

PEARLS

Natural product ligands of FKBP12: Immunosuppressive antifungal agents FK506, rapamycin, and beyond

Angela Rivera¹*, Joseph Heitman^{1,2,3}

1 Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America, **2** Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America, **3** Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America

* angela.rivera@duke.edu

Overview

Microorganisms produce natural products as a means of combating competing microorganisms and predators in the soil microenvironment. Modern medicine harnesses these naturally occurring compounds as bioactive agents for drug development. FK506-binding proteins (FKBPs) are enzymes that catalyze *cis-trans* peptidyl-prolyl isomerization, a key step during protein folding and function. FKBPs are conserved across eukaryotes and can bind natural products to form complexes that inhibit intracellular targets including calcineurin, TOR, and the centrosome-associated protein CEP250. The specificity with which these natural products bind the ubiquitous FKBPs to form protein-drug complexes with exquisite specificity for their targets paved the pathway to develop FK506 (tacrolimus) and rapamycin (sirolimus) and their analogs (pimecrolimus, everolimus, temsirolimus) as FDA approved drugs for transplant recipients, cancer chemotherapy, dermatology, and interventional cardiology. Additionally, because the organisms producing FK506 ligands are resident in soil, where natural products can be deployed for survival, this further illustrates why these ligands have potential for development as antimicrobial agents. The goal of this review is to highlight the known and unknown targets of natural product FK506 ligands to take stock of advances and further promote research in this area.

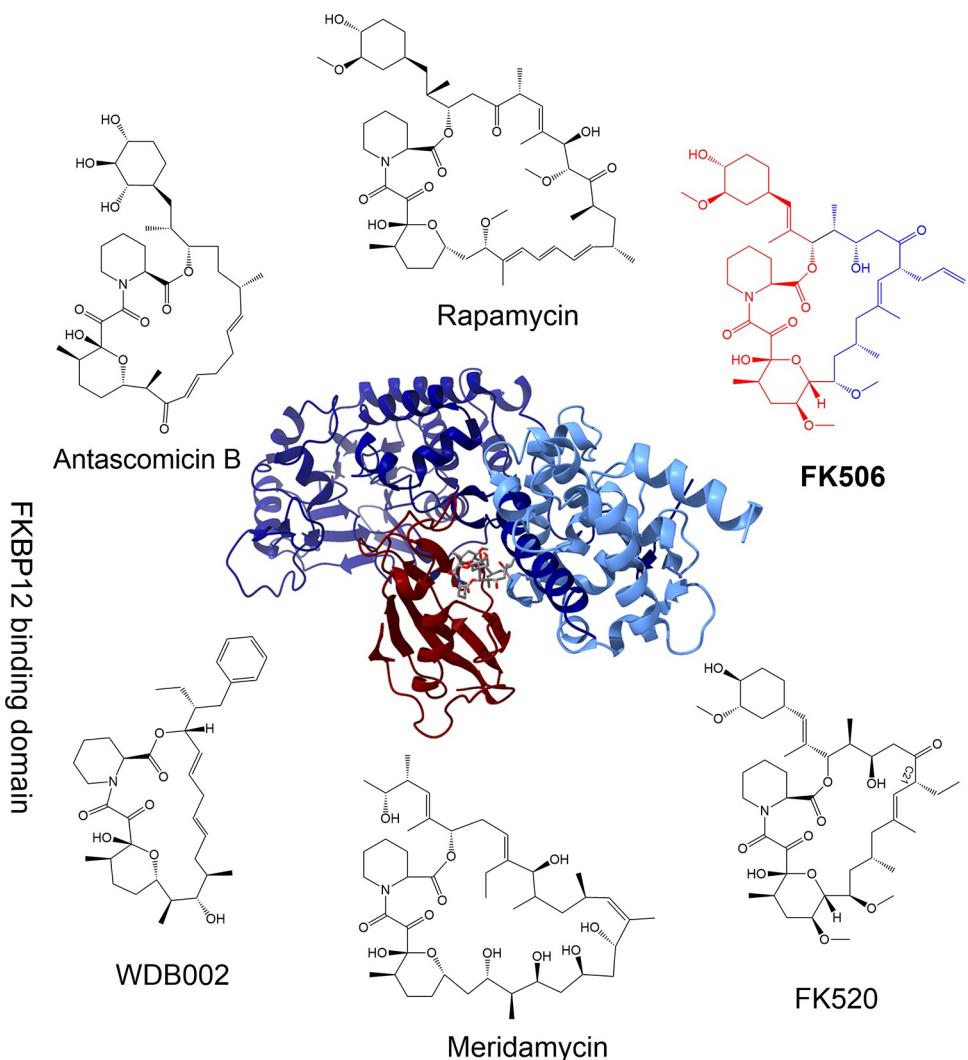
OPEN ACCESS

Citation: Rivera A, Heitman J (2023) Natural product ligands of FKBP12: Immunosuppressive antifungal agents FK506, rapamycin, and beyond. PLoS Pathog 19(1): e1011056. <https://doi.org/10.1371/journal.ppat.1011056>

Editor: Mary Ann Jabra-Rizk, University of Maryland, Baltimore, UNITED STATES

Published: January 12, 2023

Copyright: © 2023 Rivera, Heitman. This is an open access article distributed under the terms of the [Creative Commons Attribution License](#), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Funding: The authors received no specific funding for this work.

Competing interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: One of the co-authors, JH, is currently serving as a senior editor for the Pearls series.

Natural ligands with known targets

FK506 (tacrolimus)

FK506 is an FDA-approved immunosuppressive drug utilized to prevent and treat allograft rejection during organ and tissue transplantation. FK506 was originally isolated from *Streptomyces tsukubaensis* during a search for immunosuppressive compounds and was discovered to have potent immunosuppressive activity in both *in vitro* studies, such as in the mixed lymphocyte response assay, and also during *in vivo* murine studies [1]. The soil-resident bacterium *S. tsukubaensis* likely evolved to synthesize FK506 as a means to inhibit competitors and thereby enhance survival in the environmental niche. In fact, FK506 has been shown to inhibit growth of a variety of fungal species, some of which are also present in soil, thus supporting the hypothesis that *S. tsukubaensis* utilizes FK506 for competitive advantage [2,3,4]. The FKBP12-FK506 crystal structure from the human fungal pathogen *Cryptococcus neoformans* was recently elucidated in 2019 and is shown in Fig 1 [3]. The FKBP12-FK506-calcineurin

Fig 1. Chemical structures of FKBP12 ligands and crystal structure of FKBP12-FK506 inhibiting target calcineurin. Chemical structures include rapamycin, FK506, FK520, meridamycin, WDB002, and antascomycin B. FK506 chemical structure is shown with FKBP12 binding domain highlighted in red and the calcineurin binding domain highlighted in blue. In the center is the crystal structure of *Cryptococcus neoformans* calcineurin and FKBP12 bound to natural product FK506 (Calcineurin A subunit colored dark blue, calcineurin B subunit colored light blue, FKBP12 colored dark red, and FK506 colored by atom). Crystal structure adapted from “Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents” (PDB 6TZ8) [3]. The original figure was published under CC BY 4.0 giving freedom to share and adapt figures from the source listed above.

<https://doi.org/10.1371/journal.ppat.1011056.g001>

crystal structure from humans has also been elucidated, and differences between the human and fungal proteins have been targeted to develop fungal-specific FK506 derivatives [3,5].

Based on a peptidyl-prolyl *cis-trans* isomerization assay that measures FKBP12 enzymatic activity, FK506 was found to bind FKBP12 and inhibit its function with an inhibition constant (K_i) of approximately 1.7 nM [6]. Additionally, FKBP12 was independently identified as an FK506-binding partner through binding assays in extracts from a Jurkat T-cell line and the yeast *Saccharomyces cerevisiae* [7,8]. It was later found that the dissociation constant between FK506 and FKBP12 is 0.4 nM, demonstrating that FK506 has a high binding affinity in addition to potent inhibition of FKBP12 enzymatic activity [9].

The FKBP12-FK506 complex was found to inhibit calcineurin after the discovery of calcium-dependent FKBP12-FK506 binding in one of the first applications of glutathione S-transferase fusions for affinity purification via binding to immobilized glutathione [10]. Calcineurin binding by the FK506-FKBP12 complex was confirmed with anti-calcineurin antibodies as well as with in vitro and in vivo studies and was shown to have a direct impact on human T-cell signaling [10–12]. The FKBP12-FK506 complex was further shown to bind and inhibit calcineurin in fungi, demonstrating high conservation of the target of the FKBP12-FK506 complex [13,14].

FK520 (ascomycin)

FK520 was originally isolated from *Streptomyces* KK317 and *Streptomyces hygroscopicus* sub-species *yakushimaensis* No. 7238, identified as an antifungal agent during an antimicrobial search from the producing strains, and later found to have immunosuppressive activity in studies searching for FK506 immunosuppressive analogs with lower toxicity [15,16]. FK520 is a structural analog of FK506 differing by a single allyl to ethyl group substitution at the C21 position and has a modest approximately 3-fold reduction in immunosuppressive and antifungal activity [4]. Similar to FK506, FK520 action requires FKBP12 as a binding partner, and the FKBP12-FK520 complex inhibits calcineurin [17].

FK520 also has antimalarial activity against the protozoan parasite *P. falciparum*, and *P. falciparum* is susceptible to FK506 and rapamycin [17,18]. Interestingly, the FKBP12 ortholog in *P. falciparum* acts as a protein chaperone in addition to exhibiting canonical peptidyl-prolyl isomerization activity [19]. Studies focusing on FK520 show that antimalarial activity is distinct from the FK520 immunosuppressive activity. This was demonstrated by modifications to the structure of FK520 that resulted in analogs with affinity for FKBP12 but not calcineurin. The resulting nonimmunosuppressive compounds were still potently inhibitory against *P. falciparum*, providing evidence the mode of action may involve FKBP12 but not calcineurin [17].

Rapamycin (sirolimus)

Rapamycin was originally identified as a natural product of the soil-resident species *S. hygroscopicus* that exhibits potent antifungal activity against *Candida albicans*, *Microsporum gypseum*, and *Trichophyton granulosum* [20]. Rapamycin has also been found to inhibit growth of *S. cerevisiae*, *C. neoformans*, *Aspergillus fumigatus*, and *Mucor circinelloides*, some of which also reside in the soil in nature [21–23].

In complex with FKBP12, rapamycin inhibits its target protein TOR (Target of Rapamycin). FKBP12 loss of function mutations, including mutations in the FKBP12-active site/drug-binding pocket, result in resistance to rapamycin in *S. cerevisiae*, *C. albicans*, and *C. neoformans* [22,24]. Additionally, TOR was identified as the target of the FKBP12-rapamycin complex through genetic analysis of drug-resistant mutants in *S. cerevisiae* where spontaneous fungal mutants resistant to rapamycin were isolated. Mutations responsible for resistance were identified in the genes encoding Tor1, Tor2, and FKBP12 [5,8].

In humans, the FKBP12-rapamycin complex inhibits the mammalian TOR ortholog (mTOR), and treatment with rapamycin exerts an immunosuppressive effect [25,26]. Specifically, rapamycin inhibits T-cell proliferation in response to interleukin 2 (IL-2) and also impacts innate and adaptive immune responses [27]. Treatment with rapamycin is known to induce autophagy in *S. cerevisiae* and mammalian systems [28,29].

Due to their shared requirement of binding to FKBP12 for activity, rapamycin and FK506 can compete with each other as reciprocal antagonists [30]. The inhibition of T-cell receptor signaling by FK506 is competitively antagonized by excess rapamycin, and the inhibition of T-

cell response to IL-2 by rapamycin is competitively antagonized by excess FK506. This antagonistic activity was further confirmed biochemically in affinity assays where rapamycin was found to displace FK506 from human FKBP12 and in studies in the yeast *S. cerevisiae* [8,30–32].

WDB002

The most recently discovered natural FKBP12 ligand, WDB002, was identified in 2020 as a potential FKBP12-binding partner when the genomes of *Streptomyces malaysiensis* isolates were analyzed for gene clusters similar to those involved in the biosynthesis of rapamycin and FK506. During this search, a series of natural products was identified including WDB001, WDB002, and WDB011. These natural products have a conserved structural region, and crystal structures of the FKBP12-WDB002 complex demonstrate that WDB002 binds in the hydrophobic pocket of FKBP12. WDB002 makes hydrogen bonding contacts similar to those observed in the FKBP12 complexes with FK506 and rapamycin, and this results in high-affinity binding to FKBP12 with a K_D of approximately 4 nM. The target of the FKBP12-WDB002 complex was shown to be CEP250, a centrosome-associated protein. CEP250 was characterized as the target of FKBP12-WDB002 through an affinity-based protein assay, and the FKBP12-WDB002 complex binds CEP250 with an approximate binding affinity of $K_D = 40$ nM. In humans, CEP250 is a centrosome-associated protein, and treatment with WDB002 has been shown to impact chromosome organization and segregation in USO2 human cells. Although WDB002 has not yet been characterized to have antimicrobial activity, WDB002 is under clinical investigation as an antiviral due to CEP250 interaction with a SARS-CoV-2 protein [33].

Natural ligands with unknown targets

Antascomycin

Antascomycins A through E were identified from *Micromonospora n. sp.* A92-306401 through an assay monitoring displacement of FK506 bound to human FKBP12. *Micromonospora n. sp.* A92-306401 is a fermentative bacterial strain isolated from soil [34]. The antascomycins were purified through column chromatography, including silica gel and Sephadex, and shown to bind FKBP12 with a range of affinities similar to those of FK506 and rapamycin. However, in contrast to FK506, the antascomycins do not inhibit IL-2 production by T-lymphocytes. In contrast to rapamycin, the antascomycins do not inhibit T-cell proliferation in a mixed lymphocyte reaction and therefore are not thought to have immunosuppressive activity [34]. At this point, no other cellular activities have been characterized for antascomycins and no target of the FKBP12-antascomycin complexes has been identified.

Meridamycin

Meridamycin was isolated from the soil bacterium *S. hygroscopicus* during a search for new immunomodulatory compounds. Meridamycin inhibits FK506 binding to FKBP12 in a competitive binding assay with an IC_{50} of 1 ng/mL. Meridamycin is nonimmunosuppressive and antagonizes both FK506 and rapamycin immunosuppressive activity in murine T cells [35]. Compared to FK506 and rapamycin, the FKBP12-binding domain of meridamycin shows conserved structural characteristics; however, no target has been identified for the FKBP12-meridamycin complex. The meridamycin biosynthetic gene cluster has been studied for genetically engineered modification, and an expression system for the synthetic pathway has been developed in *Escherichia coli* [36,37]. In 2016, four congeners were identified and named

meridamycin A, B, C, and D [38]. When meridamycin and its congeners were tested for anti-microbial activity, only the original meridamycin showed activity against the soil dwelling-bacterium *Bacillus subtilis* [38].

Discussion

Several natural products bind FKBP12 to form a complex capable of inhibiting their respective targets, including FK506, rapamycin, and WDB002. Organisms naturally producing these compounds likely utilize them to compete and enhance survival in their environmental niches. In fact, several of these compounds were isolated from the soil-dwelling bacterium *Streptomyces*. Fungal pathogens including *Aspergillus* and *Cryptococcus* species are also soil-dwelling microorganisms and are susceptible to several of these natural products. Water-resident *P. falciparum* is also susceptible to growth inhibition from some of these ligands, and these findings further support the hypothesis that producing organisms deploy these FKBP12 ligands for competitive advantage. Therefore, it is logical to consider that antimicrobial therapeutics might be developed from these natural product compounds [39]. However, the immunosuppressive activity of FK506 and rapamycin precludes their use for the treatment of fungal infections in immunocompromised patients, and current studies therefore seek to identify modified natural ligands that are potent antifungal agents with diminished or abolished immunosuppressive activity.

Two such ligands include meridamycin and antascomycin, but lack of commercial availability has limited research on these two ligands and precluded discovery of their possible targets. It will be of great scientific value to identify potential targets of the FKBP12-antascomycin and FKBP12-meridamycin complexes, such as through binding affinity screens as with recently identified WDB002. Complementary approaches to define their potential novel targets could include the following: (1) genetic selection of drug-resistant fungal mutants and whole genome sequence analysis; (2) analysis of overexpression libraries to identify genes conferring resistance in susceptible fungi; or (3) haploinsufficiency profiling/homozygous profiling (HIP-HOP) studies with *S. cerevisiae*. It is possible these ligands may bind additional FKBP to form protein-drug complexes that have novel targets. Alternatively, their sole function may be to bind and occupy FKBP12 and protect against FK506 or rapamycin, either to protect the producing microbe or to protect microbes of the surrounding flora. However, the potential to identify novel antimicrobial compounds secreted by environmental microorganisms represents an exciting avenue for continued drug target and drug discovery.

References

1. Tanaka H, Kuroda A, Marusawa H, Hatanaka H, Kino T, Goto T, et al. Structure of FK506, a novel immunosuppressant isolated from *Streptomyces*. *J Am Chem Soc*. 1987; 109:5031–5033. <https://doi.org/10.1021/ja00250a050>
2. Odom A, Del Poeta M, Perfect J, Heitman J. The immunosuppressant FK506 and its nonimmunosuppressive analog L-685,818 are toxic to *Cryptococcus neoformans* by inhibition of a common target protein. *Antimicrob Agents Chemother*. 1997; 41:156–161. <https://doi.org/10.1128/AAC.41.1.156> PMID: 8980772
3. Juvvadi PR, Fox D, Bobay BG, Hoy MJ, Gobeil SMC, Venters RA, et al. Harnessing calcineurin-FK506-FKBP12 crystal structures from invasive fungal pathogens to develop antifungal agents. *Nat Commun*. 2019; 10:4275. <https://doi.org/10.1038/s41467-019-12199-1> PMID: 31537789
4. Arndt C, Cruz MC, Cardenas ME, Heitman J. Secretion of FK506/FK520 and rapamycin by *Streptomyces* inhibits the growth of competing *Saccharomyces cerevisiae* and *Cryptococcus neoformans*. *Microbiology*. 1999; 145:1989–2000. <https://doi.org/10.1099/13500872-145-8-1989> PMID: 10463165
5. Kissinger CR, Parge HE, Knighton DR, Lewis CT, Pelletier LA, Tempczyk A, et al. Crystal structures of human calcineurin and the human FKBP12-FK506-calcineurin complex. *Nature*. 1995; 378:641–644. <https://doi.org/10.1038/378641a0> PMID: 8524402

6. Harrison RK, Stein RL. Substrate specificities of the peptidyl prolyl cis-trans isomerase activities of cyclophilin and FK-506 binding protein: evidence for the existence of a family of distinct enzymes. *Biochemistry*. 1990; 29:3813–3816. <https://doi.org/10.1021/bi00468a001> PMID: 1693856
7. Siekierka JJ, Hung SH, Poe M, Lin CS, Sigal NH. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. *Nature*. 1989; 341:755–757. <https://doi.org/10.1038/341755a0> PMID: 2477714
8. Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. *Science*. 1991; 253:905–909. <https://doi.org/10.1126/science.1715094> PMID: 1715094
9. Bierer BE, Mattila PS, Standaert RF, Herzenberg LA, Burakoff SJ, Crabtree G, et al. Two distinct signal transmission pathways in T lymphocytes are inhibited by complexes formed between an immunophilin and either FK506 or rapamycin. *Proc Natl Acad Sci U S A*. 1990; 87:9231–9235. <https://doi.org/10.1073/pnas.87.23.9231> PMID: 2123553
10. Liu J, Farmer JD, Lane WS, Friedman J, Weissman I, Schreiber SL. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. *Cell*. 1991; 66:807–815. [https://doi.org/10.1016/0092-8674\(91\)90124-h](https://doi.org/10.1016/0092-8674(91)90124-h) PMID: 1715244
11. Clipstone NA, Crabtree GR. Calcineurin is a key signaling enzyme in T lymphocyte activation and the target of the immunosuppressive drugs cyclosporin A and FK506. *Ann N Y Acad Sci*. 1993; 696:20–30. <https://doi.org/10.1111/j.1749-6632.1993.tb17138.x> PMID: 7509131
12. Liu J, Albers MW, Wandless TJ, Luan S, Alberg DG, Belshaw PJ, et al. Inhibition of T cell signaling by immunophilin-ligand complexes correlates with loss of calcineurin phosphatase activity. *Biochemistry*. 1992; 31:3896–3901. <https://doi.org/10.1021/bi00131a002> PMID: 1373650
13. Foor F, Parent SA, Morin N, Dahl AM, Ramadan N, Chrebet G, et al. Calcineurin mediates inhibition by FK506 and cyclosporin of recovery from alpha-factor arrest in yeast. *Nature*. 1992; 360:682–684. <https://doi.org/10.1038/360682a0> PMID: 1281518
14. Breuder T, Hemenway CS, Movva NR, Cardenas ME, Heitman J. Calcineurin is essential in cyclosporin A- and FK506-sensitive yeast strains. *Proc Natl Acad Sci U S A*. 1994; 91:5372–5376. <https://doi.org/10.1073/pnas.91.12.5372> PMID: 7515500
15. Arai T, Kouama Y, Suenaga T, Honda H. Ascomycin, an antifungal antibiotic. *J Antibiot*. 1962; 15:231–232. PMID: 14040785
16. Hatanaka H, Kino T, Miyata S, Inamura N, Kuroda A, Goto T, et al. FR-900520 AND FR-900523, novel immunosuppressants isolated from a *Streptomyces* II. Fermentation, isolation and physico-chemical and biological characteristics. *J Antibiot*. 1988; 41:1592–1601. <https://doi.org/10.7164/antibiotics.41.1592> PMID: 2461926
17. Monaghan P, Fardis M, Revill WP, Bell A. Antimalarial effects of macrolactones related to FK520 (ascomycin) are independent of the immunosuppressive properties of the compounds. *J Infect Dis*. 2005; 191:1342–1349. <https://doi.org/10.1086/428454> PMID: 15776382
18. Bell A, Wernli B, Franklin RM. Roles of peptidyl-prolyl cis-trans isomerase and calcineurin in the mechanisms of antimalarial action of cyclosporin A, FK506, and rapamycin. *Biochem Pharmacol*. 1994; 48:495–503. [https://doi.org/10.1016/0006-2952\(94\)90279-8](https://doi.org/10.1016/0006-2952(94)90279-8) PMID: 7520696
19. Monaghan P, Bell A. A *Plasmodium falciparum* FK506-binding protein (FKBP) with peptidyl-prolyl cis-trans isomerase and chaperone activities. *Mol Biochem Parasitol*. 2005; 139:185–195. <https://doi.org/10.1016/j.molbiopara.2004.10.007> PMID: 15664653
20. Sehgal SN, Baker H, Vézina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. *J Antibiot*. 1975; 28:727–732. <https://doi.org/10.7164/antibiotics.28.727> PMID: 1102509
21. Wong GK, Griffith S, Kojima I, Demain AL. Antifungal activities of rapamycin and its derivatives, prolylrapamycin, 32-desmethylrapamycin, and 32-desmethoxyrapamycin. *J Antibiot*. 1998; 51:487–491. <https://doi.org/10.7164/antibiotics.51.487> PMID: 9666177
22. Cruz MC, Cavallo LM, Görlich JM, Cox G, Perfect JR, Cardenas ME, et al. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in *Cryptococcus neoformans*. *Mol Cell Biol*. 1999; 19:4101–4112.
23. Bastidas RJ, Shertz CA, Lee SC, Heitman J, Cardenas ME. Rapamycin exerts antifungal activity *in vitro* and *in vivo* against *Mucor circinelloides* via FKBP12-dependent inhibition of TOR. *Eukaryot Cell*. 2012; 11:270–281. <https://doi.org/10.1128/EC.05284-11> PMID: 22210828
24. Lorenz MC, Heitman J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. *J Biol Chem*. 1995; 270:27531–27537. <https://doi.org/10.1074/jbc.270.46.27531> PMID: 7499212

25. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. *Cell*. 1994; 78:35–43. [https://doi.org/10.1016/0092-8674\(94\)90570-3](https://doi.org/10.1016/0092-8674(94)90570-3) PMID: 7518356
26. Choi J, Chen J, Schreiber SL, Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. *Science*. 1996; 273:239–242. <https://doi.org/10.1126/science.273.5272.239> PMID: 8662507
27. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. *Nat Rev Immunol*. 2009; 9:324–337. <https://doi.org/10.1038/nri2546> PMID: 19390566
28. Noda T, Ohsumi Y. Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast. *J Biol Chem*. 1998; 273:3963–3966. <https://doi.org/10.1074/jbc.273.7.3963> PMID: 9461583
29. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. *Nat Genet*. 2004; 36:585–595. <https://doi.org/10.1038/ng1362> PMID: 15146184
30. Dumont FJ, Melino MR, Staruch MJ, Koprak SL, Fischer PA, Sigal NH. The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. *J Immunol*. 1990; 144:1418–1424. PMID: 1689353
31. Harding MW, Galat A, Uehling DE, Schreiber SL. A receptor for the immuno-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase. *Nature*. 1989; 341:758–760. <https://doi.org/10.1038/341758a0> PMID: 2477715
32. Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. *J Immunol*. 1990; 144:251–258. PMID: 1688572
33. Shigdel UK, Lee S-J, Sowa ME, Bowman BR, Robison K, Zhou M, et al. Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable protein surface. *Proc Natl Acad Sci U S A*. 2020; 117:17195–17203. <https://doi.org/10.1073/pnas.2006560117> PMID: 32606248
34. Fehr T, Sanglier JJ, Schuler W, Gschwind L, Ponelle M, Schilling W, et al. Antascomicins A, B, C, D and E. Novel FKBP12 binding compounds from a *Micromonospora* strain. *J Antibiot*. 1996; 49:230–233. <https://doi.org/10.7164/antibiotics.49.230> PMID: 8626235
35. Salturo GM, Zink DL, Dahl A, Nielsen J, Wu E, Huang L, et al. Meridamycin: A novel nonimmunosuppressive FKBP12 ligand from *Streptomyces hygroscopicus*. *Tetrahedron Lett*. 1995; 36:997–1000. [https://doi.org/10.1016/0040-4039\(94\)02425-B](https://doi.org/10.1016/0040-4039(94)02425-B)
36. He M, Haltli B, Summers M, Feng X, Hercul J. Isolation and characterization of meridamycin biosynthetic gene cluster from *Streptomyces* sp. NRRL 30748. *Gene*. 2006; 377:109–118. <https://doi.org/10.1016/j.gene.2006.03.021> PMID: 16806745
37. Liu H, Jiang H, Haltli B, Kulowski K, Muszynska E, Feng X, et al. Rapid cloning and heterologous expression of the meridamycin biosynthetic gene cluster using a versatile *Escherichia coli*–*Streptomyces* artificial chromosome vector, pSBAC. *J Nat Prod*. 2009; 72:389–395. <https://doi.org/10.1021/np8006149> PMID: 19191550
38. Liu M, Lu C, Shen Y. Four new meridamycin congeners from *Streptomyces* sp. SR107 RSC Adv. 2016; 6:49792–49796. <https://doi.org/10.1039/C6RA09772C>
39. Chater KF. *Streptomyces* inside-out: a new perspective on the bacteria that provide us with antibiotics. *Philos Trans R Soc B Biol Sci*. 2006; 361:761–768. <https://doi.org/10.1098/rstb.2005.1758> PMID: 16627293