival between the two groups.

https://doi.org/10.1371/journal.ppat.1011280.g002

Fig 3. LTB4 treatment improves host killing of Y. pestis. (A) C57BL/6J mice were administered 1 x DPBS (PBS) or 10

nmol LTB4 intraperitoneally and changes in neutrophil populations (Ly6G+CD11b+) were measured at 1 or 4 h post-

treatment. (B) C57BL/6J (green circles) or BLT1-/- (purple squares) mice administered DPBS or 10 nmol LTB4 were

infected 1 h later with 105 CFU of Y. pestis KIM5+ and bacterial numbers in the peritoneal cavities were enumerated 3 h

post-inoculation. LOD = Limit of detection. (C) Neutrophil populations from a subset of animals from B. Each symbol

represents an indivdual mouse and the box plot represents the median of the group ± the range. Combined data from three

independent experiments. One-way ANOVA with Tukey’s post hoc test compared to each condition. * = p� 0.05, ** =

p� 0.01, *** = p� 0.001, # = p� 0.0001.

https://doi.org/10.1371/journal.ppat.1011280.g003
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post-infection (Fig 3B; p� 0.0001). Neutrophil numbers also remained significantly elevated

in the LTB4-treated animals at 3 h post-infection compared to PBS-treated animals (Fig 3C;

p� 0.05). Moreover, bacterial clearance was dependent on LTB4 signaling, as LTB4 treatment

of BLT1-/- mice did not alter bacterial or neutrophil numbers at 3 h post-infection compared

to PBS-treated C57BL/6J mice (Fig 3B and 3C). Together, these data indicate that LTB4-medi-

ated recruitment and activation of leukocytes can improve the host response to Y. pestis.

Neutrophils do not synthesize LTB4 in response to Y. pestis
Because neutrophils are robust sources of LTB4 [35], are the primary cells with which Y. pestis
interacts during the first 24 h of pneumonic plague [19], and Y. pestis inhibits LTB4 synthesis

by human neutrophils [26], we next sought to determine if the LTB4 response by neutrophils

differed between Y. pestis and other bacteria. When bone marrow-derived neutrophils

(BMNs) from C57BL/6J mice were stimulated with E. coli, S. enterica Typhimurium, or a K.

pneumoniae manC mutant (unable to synthesize a capsule), LTB4 synthesis was significantly

induced within 1 h of infection (Fig 4A; p� 0.0001). However, infection with Y. pestis did not

elicit LTB4 synthesis, even when the MOI was increased to 100 bacteria per neutrophil (Fig

4B). Similar phenotypes were observed during infection of human peripheral blood neutro-

phils (hPMNs), recapitulating our previously published data for Y. pestis (Fig 4C and 4D) [26].

Importantly, the absence of LTB4 synthesis did not appear to be due to Y. pestis induced cell

death, as no significant changes in cell permeability or cytotoxicity were observed during Y.

pestis infections at an MOI of 20 when compared to uninfected neutrophils (S2A and S2B Fig).

Even at an MOI of 100, while cell permeability appeared slightly elevated in Y. pestis-infected

murine neutrophils compared to uninfected cells (S2C Fig; 9% vs. 28%), overall cytotoxicity

was lower in Y. pestis-infected cells (S2D Fig; 12% vs. 4%). Similarly, Y. pestis did not induce

elevated permeability or cytotoxicity in human neutrophils (S2E and S2F Fig). These data

demonstrate that while neutrophils can rapidly synthesize LTB4 in response to other bacterial

pathogens, neither murine nor human neutrophils appear to synthesize LTB4 in response to Y.

pestis.

Fig 4. Neutrophils do not synthesize LTB4 in response to Y. pestis. (A-B) Murine (BMNs) or (C-D) human (hPMNs) neutrophils were infected with E.

coli DH5α (Ec), S. enterica Typhimurium LT2 (ST), or K. pneumoniae manC (ΔKp) at an MOI of 20, or with Y. pestis (Yp) at increasing MOIs. LTB4 was

measured from supernatants 1 h post infection by ELISA. Each symbol represents an independent biological infection and the box plot represents the

median of the group ± the range. UI or 0 = uninfected. One-way ANOVA with Dunnett’s post hoc test compared to uninfected. * = p� 0.05, ** =

p� 0.01, # = p� 0.0001.

https://doi.org/10.1371/journal.ppat.1011280.g004
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Y. pestis actively inhibits LTB4 synthesis

Seven Yop effectors are secreted via the T3SS [21–24], and Pulsifer et al. previously showed

Yop effector-mediated inhibition of LTB4 synthesis in human neutrophils by YpkA, YopE,

YopJ, YopH, and YopT at an MOI of 100 [26]. However, Yop inhibition of LTB4 synthesis by

murine neutrophils has not been previously investigated, nor whether the same Yop effectors

are sufficient to inhibit LTB4 synthesis at a lower MOI. Therefore, murine and human neutro-

phils were infected at an MOI of 20 with a Y. pestis mutant strain that expresses the T3SS but

lacks all seven Yop effectors (Y. pestis T3E) [50]. In contrast to Y. pestis infected cells, we

observed a significant increase in LTB4 synthesis in response to the Y. pestis T3E strain, indi-

cating that the Yop effectors inhibit synthesis (Fig 5A and 5B; p� 0.0001). Moreover, when

neutrophils were simultaneously infected with Y. pestis and the Y. pestis T3E mutant or Y. pes-
tis and the K. pneumoniae manC mutant, LTB4 levels were significantly lower than Y. pestis
T3E or K. pneumoniae manC only infections (Fig 5C–5F; p� 0.0001). To determine if individ-

ual Yop effectors were sufficient to inhibit synthesis, murine neutrophils were infected with

Y. pestis strains that expressed only one Yop effector [50]. LTB4 synthesis was significantly

decreased if Y. pestis expressed YpkA, YopE, YopH, or YopJ, and an intermediate phenotype

was observed during infection with a strain expressing YopT (Fig 5G). These phenotypes reca-

pitulated those previously reported for human neutrophils [26]. Together these data confirm

that Y. pestis is not simply evading immune recognition but is actively inhibiting LTB4 synthe-

sis via the activity of multiple Yop effectors.

Neutrophils synthesize LTB4 in response to the Y. pestis T3SS in the

absence of the Yop effectors

Components of the T3SS are pathogen-associated molecular patterns (PAMPs) that are recog-

nized by innate immune cells [7,51,52], suggesting that T3SS interactions with neutrophils

may be responsible for the synthesis of LTB4 during infections with the Y. pestis T3E strain. To

test this hypothesis, we infected murine and human neutrophils with a Y. pestis strain lacking

the pCD1 plasmid encoding the entire Ysc T3SS [Y. pestis T3(-)]. Unlike infections with Y. pes-
tis T3E, we did not observe an increase in LTB4 synthesis by neutrophils during interactions

with Y. pestis T3(-) compared to uninfected or Y. pestis infected cells, even after 2 h of infection

(Fig 5A and 5B). Importantly, Y. pestis T3(-) infection did not appear to result in increased neu-

trophil cell permeability or cytotoxicity (S2 Fig). To independently test that the T3SS is

required to induce LTB4 synthesis, Y. pestis T3E was cultured under conditions that alter the

expression of the T3SS prior to infection of neutrophils [5,8,16]. Measuring expression of the

LcrV protein as a proxy for overall T3SS expression confirmed decreased T3SS expression

in cultures grown at 26˚C compared to 37˚C (Figs 6A and S3A). As predicted by the Y. pestis
T3(-) data, LTB4 synthesis was not observed from neutrophils infected with Y. pestis T3E

strains grown at 26˚C, while synthesis was induced from bacteria cultured at 37˚C (Fig 6B).

No difference in bacterial viability between any of the Y. pestis strains was observed during the

time frame of the experiment, diminishing the possibility that differences in neutrophil killing

of the bacteria was responsible for these phenotypes (S3B Fig). Finally, neutrophils were

infected with a Y. pestis T3E yopB mutant, which retains the other pCD1 encoded genes, but is

defective in expression of the translocase that directly interacts with the host cell and is

required for injection of the effector proteins [8,53–56]. Similar to the Y. pestis T3(-) strain, the

Y. pestis T3E yopB mutant did not induce LTB4 synthesis, but synthesis was restored by yopB
complementation (yopB::cyopB) (Fig 6C). Together, these data indicate that neutrophils recog-

nize components of the Y. pestis T3SS as PAMPs, leading to the induction of LTB4 synthesis,

but only in the absence of the Yop effectors.
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Fig 5. Y. pestis actively inhibits LTB4 synthesis. (A) Murine (BMNs) or (B) human (hPMNs) neutrophils were infected with Y. pestis (Yp) or mutants that

either lacked the Yop effectors (T3E) or the Yop effectors and the T3SS [T3(-)] at an MOI of 20 and LTB4 was measured at 30, 60, or 120 min. (C and D)

Murine (BMNs) or (E and F) human (hPMNs) neutrophils were co-infected with the indicated bacteria at a combined MOI of 20 and LTB4 was measured at 60

min post-infection. (G) Murine neutrophils (BMNs) were infected with Yp, T3E, T3(-), or Y. pestis strains expressing only one Yop effector (+A = YpkA;

+E = YopE; +H = YopH; +J = YopJ; +K = YopK; +M = YopM; or +T = YopT) at an MOI of 20 and LTB4 was measured at 60 min post-infection. Each symbol

represents an independent biological infection and the box plot represents the median of the group ± the range. UI = uninfected. One-way ANOVA with

Dunnett’s post hoc test compared to uninfected for A, B, and G, or Tukey’s post hoc test compared to each condition for C, D, E, and F. * = p� 0.05, ** =

p� 0.01, *** = p� 0.001, # = p� 0.0001.

https://doi.org/10.1371/journal.ppat.1011280.g005

PLOS PATHOGENS Inhibition of leukotriene B4 by Yersinia pestis

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011280 January 25, 2024 9 / 25

https://doi.org/10.1371/journal.ppat.1011280.g005
https://doi.org/10.1371/journal.ppat.1011280


Y. pestis inhibition of LTB4 synthesis is conserved during interactions with

other leukocytes

In addition to neutrophils, two other lung resident leukocytes that can produce LTB4 are mast

cells and macrophages [33]. To determine if Y. pestis inhibits LTB4 synthesis by these two cell

types, bone marrow-derived mast cells and macrophages were isolated from C57BL/6J mice

and infected with Y. pestis, Y. pestis T3E, or Y. pestis T3(-). We observed no synthesis of LTB4

by mast cells, even after 2 h of interacting with Y. pestis (Fig 7A). However, LTB4 synthesis was

significantly elevated in the absence of the Yop effectors (Fig 7A; p� 0.01), reaching levels

Fig 6. Neutrophils synthesize LTB4 in response to the Y. pestis T3SS in the absence of the Yop effectors. (A) Relative expression of LcrV based on western

blots normalized to total protein loaded from bacteria cultured at 37 or 26˚C. (B) Murine neutrophils (BMNs) were infected (MOI of 20) with Y. pestis (Yp) or

mutants that either lacked the Yop effectors (T3E) or the Yop effectors and the T3SS [T3(-)] cultured at 37 or 26˚C and LTB4 was measured at 60 min post-

infection. (C) Murine neutrophils (BMNs) were infected (MOI of 20) with Yp, T3E, T3(-), a yopB mutant in the T3E background (ΔB), or ΔB complemented

with yopB (ΔB::B) cultured at 37˚C and LTB4 was measured at 60 min post-infection. Each symbol represents an independent biological infection and the

box plot represents the median of the group ± the range. One-way ANOVA with Tukey’s post hoc test compared to each condition for A and B and Dunnett’s

post hoc test compared to uninfected for C. ns = not significant, *** = p� 0.001, # = p� 0.0001.

https://doi.org/10.1371/journal.ppat.1011280.g006

Fig 7. Lack of LTB4 response to Y. pestis is conserved in other leukocytes. (A) Murine bone-marrow derived mast cells (BMMCs) were infected

with Y. pestis (Yp) or with mutants that either lacked the Yop effectors (T3E) or the Yop effectors and the T3SS [T3(-)] at an MOI of 20, or treated

with 100 mg/cm2 crystalline silica (Si) and LTB4 was measured at 2 h post-infection. (B and C) Murine bone-marrow derived macrophages

(BMDMs) differentiated towards (B) M1 or (C) M2 phenotypes were infected with Yp, T3E, or T3(-) at an MOI of 20 and LTB4 was measured at 4 h

post-infection. UI = uninfected. Each symbol represents an independent biological infection and the box plot represents the median of the

group ± the range. One-way ANOVA with Dunnett’s post hoc test compared to uninfected. ** = p� 0.01, # = p� 0.0001, ns = not significant.

https://doi.org/10.1371/journal.ppat.1011280.g007
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similar to that of mast cells stimulated with crystalline silica, a potent inducer of LTB4 synthesis

[57,58]. LTB4 synthesis by mast cells was also dependent on the presence of the T3SS, as the Y.

pestis T3(-) strain did not induce LTB4 synthesis (Fig 7A). For macrophages, previous reports

indicate that polarization influences the ability to produce LTB4, with M1-polarized macro-

phages better able to synthesize LTB4 in response to bacterial ligands than M2-polarized cells

[59]. Therefore, we measured LTB4 synthesis of both M1- and M2-polarized macrophages (S4

Fig). Again, we observed no significant synthesis of LTB4 by either macrophage population

during interactions with Y. pestis, even after 4 h post-infection (Fig 7B and 7C). However, sig-

nificant synthesis of LTB4 was observed in M1-polarized macrophages in response to the Y.

pestis T3E strain, which was dependent on the presence of the T3SS (Fig 7B; p� 0.0001). As

suggested by previous reports [60], we did not observe significant changes in LTB4 synthesis

by M2-polarized macrophages during interactions with any of the Y. pestis strains tested (Fig

7C). Together, these data indicate that mast cells and M1-polarized macrophages can synthe-

size LTB4 in response to the Y. pestis T3SS, but the activity of the Yop effectors inhibits this

response.

Discussion

A hallmark manifestation of plague is the absence of inflammation during the early stages of

infection, which is critical to Y. pestis virulence [10,17,28,52]. While Y. pestis has been shown

to actively dampen the host immune response, there is a gap in our understanding of the role

of lipid mediators of inflammation during plague. This study sought to better define the host

inflammatory lipid mediator response during pneumonic plague and expands our current

understanding of how Y. pestis manipulates the immune system. During the earliest stages of

infection, the host appears unable to initiate a timely LTB4 response (Fig 1). Moreover, we

demonstrated that exogenous treatment with LTB4 can alter the host response to Y. pestis (Fig

3), suggesting that LTB4 manipulation by Y. pestis contributes to disease outcome. Because

LTB4 is a potent chemoattractant crucial for rapid inflammation [31,32,61], a delay in LTB4

synthesis during plague likely has a significant impact on the ability of the host to mount a

robust inflammatory response needed to inhibit Y. pestis colonization. First, in the absence of

LTB4, sentinel leukocytes will not undergo autocrine signaling via LTB4-BLT1. Because LTB4-

BLT1 engagement activates antimicrobial programs in leukocytes [31,32,46,62–64], the

absence of autocrine signaling diminishes the ability of sentinel leukocytes directly interacting

with Y. pestis to mount an effective antimicrobial response to kill the bacteria. LTB4 synthesis

is also regulated by BLT1 signaling, and autocrine signaling is required to amplify the produc-

tion of LTB4 needed to rapidly recruit additional tissue-resident immune cells to the site of

infection [31,32,63,65,66]. Therefore, the normal feed-forward amplification of LTB4 synthesis,

which is key for a rapid response to a bacterial infection, will also be inhibited by Y. pestis. Sec-

ond, because LTB4 is required for neutrophil swarming [65,67,68], Y. pestis will also inhibit

this key inflammatory mechanism [69]. Neutrophil swarming is required to contain bacteria at

initial sites of infection [70,71]. Thus, while individual neutrophils may migrate towards sites

of Y. pestis infection, effective neutrophil swarming of large populations of neutrophils will be

diminished. Finally, LTB4 is a diffusible molecule that can induce the inflammatory cascade in

bystander cells [32,72]. Thus, while Y. pestis can inhibit cytokine and chemokine expression by

cells with which it directly interacts [11,15], inhibition of LTB4 synthesis likely also delays sub-

sequent release of molecules by cells that do not directly interact with the bacteria. Together

with the bacteria’s other immune evasion mechanisms, inhibition of LTB4 synthesis is likely

another significant contributor to the generation of the non-inflammatory environment asso-

ciated with the early stages of pneumonic plague [10,11,15]. Incorporating these new LTB4
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data with published findings from other laboratories [10,11,15], we have updated our working

model of Y. pestis inhibition of inflammation during pneumonic plague (Fig 8).

These studies also revealed that components of the T3SS trigger LTB4 synthesis by leuko-

cytes. Because our previous work with human samples indicated that neutrophils synthesize

LTB4 in response to Y. pestis in the absence of the T3SS [26], we were initially surprised that

we did not observe LTB4 synthesis by murine neutrophils to the Y. pestis T3(-) strain. However,

when we infected human neutrophils with lower MOIs, we observed that they also did not syn-

thesize LTB4 in the absence of the T3SS (Fig 5B). Under these infection conditions, neutrophils

from both species only produced LTB4 in response to Y. pestis expressing the T3SS but none of

the Yop effectors. These data support that components of the T3SS are PAMPs produced by Y.

pestis that are not only recognized by macrophages [73] but also by neutrophils. While previ-

ous studies have indicated that the Yop effectors are PAMPs in neutrophils [74,75], to our

knowledge the data presented here represent the first example that non-effector components

of the Y. pestis T3SS can also be recognized as a PAMP by neutrophils. In macrophages, in the

absence of the Yop effectors, interactions with the T3SS, notably the translocon proteins YopB

and YopD, induce NLRP3-dependent activation of the caspase 1 inflammasome, IL1-β secre-

tion, and pyroptosis [54,76], suggesting that inflammasome activation may contribute to LTB4

synthesis during interactions with Y. pestis T3E. However, whether inflammasome activation

is required for the Y. pestis T3SS-mediated LTB4 synthesis remains unclear, as LTB4 synthesis

in response to other stimuli is not dependent on inflammasome activation [57,77,78]. Interest-

ingly, infection of neutrophils with a strain of Y. pestis that only expresses YopK, which has

been reported to inhibit NLRP3 inflammasome activation in macrophages [53,54], does not

inhibit LTB4 synthesis (Fig 4C) [26], supporting the possibility that LTB4 synthesis may not be

dependent on inflammasome activation in neutrophils. Future studies using neutrophils from

mice defective in specific NLRs and caspases will allow us to definitively determine if inflam-

masome activation is required for LTB4 synthesis in response to the Y. pestis T3SS. We have

also confirmed that four Yop effectors, YpkA, YopE, YopJ, and YopH are sufficient to inhibit

LTB4 synthesis by both human and murine neutrophils. Synthesis of LTB4 requires MAPK-

and Ca2+-dependent activation of cPLA2 and 5-LOX [34,79]. Previous work, primarily in mac-

rophages, has shown that both of these signaling pathways are efficiently inhibited by these

Fig 8. Working model for inhibition of the inflammatory cascade during plague. (A) Normal response by sentinel leukocytes results in

rapid production of LTB4 that leads to autocrine signaling, neutrophil swarming, and induction of cytokine and chemokine release. (B) Y.

pestis inhibits the production of LTB4 via the action of the Yop effectors, which delays resident neutrophil recruitment and subsequent

production of cytokines and chemokines needed for inflammation.

https://doi.org/10.1371/journal.ppat.1011280.g008
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four Yop effectors [8,20,80–84], suggesting that subversion of MAPK and Ca2+ signaling by Y.

pestis is responsible for inhibition of LTB4 synthesis. Supporting this hypothesis, Pulsifer et al.

demonstrated that inhibition of ERK phosphorylation by YopJ is sufficient to inhibit LTB4

synthesis by human neutrophils [26]. Defining the specific molecular mechanisms employed

by YpkA, YopE, and YopH to inhibit LTB4 synthesis will be important in better understanding

Y. pestis virulence and is a long-term goal.

One of the key antimicrobial mechanisms inhibited by the Yop effectors is phagocytosis

[5,16,85,86], and Hedge et al. have previously shown that phagocytosis of crystalline silica is

required for LTB4 synthesis in that model of sterile inflammation [57]. These data raise the

possibility that inhibition of phagocytosis by Y. pestis may not only inhibit bacterial killing, but

LTB4 synthesis and rapid initiation of inflammatory programing in neutrophils. Studies to

delineate the contribution of phagocytosis to LTB4 synthesis are ongoing, but the differences

in LTB4 synthesis by cells infected with Y. pestis T3E and Y. pestis T3(-) suggest that phagocyto-

sis alone is not sufficient to trigger LTB4 synthesis in the absence of proper PAMPs, in this

case components of the T3SS. Moreover, the lack of LTB4 synthesis in response to Y. pestis
T3(-) also differed from what we observed for other gram-negative bacteria without a T3SS (E.

coli and K. pneumoniae), indicating that Y. pestis may also mask other potential gram-negative

PAMPS that would typically be recognized by neutrophils. These data support that Y. pestis
has evolved both active (via the Yop effectors) and passive mechanisms to evade immune rec-

ognition and induction of LTB4 synthesis. It is worth noting that unlike human neutrophils,

murine neutrophils did not appear to synthesize LTB4 during infections with the T3(-) strain at

high MOIs (S5 Fig). Differences in neutrophil responses between the two species have been

well documented [87–91], but these observations merit further investigation into LTB4

responses by human neutrophils using higher MOIs to determine if human neutrophils are

able to recognize other PAMPs during Y. pestis infection.

Finally, while we focused primarily on LTB4 in this study, we also observed changes in the

synthesis of other lipids during plague that merit future considerations (S1 Table). The rapid

cyclooxygenase response raises questions about whether prostaglandins are protective or detri-

mental during pneumonic plague. Historically, prostaglandins were thought to promote

inflammation, but these mediators appear more nuanced under closer scrutiny and can just as

likely inhibit inflammation, as well as participate in normal development physiology, without

eliciting inflammation [42,43,92]. The prostaglandins we observed as being significantly ele-

vated during the non-inflammatory stage of pneumonic plague—PGA2, PGD2, PGE2, and

PGJ2—have been shown to inhibit inflammation in various models, especially as concentra-

tions increase [42,43,93–95]. PGE2 can inhibit NADPH oxidase activity during infection with

K. pneumoniae, which suppressed bacterial killing [96], and directly counteracts the proin-

flammatory activities of LTB4 [97,98]. The phagocytic index of LTB4-stimulated rat alveolar

macrophages (AMs) is reduced when co-stimulated with PGE2 [98]. Moreover, AMs treated

with PGE2 showed a 40% reduction in LTB4 synthesis when stimulated with an ionophore

known to induce a strong LTB4 response [97]. This inhibition of LTB4 by PGE2 is suspected to

be via an increase in second messenger cAMP that activates protein kinase A (PKA), which

has been shown to inhibit LTB4 synthesis [97,99]. Together, these data suggest that the elevated

levels of prostaglandin synthesis observed during pneumonic plague may contribute to the

blunted LTB4 response by the host.

In conclusion, we have defined the kinetics of the key inflammatory lipid mediator LTB4

during pneumonic plague, which revealed a blunted response during the early stages of infec-

tion. Furthermore, we have shown that Y. pestis actively manipulates LTB4 synthesis by leuko-

cytes via the activity of Yop effectors to generate a beneficial inflammatory outcome to the

pathogen. These discoveries warrant further research into the role of lipids, and subsequent
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manipulation of their synthesis by Y. pestis, to fully understand the molecular mechanisms Y.

pestis has evolved to manipulate the mammalian immune response.

Material and methods

Ethics statement

All animal work was approved by the University of Louisville Institutional Animal Care and

Use Committee (IACUC Protocol #22157). Use of human neutrophils was approved by the

University of Louisville Institutional Review Board guidelines (IRB #96.0191) and written con-

sents for use were obtained.

Bacterial strains

Bacterial strains used in this study are listed in S2 Table. For mouse infections, Y. pestis was

grown at 26˚C for 6–8 h, diluted to an optical density (OD) (600 nm) of 0.05 in Bacto brain

heart infusion (BHI) broth (BD Biosciences Cat. No. 237500) with 2.5 mM CaCl2 and then

grown at 37˚C with aeration for 15–18 h [100]. For cell culture infections, Y. pestis was cul-

tured with BHI broth for 15–18 h at 26˚C in aeration. Cultures were then diluted 1:10 in fresh,

warmed BHI broth containing 20 mM MgCl2 and 20 mM Na-oxalate and cultured at 37˚C for

3 h with aeration to induce expression of the T3SS. Bacterial concentrations were determined

using a spectrophotometer and diluted to desired concentrations in 1 × Dulbecco’s phosphate-

buffered saline (DPBS) for mouse infections or fresh medium for in vitro studies. Concentra-

tions of bacterial inoculums for mouse studies were confirmed by serial dilution and enumera-

tion on BHI agar plates.

Mouse infections

All animal work was performed at least twice to ensure reproducibility. 6–8 week-old C57BL/

6J or BLT1-/- [49] male and female mice were infected with Y. pestis KIM5+ or Y. pestis CO92

LUXpcysZK. For lipid measurements, mice were anesthetized with ketamine/xylazine and

administered 20 μL of Y. pestis KIM5+ suspended in 1× DPBS to the left nare as previously

described [48,100]. Mice were monitored for the development of moribund disease symptoms

twice daily and humanely euthanized when they met previously approved end point criteria.

At 6, 12, 24, 36, or 48 h, mice were humanely euthanized by CO2 asphyxiation and lungs were

harvested and lung masses recorded. Lungs were transferred to a 2 mL tube pre-filled with 2.8

mm ceramic beads (VWR, Cat. No. 10158–612), flash frozen on dry ice, and stored at -80˚C

until preparation for lipid analysis. For CFU studies, mice were humanely euthanized by CO2

asphyxiation at 12 or 24 h and lungs were harvested. Lungs were transferred to Whirl Pak’s

containing 1 mL of 1 x DPBS, and gently homogenized using a serological pipette. Homoge-

nized tissues were serial diluted and plated onto BHI agar. After 2 days of incubation at 26˚C,

bacteria were enumerated. For optical imaging and survival curves, mice were infected with Y.

pestis CO92 LUXpcysZK and monitored for bacterial proliferation as a function of biolumines-

cence by optical imaging and for the development of moribund disease. At each time point,

mice were anesthetized with isoflurane and imaged using the IVIS Spectrum imaging system

(Caliper Life Sciences, Hopkinton, MA). Average radiance (photons/s/cm2) was calculated for

the lungs as previously described [48]. For the exogenous LTB4 treatment, mice were intraperi-

toneally injected with 1 x DPBS or 10 nmol LTB4 (Cayman Chemical Cat. No. 20110). At 1 h

post-treatment, mice were administered 105 CFU of Y. pestis KIM5+ via intraperitoneal injec-

tion. At 3 h post infection, mice were humanely euthanized, and the peritoneal cavity was
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washed and collected using 2 lavages of 1 mL of 1 x DPBS. Lavages were used for CFU enumer-

ation or neutrophil quantification by flow cytometry.

Lipid extraction and quantification by LC-MS

To quantify LTB4 abundance from whole lungs, lungs were thawed with 1.8 mL of ice cold

75% methanol + 0.1% BHT for 3 minutes. Lungs were then homogenized with a Bead Ruptor

4 (OMNI) at speed 5 (5 m/s) for 4 cycles of 45 seconds with 1-minute pauses in which the

lungs were placed on ice. Tissue debris was then centrifuged for 10 min at 1,500 x g at 4˚C.

The supernatant (~1.5 mL) was then transferred to a fresh eppendorf tube, incubated at 4˚C

for 24 h to inactivate Y. pestis and extract lipids. After successful inactivation, samples were

removed from BSL3 containment and stored at -80˚C. Lipid extraction was then performed as

previously described [101]. For the expanded global lipid analysis, lungs were thawed with 1.5

mL of ice cold 1 x DPBS + HALT protease and phosphatase inhibitor cocktail for 3 minutes.

Lungs were then homogenized with a Bead Ruptor 4. Tissue debris was then centrifuged for 10

min at 1,500 x g at 4˚C. The supernatant (~1.5 mL) was then transferred to a fresh eppendorf

tube. From this, 250 μL of supernatant was combined with 750 μL of 100% methanol + 0.1%

BHT (final concentration of 75%) and incubated at 4˚C for 24 h to inactivate Y. pestis and

extract lipids. After confirmation of successful inactivation of Y. pestis, lipids were extracted

and quantified by the Wayne State University Lipidomics Facility as previously described

[102]. The extracted samples were analyzed for the fatty acyl lipidome using standardized

methods as described previously [103,104].

Flow cytometry

To quantify the neutrophil population from peritoneal lavages, cells were labeled with anti-

Ly6G antibody (1:400; BD Pharminogen Cat. No. 551460) and anti-CD11b antibody (1:600;

Biolegend Cat. No. 101212) for 1 h on ice, in the dark. Cells were pelleted and resuspended in

1% PFA. Single cell suspensions were generated by straining with 70 μM mesh prior to analysis

on the flow cytometer. Neutrophils were identified as cells with high expression of Ly6G and

CD11b and data is represented as the percent of the population that were classified as neutro-

phils. An example of the gating strategy is shown in S1 Fig.

Cell isolation and cultivation

Human neutrophils were isolated from the peripheral blood of healthy, medication-free

donors, as described previously [105]. Briefly, white blood cells were isolated from whole

blood using a 6% dextran solution. Neutrophils were then separated from monocytes using a

percoll gradient of 42% and 50.5%. RBCs were then lysed from the neutrophil containing layer

using 0.2% NaCl for 30 seconds and followed by a quench with 5 mL 1.6% NaCl. Neutrophil

isolations yielded� 95% purity and were used within 1 h of isolation. Murine neutrophils

were isolated from bone marrow of 7-12-week-old mice using an Anti-Ly-6G Microbeads kit

(Miltenyi Biotec Cat. No. 130-120-337) per the manufacturer’s instructions. Neutrophil isola-

tions yielded� 95% purity and were used within 1 h of isolation. Macrophages were differenti-

ated from murine bone marrow in DMEM supplemented with 1 mM Na-pyruvate and 10%

FBS for 6 days. Macrophages were either polarized with 10 ng/mL of GM-CSF (M1; Kingfisher

Biotech Cat. No. RP0407M) or with 30% L929 conditioned media and 10 ng/mL of M-CSF

(M2; Kingfisher Biotech Cat. No. RP0462M) throughout the differentiation. The medium was

replaced on days 1 and 3 (adapted from [106]). Polarization was confirmed by qRT-PCR, as

previously described [107], using markers for M1 and M2 phenotypes, TNF-α and Il-10,

respectively (S4 Fig). Murine mast cells were isolated and differentiated from bone marrow as
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previously described [108]. Briefly, isolated bone marrow cells were resuspended in BMMC

culture medium [DMEM containing 10% FCS, penicillin (100 units/mL), streptomycin (100

mg/mL), 2 mmol/L L-glutamine, and 50 mmol/L β-mercaptoethanol] supplemented with

recombinant mouse stem cell factor (SCF) (12.5 ng/mL; R&D Systems Cat. No. 455-MC) and

recombinant mouse IL-3 (10 ng/mL; R&D Systems Cat. No. 403-ML). Cells were plated at a

density of 1 x 106 cells/mL in a T-75 cm2 flask. Nonadherent cells were transferred after 48

hours into fresh flasks without disturbing the adherent (fibroblast) cells. Mast cells were visible

after 4 weeks of culture and propagated further or plated for experiments in DMEM without

antibiotics.

Leukocyte infections

Human neutrophils were resuspended in Kreb’s buffer (w/ Ca2+ and Mg2+) then adhered to

24-well plates for 30 min that were coated with pooled human serum prior to infection (wells

were washed twice with 1 x DPBS prior to plating the cells). Murine bone marrow neutrophils

were resuspended in RPMI + 5% FBS then adhered to 24-well plates for 30 min that were

coated with FBS prior to infection (wells were washed twice with 1 x DPBS prior to plating the

cells). Neutrophils were infected at a multiplicity of infection (MOI) of 20, 50, or 100 and incu-

bated for 1 h in a cell culture incubator at 37˚C with a constant rate of 5% CO2. Co-infections

were performed at a final MOI of 20 (MOI of 10 for each strain). 1 h post-infection, superna-

tants were collected, centrifuged for 1 min at 6,000 x g, and supernatants devoid of cells were

transferred to a fresh eppendorf tube. Macrophages were adhered to 24-well plates in DMEM

+ 10% FBS 1 day prior to infection. Macrophages were infected at an MOI of 20. At 4 h post-

infection, supernatants were collected, centrifuged for 1 min at 6,000 x g, and supernatants

devoid of cells were transferred to a fresh eppendorf tube. Mast cells were adhered to 24-well

plates in DMEM only for 1 h prior to infection. Mast cells were infected at an MOI of 20 or

treated with crystalline silica (100 mg/cm2). At 2 h post-infection supernatants were collected,

centrifuged for 1 min at 6,000 x g, and supernatants devoid of cells were transferred to a fresh

eppendorf tube. All infections were synchronized by centrifugation (200 x g for 5 min). All

samples were stored at -80˚C until ELISA.

Measurement of LTB4 by enzyme-linked immunosorbent assay

Supernatants of neutrophils, macrophages, and mast cells were collected and measured for

LTB4 by ELISA per manufacturer’s instructions (Cayman Chemicals Cat. No. 520111).

Cell viability assays

To determine leukocyte permeability, cells were incubated with trypan blue for 5 min and try-

pan blue exclusion was measured using SD100 counting chambers (VWR Cat. No.

MSPP-CHT4SD100) and a cell counter (Nexcelom Cellometer Auto T4). To determine leuko-

cyte cytotoxicity, lactate dehydrogenase (LDH) was measured from leukocyte supernatants

using the CytoTox 96 Non-Radioactive Cytotoxicity kit (Promega Cat. No. g1780) per the

manufacturer’s instructions.

Bacterial viability assays

To measure bacterial viability during interactions with neutrophils, murine neutrophils were

resuspended in RPMI + 5% FBS then adhered to 96-well white bottom plates for 30 min coated

with FBS prior to infection (wells were washed twice with 1 x DPBS prior to plating the cells).

Neutrophils were infected at an MOI of 20, centrifuged for 5 min at 200 x g, and bacterial
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viability was measured as a function of bioluminescence using a plate reader (BioTek Cytation

1 imaging reader).

Measurement of LcrV by western blot

Bacterial strains were cultured with BHI broth for 15–18 h at 26˚C in aeration. Cultures were

then diluted 1:10 in fresh warmed BHI broth containing 20 mM MgCl2 and 20 mM Na-oxalate

and cultured at 37 or 26˚C for 3 h. 1 OD600 of bacterial pellets were collected and resuspended

in 1 x SDS-PAGE loading buffer, boiled for 10 min, and 0.1 OD600 was separated on a 10%

SDS-PAGE gel. As a positive control, 0.2 g of recombinant LcrV protein was used (BEI

resources Cat. No. NR-32875). Samples were immunoblotted with polyclonal anti-LcrV anti-

body diluted to 1:4,000 (BEI Resources Cat. No. NR-31022). Anti-goat IgG HRP secondary

antibody was diluted to 1:5,000 (Bio-Techne Cat. No. HAF017). Densitometry was performed

using ImageJ software to compare LcrV bands between samples [109].

Statistics

For all studies, male and female mice or human donors were used and no sex biases were

observed for any phenotype. All in vivo experiments were repeated at least twice and in vitro
experiments at least 5 times. Where noted in the figure legends, figures may represent the com-

bined data from multiple biologically independent experiments. For in vitro experiments, each

data point represents data from biologically independent experiments performed on different

days. Where appropriate and as indicated in the figure legends, statistical comparisons were

performed with Prism (GraphPad) using one-way analysis of variance (ANOVA) with Dun-

nett’s or Tukey’s post hoc test, T-test with Mann-Whitney’s post hoc test, or Log-Rank analysis.

P values� 0.05 were considered statistically significant and reported. For LC-MS analysis of

lipids, a LIMMA—Moderated T-test was performed using a modified version of a previously

published protocol using R packages [110–112]. Briefly, raw data were transformed by taking

logarithmic base 2 followed by quantile normalization. Missing values were then ascribed

using a singular value decomposition method. Lipids missing > 40% of the values were

excluded from subsequent analysis. Finally, differentially abundant lipids (p� 0.05) were fur-

ther filtered by fold-change (FC) criteria (1 < log2FC < 1) and multiple comparisons testing

with a false discovery rate.

Supporting information

S1 Fig. Gating strategy for identifying neutrophil populations in the peritoneal cavity.

Example gating strategy from the PBS-treated group from Fig 3A.

(TIF)

S2 Fig. Absence of LTB4 response to Y. pestis is not due to cell death. (A-D) Murine

(BMNs) or (E-F) human (hPMNs) neutrophils were infected with Y. pestis (Yp) or mutants

that either lacked the Yop effectors (T3E) or lacked the Yop effectors and the T3SS [T3(-)] at

the indicated MOIs and cell permeability as a function of trypan exclusion or cytotoxicity as a

function of LDH release was measured at 1 h post-infection. Each symbol represents an inde-

pendent biological infection and the box plot represents the median of the group ± the range.

UI = uninfected. One-way ANOVA with Dunnett’s post hoc test compared to uninfected. * =

p� 0.05, ** = p� 0.01, *** = p� 0.001, # = p� 0.0001.

(TIF)

S3 Fig. Expression of T3SS needle required for LTB4 synthesis in response to Y. pestis. (A)

Representative western blot and Coomassie images of Y. pestis lysates (0.1 OD; 1 OD = 3 x 108
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CFU) harvested from cultures grown at 37˚C or 26˚C used for densitometry reported in Fig

6A. (B) Bacterial viability measured by a function of bioluminescence after 1 h infection of

neutrophils. + or Yp = Y. pestis,— or T3(-) = Y. pestis T3(-); E or T3E = Y. pestis T3E;

LcrV = 0.2 μg recombinant LcrV protein. Each symbol represents an independent biological

infection and the bar graph represents the mean ± the standard deviation. One-way ANOVA

with Tukey’s post hoc test compared to each condition. ns = not significant.

(TIF)

S4 Fig. M1 polarization required for macrophage synthesis towards Y. pestis T3SS.

qRT-PCR measurement of TNF-α and IL-10 in murine BMDMs differentiated towards M1 or

M2. Each symbol represents an independent biological sample and the box plot represents the

median of the group ± the range. T-test with Mann-Whitney’s post hoc test. * = p� 0.05, ** =

p� 0.01.

(TIF)

S5 Fig. Differential recognition of T3(-) Y. pestis between human and mice neutrophils. (A)

Murine (BMNs) or (B) human (hPMNs) neutrophils were infected with Y. pestis (Yp) or

mutants that either lacked the Yop effectors (T3E) or lacked the Yop effectors and the T3SS

[T3(-)] at the indicated MOIs and LTB4 was measured 1 h post-infection. Each symbol repre-

sents an independent biological infection and the box plot represents the median of the

group ± the range. UI = uninfected. One-way ANOVA with Dunnett’s post hoc test compared

to uninfected. *** = p� 0.001, # = p� 0.0001.

(TIF)

S1 Table. Changes in inflammatory lipids during first 48h of pneumonic plague. C57BL/6J

mice were infected with 10 x the LD50 of Y. pestis KIM5+ and lungs were harvested at 6, 12, 24,

36, and 48 h post-infection (n = 5). Total lipids were isolated from homogenized lungs and lip-

ids were quantified by LC-MS. Significant changes in lipid concentrations were observed in at

least one time point for 63 lipids. Lipids that were below the limit of detection for all time

points were excluded from statistical analysis.

(XLSX)

S2 Table. Bacterial strains and plasmids used in this study.

(DOCX)
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