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OverviewAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Microorganisms produce natural products as a means of combating competing microorgan-

isms and predators in the soil microenvironment. Modern medicine harnesses these naturally

occurring compounds as bioactive agents for drug development. FK506-binding proteins

(FKBPs) are enzymes that catalyze cis-trans peptidyl-prolyl isomerization, a key step during

protein folding and function. FKBPs are conserved across eukaryotes and can bind natural

products to form complexes that inhibit intracellular targets including calcineurin, TOR, and

the centrosome-associated protein CEP250. The specificity with which these natural products

bind the ubiquitous FKBPs to form protein-drug complexes with exquisite specificity for their

targets paved the pathway to develop FK506 (tacrolimus) and rapamycin (sirolimus) and their

analogs (pimecrolimus, everolimus, temsirolimus) as FDA approved drugs for transplant

recipients, cancer chemotherapy, dermatology, and interventional cardiology. Additionally,

because the organisms producing FKBP12 ligands are resident in soil, where natural products

can be deployed for survival, this further illustrates why these ligands have potential for devel-

opment as antimicrobial agents. The goal of this review is to highlight the known and

unknown targets of natural product FKBP12 ligands to take stock of advances and further pro-

mote research in this area.

Natural ligands with known targets

FK506 (tacrolimus)

FK506 is an FDA-approved immunosuppressive drug utilized to prevent and treat allograft

rejection during organ and tissue transplantation. FK506 was originally isolated from Strepto-
myces tsukubaensis during a search for immunosuppressive compounds and was discovered to

have potent immunosuppressive activity in both in vitro studies, such as in the mixed lympho-

cyte response assay, and also during in vivo murine studies [1]. The soil-resident bacterium S.

tsukubaensis likely evolved to synthesize FK506 as a means to inhibit competitors and thereby

enhance survival in the environmental niche. In fact, FK506 has been shown to inhibit growth

of a variety of fungal species, some of which are also present in soil, thus supporting the

hypothesis that S. tsukubaensis utilizes FK506 for competitive advantage [2,3,4]. The

FKBP12-FK506 crystal structure from the human fungal pathogen Cryptococcus neoformans
was recently elucidated in 2019 and is shown in Fig 1 [3]. The FKBP12-FK506-calcineurin
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crystal structure from humans has also been elucidated, and differences between the human

and fungal proteins have been targeted to develop fungal-specific FK506 derivatives [3,5].

Based on a peptidyl-prolyl cis-trans isomerization assay that measures FKBP12 enzymatic

activity, FK506 was found to bind FKBP12 and inhibit its function with an inhibition constant

(Ki) of approximately 1.7 nM [6]. Additionally, FKBP12 was independently identified as an

FK506-binding partner through binding assays in extracts from a Jurkat T-cell line and the

yeast Saccharomyces cerevisiae [7,8]. It was later found that the dissociation constant between

FK506 and FKBP12 is 0.4 nM, demonstrating that FK506 has a high binding affinity in addi-

tion to potent inhibition of FKBP12 enzymatic activity [9].

Fig 1. Chemical structures of FKBP12 ligands and crystal structure of FKBP12-FK506 inhibiting target

calcineurin. Chemical structures include rapamycin, FK506, FK520, meridamycin, WDB002, and antascomicin B.

FK506 chemical structure is shown with FKBP12 binding domain highlighted in red and the calcineurin binding

domain highlighted in blue. In the center is the crystal structure of Cryptococcus neoformans calcineurin and FKBP12

bound to natural product FK506 (Calcineurin A subunit colored dark blue, calcineurin B subunit colored light blue,

FKBP12 colored dark red, and FK506 colored by atom). Crystal structure adapted from “Harnessing calcineurin-

FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents” (PDB 6TZ8) [3]. The

original figure was published under CC BY 4.0 giving freedom to share and adapt figures from the source listed above.

https://doi.org/10.1371/journal.ppat.1011056.g001
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The FKBP12-FK506 complex was found to inhibit calcineurin after the discovery of cal-

cium-dependent FKBP12-FK506 binding in one of the first applications of glutathione S-

transferase fusions for affinity purification via binding to immobilized glutathione [10]. Calci-

neurin binding by the FK506-FKBP12 complex was confirmed with anti-calcineurin antibod-

ies as well as with in vitro and in vivo studies and was shown to have a direct impact on human

T-cell signaling [10–12]. The FKBP12-FK506 complex was further shown to bind and inhibit

calcineurin in fungi, demonstrating high conservation of the target of the FKBP12-FK506

complex [13,14].

FK520 (ascomycin)

FK520 was originally isolated from Streptomyces KK317 and Streptomyces hygroscopicus sub-

species yakushimaensis No. 7238, identified as an antifungal agent during an antimicrobial

search from the producing strains, and later found to have immunosuppressive activity in

studies searching for FK506 immunosuppressive analogs with lower toxicity [15,16]. FK520 is

a structural analog of FK506 differing by a single allyl to ethyl group substitution at the C21

position and has a modest approximately 3-fold reduction in immunosuppressive and antifun-

gal activity [4]. Similar to FK506, FK520 action requires FKBP12 as a binding partner, and the

FKBP12-FK520 complex inhibits calcineurin [17].

FK520 also has antimalarial activity against the protozoan parasite P. falciparum, and P. fal-
ciparum is susceptible to FK506 and rapamycin [17,18]. Interestingly, the FKBP12 ortholog in

P. falciparum acts as a protein chaperone in addition to exhibiting canonical peptidyl-prolyl

isomerization activity [19]. Studies focusing on FK520 show that antimalarial activity is dis-

tinct from the FK520 immunosuppressive activity. This was demonstrated by modifications to

the structure of FK520 that resulted in analogs with affinity for FKBP12 but not calcineurin.

The resulting nonimmunosuppressive compounds were still potently inhibitory against P. fal-
ciparum, providing evidence the mode of action may involve FKBP12 but not calcineurin [17].

Rapamycin (sirolimus)

Rapamycin was originally identified as a natural product of the soil-resident species S. hygro-
scopicus that exhibits potent antifungal activity against Candida albicans, Microsporum gyp-
sum, and Trichophyton granulosum [20]. Rapamycin has also been found to inhibit growth of

S. cerevisiae, C. neoformans, Aspergillus fumigatus, and Mucor circinelloides, some of which

also reside in the soil in nature [21–23].

In complex with FKBP12, rapamycin inhibits its target protein TOR (Target of Rapamycin).

FKBP12 loss of function mutations, including mutations in the FKBP12-active site/drug-bind-

ing pocket, result in resistance to rapamycin in S. cerevisiae, C. albicans, and C. neoformans
[22,24]. Additionally, TOR was identified as the target of the FKBP12-rapamycin complex

through genetic analysis of drug-resistant mutants in S. cerevisiae where spontaneous fungal

mutants resistant to rapamycin were isolated. Mutations responsible for resistance were identi-

fied in the genes encoding Tor1, Tor2, and FKBP12 [5,8].

In humans, the FKBP12-rapamycin complex inhibits the mammalian TOR ortholog

(mTOR), and treatment with rapamycin exerts an immunosuppressive effect [25,26]. Specifi-

cally, rapamycin inhibits T-cell proliferation in response to interleukin 2 (ILAU : Pleasenotethat}IL � 2}hasbeenfullyspelledoutas}interleukin2}atfirstmentioninthesentence}Specifically; rapamycininhibitsT � cellproliferationinresponsetointerleukin:::}Pleasecorrectifnecessary:-2) and also

impacts innate and adaptive immune responses [27]. Treatment with rapamycin is known to

induce autophagy in S. cerevisiae and mammalian systems [28,29].

Due to their shared requirement of binding to FKBP12 for activity, rapamycin and FK506

can compete with each other as reciprocal antagonists [30]. The inhibition of T-cell receptor

signaling by FK506 is competitively antagonized by excess rapamycin, and the inhibition of T-
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cell response to IL-2 by rapamycin is competitively antagonized by excess FK506. This

antagonistic activity was further confirmed biochemically in affinity assays where rapamycin

was found to displace FK506 from human FKBP12 and in studies in the yeast S. cerevisiae
[8,30–32].

WDB002

The most recently discovered natural FKBP12 ligand, WDB002, was identified in 2020 as a

potential FKBP12-binding partner when the genomes of Streptomyces malaysiensis isolates

were analyzed for gene clusters similar to those involved in the biosynthesis of rapamycin and

FK506. During this search, a series of natural products was identified including WDB001,

WDB002, and WDB011. These natural products have a conserved structural region, and crys-

tal structures of the FKBP12-WDB002 complex demonstrate that WDB002 binds in the hydro-

phobic pocket of FKBP12. WDB002 makes hydrogen bonding contacts similar to those

observed in the FKBP12 complexes with FK506 and rapamycin, and this results in high-affin-

ity binding to FKBP12 with a KD of approximately 4 nM. The target of the FKBP12-WDB002

complex was shown to be CEP250, a centrosome-associated protein. CEP250 was character-

ized as the target of FKBP12-WDB002 through an affinity-based protein assay, and the

FKBP12-WDB002 complex binds CEP250 with an approximate binding affinity of KD = 40

nM. In humans, CEP250 is a centrosome-associated protein, and treatment with WDB002 has

been shown to impact chromosome organization and segregation in USO2 human cells.

Although WDB002 has not yet been characterized to have antimicrobial activity, WDB002 is

under clinical investigation as an antiviral due to CEP250 interaction with a SARS-CoV-2 pro-

tein [33].

Natural ligands with unknown targets

Antascomycin

Antascomycins A through E were identified from Micromonospora n. sp. A92-306401 through

an assay monitoring displacement of FK506 bound to human FKBP12. Micromonospora n. sp.

A92-306401 is a fermentative bacterial strain isolated from soil [34]. The antascomycins were

purified through column chromatography, including silica gel and Sephadex, and shown to

bind FKBP12 with a range of affinities similar to those of FK506 and rapamycin. However, in

contrast to FK506, the antascomicins do not inhibit IL-2 production by T-lymphocytes. In

contrast to rapamycin, the antascomycins do not inhibit T-cell proliferation in a mixed lym-

phocyte reaction and therefore are not thought to have immunosuppressive activity [34]. At

this point, no other cellular activities have been characterized for antascomicins and no target

of the FKBP12-antascomicin complexes has been identified.

Meridamycin

Meridamycin was isolated from the soil bacterium S. hygroscopicus during a search for new

immunomodulatory compounds. Meridamycin inhibits FK506 binding to FKBP12 in a com-

petitive binding assay with an IC50 of 1 ng/mL. Meridamycin is nonimmunosuppressive and

antagonizes both FK506 and rapamycin immunosuppressive activity in murine T cells [35].

Compared to FK506 and rapamycin, the FKBP12-binding domain of meridamycin shows con-

served structural characteristics; however, no target has been identified for the FKBP12-meri-

damycin complex. The meridamycin biosynthetic gene cluster has been studied for genetically

engineered modification, and an expression system for the synthetic pathway has been devel-

oped in Escherichia coli [36,37]. In 2016, four congeners were identified and named
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meridamycin A, B, C, and D [38]. When meridamycin and its congeners were tested for anti-

microbial activity, only the original meridamycin showed activity against the soil dwelling-bac-

terium Bacillus subtilis [38].

Discussion

Several natural products bind FKBP12 to form a complex capable of inhibiting their respective

targets, including FK506, rapamycin, and WDB002. Organisms naturally producing these

compounds likely utilize them to compete and enhance survival in their environmental niches.

In fact, several of these compounds were isolated from the soil-dwelling bacterium Streptomy-
ces. Fungal pathogens including Aspergillus and Cryptococcus species are also soil-dwelling

microorganisms and are susceptible to several of these natural products. Water-resident P. fal-
ciparum is also susceptible to growth inhibition from some of these ligands, and these findings

further support the hypothesis that producing organisms deploy these FKBP12 ligands for

competitive advantage. Therefore, it is logical to consider that antimicrobial therapeutics

might be developed from these natural product compounds [39]. However, the immunosup-

pressive activity of FK506 and rapamycin precludes their use for the treatment of fungal infec-

tions in immunocompromised patients, and current studies therefore seek to identify

modified natural ligands that are potent antifungal agents with diminished or abolished

immunosuppressive activity.

Two such ligands include meridamycin and antascomycin, but lack of commercial avail-

ability has limited research on these two ligands and precluded discovery of their possible tar-

gets. It will be of great scientific value to identify potential targets of the FKBP12-antascomycin

and FKBP12-meridamycin complexes, such as through binding affinity screens as with

recently identified WDB002. Complementary approaches to define their potential novel tar-

gets could include the following: (1) genetic selection of drug-resistant fungal mutants and

whole genome sequence analysis; (2) analysis of overexpression libraries to identify genes con-

ferring resistance in susceptible fungi; or (3) haploinsufficiency profiling/homozygous profil-

ing (HIP-HOP) studies with S. cerevisiae. It is possible these ligands may bind additional

FKBPs to form protein-drug complexes that have novel targets. Alternatively, their sole func-

tion may be to bind and occupy FKBP12 and protect against FK506 or rapamycin, either to

protect the producing microbe or to protect microbes of the surrounding flora. However, the

potential to identify novel antimicrobial compounds secreted by environmental microorgan-

isms represents an exciting avenue for continued drug target and drug discovery.
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