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The bacterium Neisseria gonorrhoeae causes the sexually transmitted disease gonorrhea. N.

gonorrhoeae is an obligate human pathogen that colonizes mucosal surfaces of the urogenital

tract, pharynx, rectum, and conjunctiva, where it stimulates robust neutrophil recruitment.

Successful infection requires N. gonorrhoeae to overcome nutritional immunity, the process by

which hosts starve microbes of essential metals such as iron and zinc. N. gonorrhoeae has

unique ways to subvert nutritional immunity, particularly by producing transporters that bind

and extract metals from human metal-sequestering proteins. Because of the importance of

metal acquisition to N. gonorrhoeae colonization and infection, its metal acquisition systems

are potential targets for vaccines and therapeutics to combat the rise in antibiotic-resistant

gonorrhea [1]. Here, we review the nutritional immunity challenges faced by N. gonorrhoeae
with a particular focus on iron and zinc, how N. gonorrhoeae overcomes nutritional immunity

for successful infection, and open questions for future investigation. Due to space constraints,

we are not including work from other microbial systems in which nutritional immunity has

been investigated; we direct the reader to recent reviews on this topic, as well as a more com-

prehensive review on metal homeostasis in pathogenic Neisseria [2–4].

1. What are the nutritional immunity challenges that N.

gonorrhoeae faces in its obligate human host?

Free metals are scarce in humans and other animals. Instead, metals are bound by soluble proteins

and compounds whose abundance varies at different locations in the host. Of relevance to N.

gonorrhoeae, cervical secretions contain calprotectin (S100A8/A9) and psoriasin (S100A7) [5].

These proteins bind free zinc, limiting its availability to N. gonorrhoeae; calprotectin also binds

manganese, copper, nickel, and iron [6]. Neutrophils contain abundant calprotectin [7] and the

iron-binding protein lactoferrin [8]. Neutrophils also make lipocalin-2, which binds to sidero-

phores, small iron-binding molecules released by some non-Neisserial bacteria [9]. Neutrophil

metal-sequestering proteins are released into phagosomes and extracellularly, including in neutro-

phil extracellular traps [10]. N. gonorrhoeae that is exposed to serum/blood, whether in inflamma-

tory transudate or menstrual fluid, or during disseminated infection, faces high concentrations of

the iron-binding proteins transferrin and hemoglobin [11]. In contrast, seminal fluid is high in

zinc [12]. Altogether, N. gonorrhoeae experiences varied metal availability when infecting humans.

2. How does N. gonorrhoeae sense and respond to metal

limitation?

Pathogenic Neisseria encode the transcriptional regulators Fur and Zur, which mediate

changes in expression of metal homeostasis genes in response to intracellular levels of iron
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[13] and zinc [14], respectively (Fig 1). When intracellular iron concentration is high, Fur

binds iron and dimerizes, increasing its affinity for palindromic A/T rich sequences found in

the promoters of iron-responsive genes to repress their transcription. When intracellular iron

concentrations decline, iron dissociates from Fur, Fur affinity for the Fur binding sites

decreases, and repression of Fur-responsive genes is relieved. Similarly, Zur binds zinc and

recognizes a different consensus DNA sequence in Zur-regulated genes. Genes in the fur and

zur regulons encode proteins involved in metal acquisition, metal transport, and metabolism,

and as-yet uncharacterized proteins [13,14]. Fur can also enhance gene expression, potentially

by opening DNA for binding of RNA polymerase or other regulators [15].

Some genes in the fur and zur regulons encode ABC family metal importers, powered by

ATP hydrolysis, that localize to the cytoplasmic membrane and partner with high-affinity peri-

plasmic metal-binding proteins (Fig 1). Ferric iron is bound by FbpA in the periplasm and is

imported into the cytosol by the FbpB permease, energized by the FbpC ATPase [16]. Simi-

larly, zinc is bound by the periplasmic ZnuA and imported into the cytosol via the ZnuB per-

mease and ZnuC ATPase [17]. ZnuABC is also known as MntABC and is reported to enable

manganese import in N. gonorrhoeae, to confer resistance to reactive oxygen species [18].

3. How does N. gonorrhoeae use outer membrane receptors for

human metal-sequestering proteins to overcome nutritional

immunity?

N. gonorrhoeae has the remarkable ability to produce outer membrane transporters that serve

as receptors for the human metal-sequestering proteins described above, from which the

Fig 1. Metal acquisition systems expressed by N. gonorrhoeae in metal-limiting conditions. Outer membrane Tdfs produced by N. gonorrhoeae and their respective

ligands, to date, are represented above in matching colors. Transporter–ligand interactions are described in the text. Metal ions are represented as spheres and labeled as

Fe for iron and Zn for zinc. Zn� represents Zn and other divalent metals that bind at calprotectin’s His6 site. The TonB system energizes Tdfs to internalize metal ions by

moving the occluding plug domain (periplasmic circle attached to each transporter). ABC metal transport systems associated with Tdfs are found in the periplasm and

the cytosolic membrane. Cytoplasmic metalloregulators Fur and Zur bind iron and zinc, respectively, and alter expression of metal acquisition genes.

https://doi.org/10.1371/journal.ppat.1011091.g001
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transporters extract and import the cognate metals (Fig 1). The transporters show specificity

for the human versions of these proteins, reflecting the exquisite adaptation of N. gonorrhoeae
for the human host. Importantly, the transporters can also import unbound metals, although

there may not be free bioavailable metal in the host.

The prototype system in N. gonorrhoeae is the transferrin receptor, comprised of the TbpA

transporter and the TbpB lipoprotein that increases the affinity of TbpA for transferrin. Struc-

tural analysis of TbpA co-crystalized with human transferrin reveals the helix finger of TbpA

directly extends within a cleft on the C-lobe of human transferrin to extract iron [19,20]. The

outer membrane receptors are energized by the proton motive force harnessed by TonB,

ExbB, and ExbD, which pull on the “plug domain” to physically open each receptor to enable

transport; hence, they are collectively known as “Tdfs,” for TonB-dependent family members.

Similarly, N. gonorrhoeae expresses LbpAB for binding and extracting iron from lactoferrin,

and HpuAB for hemoglobin utilization [21,22]. For zinc acquisition, N. gonorrhoeae extracts

zinc from human calprotectin and psoriasin, using TdfH and TdfJ, respectively [10,23–25].

Zinc-loaded calprotectin supports zinc-dependent growth of N. gonorrhoeae in metal-stripped

chemically defined medium; conversely, calprotectin sequesters zinc in metal-replete tissue

culture medium such that N. gonorrhoeae growth is TdfH-dependent [10,26]. While N. gonor-
rhoeae does not produce siderophores, FetA enables the uptake of siderophores made by other

microbes, and FetBCD drive import into the cytosol [27]. Other transporters such as TdfF and

TdfG are expressed by N. gonorrhoeae in iron-limiting conditions, but their ligands are not

defined [28].

4. How do N. gonorrhoeae responses to metal limitation enable

infection?

Genes encoding metal acquisition proteins are derepressed in vivo, indicating that N. gonor-
rhoeae experiences metal limitation during infection [29]. N. gonorrhoeae survives in metal-

limiting microenvironments in vivo by exploiting human nutritional immunity proteins as

metal sources. For instance, N. gonorrhoeae survives in calprotectin-rich human neutrophil

extracellular traps in a TdfH-dependent manner [10], and TbpAB is necessary for initiating

urethral infection in human male volunteers [30]. The iron-repressed TdfF transporter is

unique to pathogenic Neisseriae and contributes to intracellular survival of N. gonorrhoeae,
dependent on host iron availability [28]. Additional human nutritional immunity proteins

may contribute to N. gonorrhoeae infection, such as calgranulin C (S100A12), from which N.

gonorrhoeae acquires zinc in a TonB-independent manner; how this is achieved is currently

unknown [23].

While TdfH and TdfJ are required for planktonic growth of N. gonorrhoeae in medium

where zinc is sequestered by calprotectin and psoriasin, they are surprisingly dispensable for

bacteria that are adherent to cells or abiotic surfaces [26]. N. gonorrhoeae exhibits distinct tran-

scriptional profiles between adherent and planktonic states, and in zinc-replete versus deplete

conditions: Genes that are significantly up-regulated in zinc-limited, adherent N. gonorrhoeae
encode the periplasmic metal-binding proteins ZnuA and FbpA, as well as metabolic proteins

not previously associated with metal homeostasis [26]. Thus, N. gonorrhoeae has evolved spe-

cific adaptations to respond to and resist host-mediated metal starvation.

5. What are the open questions to be addressed in N. gonorrhoeae

nutritional immunity studies?

Areas of ongoing and future research in N. gonorrhoeae nutritional immunity include the

following:
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1. What are the ligands for TdfF and TdfG? Conversely, are there bacterial receptors for other

S100 proteins like S100A12/calgranulin? Which transporters and metal-sequestering pro-

teins are used by N. gonorrhoeae at the different locations it infects in humans, whether

local or disseminated disease?

2. Bioavailability of nutrient metals varies in the human host (see [4]). How do other metal-

responsive genes contribute to survival of N. gonorrhoeae in metal-limited conditions?

Some could serve as accessory metal acquisition proteins that remain to be characterized.

Others may alter N. gonorrhoeae metabolism more broadly, an area for future study.

3. N. gonorrhoeae also requires metals such as manganese, copper, and cobalt; the Zur repres-

sor (called PerR in that report) has been reported as responsive to manganese [31]. What

gene products contribute to homeostasis of those metals, and how are the genes regulated?

What is the interplay between the systems that respond to different metals?

4. N. gonorrhoeae must also contend with metal intoxication, which is used as a host defense

strategy. What is the N. gonorrhoeae response to metal overload, how does it differ depend-

ing on the metal, and how does it overlap with the response to other stressors, like reactive

oxygen species?

5. Although the genes encoding metal-responsive proteins are mostly conserved among N.

gonorrhoeae, there are strain-specific differences in their expression and regulation [10,23].

What are the molecular mechanisms underlying these differences? Similarly, the related

pathogen N. meningitidis shares many of these genes with N. gonorrhoeae; how do metal

acquisition systems, particularly the outer membrane transporters, contribute to meningo-

coccal colonization and invasion? Finally, are these metal acquisition strategies conserved

in commensal species of Neisseria, and if so, how do they enable nasopharyngeal coloniza-

tion without causing disease?

Answering these questions will require multiomics technologies, imaging modalities to

measure metal concentrations in different cells and tissues, advances in biochemistry and

structural biology, and the robust genetics available in N. gonorrhoeae. The ensuing discoveries

will shed new light on this critical aspect of N. gonorrhoeae pathogenesis and point to new tar-

gets for combating this prevalent infectious disease.
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