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Abstract

Previous studies have shown after the resolution of acute infection and viraemia, foot-and-

mouth disease virus (FMDV) capsid proteins and/or genome are localised in the light zone

of germinal centres of lymphoid tissue in cattle and African buffalo. The pattern of staining

for FMDV proteins was consistent with the virus binding to follicular dendritic cells (FDCs).

We have now demonstrated a similar pattern of FMDV protein staining in mouse spleens

after acute infection and showed FMDV proteins are colocalised with FDCs. Blocking anti-

gen binding to complement receptor type 2 and 1 (CR2/CR1) prior to infection with FMDV

significantly reduced the detection of viral proteins on FDCs and FMDV genomic RNA in

spleen samples. Blocking the receptors prior to infection also significantly reduced neutralis-

ing antibody titres, through significant reduction in their avidity to the FMDV capsid. There-

fore, the binding of FMDV to FDCs and sustained induction of neutralising antibody

responses are dependent on FMDV binding to CR2/CR1 in mice.

Author summary

Foot and mouth disease virus causes a highly contagious acute vesicular disease, resulting

in more than 50% of cattle, regardless of vaccination status, and almost 100% of African

buffalo becoming persistently infected for long periods (months) of time. Yet, the mecha-

nisms associated with establishment of persistent infections are still poorly understood.

Post infection, animals are characterised by the presence of long-lived neutralising anti-

body titres, which contrast with the short-lived response induced by vaccination. We have

used a mouse model to understand how foot-and-mouth disease virus is trapped and

retained in the spleen for up to 28 days post infection and how the absence of antigen on
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FDCs correlates with a reduced neutralising antibody response. Our results highlight the

potential of targeting antigen to FDCs to stimulate potent neutralising antibody responses

after vaccination.

Introduction

One of the features of foot-and-mouth disease virus (FMDV) infection, which has a major

impact on the control and eradication of foot-and-mouth disease (FMD), is the existence of

the “carrier state” [1,2]. A carrier of FMDV is defined as an animal from which live virus can

be recovered from the nasopharynx after 28 days following infection, which frequently occurs

in ruminants after acute infection [3]. Only ruminants have been shown to become FMDV

carriers, and among them, the majority of infected African buffalo become carriers after acute

infection and can carry FMDV for up to 5 years or more, which is why African buffalo are con-

sidered the primary reservoir of FMDV in Africa [4–7]. Over 50% of cattle exposed to FMDV

become carriers [4,5,8], and although current vaccines prevent clinical disease, they do not

prevent primary infection in the nasopharynx, therefore vaccinated animals can still become

carriers of FMDV [9].

FMDV infection of ruminants elicits the production of specific serum neutralising antibod-

ies which can provide protection for years [6,10]. T cell depletion studies in cattle identified

that CD4+ T-cell-independent antibody responses are required for resolution of clinical FMD

in cattle [11]. Similarly, FMDV vaccines induce predominantly CD4+ T-independent antibody

responses that are enhanced by T cell activation [12]. Current inactivated FMD vaccines gen-

erally offer only a short-lived immune response in the host, due to the inability to induce

FMDV-specific memory B cells. Neither infection nor vaccination induces a significant num-

ber of circulating memory B cells, despite a key difference of longer duration of immunity

post-infection compared to post-vaccination [13].

Antigen retention on stromal follicular dendritic cells (FDCs) has been shown to maintain

humoral immune responses by retaining antigen-containing complement-coated immune

complexes (ICs) on their surface for long periods of time via complement receptors (CR2/

CR1) and/or antibody Fc receptors [14–16]. FDCs are specialised immune cells of stromal ori-

gin found in the spleen, lymph nodes (LNs) and other lymphoid tissue including tonsil and

mucosal surfaces, within B cell follicles in the light zones of germinal centres (GCs) [17]. They

are necessary for GC formation, lymphoid follicle organisation and promoting B cell prolifera-

tion, survival and differentiation [18]. FDCs display native antigens within ICs to both naïve

and GC B cells; therefore, FDCs are crucial for an effective humoral immune response [19].

The longevity of FDCs and their ability to trap and retain antigens in their native forms has

also been exploited by certain pathogens. FDCs represent a major extracellular reservoir for a

number of viruses and other pathogens including, but not limited to, human immunodefi-

ciency virus (HIV), vesicular stomatitis virus (VSV), bovine viral diarrhoea virus (BVDV) and

prions [20–23]. Juleff et al. first hypothesised that upon natural infection FMDV binds to and

is retained by FDCs in the form of immune-complexed FMDV particles, resulting in pro-

longed stimulation of the anti-FMDV immune response, which maintain high levels of neu-

tralising antibodies through continual exposure of B cells to FMDV-ICs on FDCs [24]. In

cattle it was demonstrated that the virus can persist in association with FDCs in the lymphoid

tissues of the head and neck [24]. These data provided insight into the potential mechanisms

of viral persistence and the long-lasting antibody responses seen upon natural infection. An

alternative study has described the site of FMDV persistence as pharyngeal epithelial cells in
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both vaccinated and non-vaccinated persistently infected cattle within the mucosa-associated

lymphoid tissue, interestingly associated with CR2+ sub-epithelial lymphoid follicles [25]. Our

previous data have also suggested that in buffalo persistently infected with the Southern Afri-

can Territories (SAT) FMDV serotypes SAT-1, SAT-2 and SAT-3, quantities of FMDV RNA

were significantly higher in the GC-containing regions of lymphoid tissues compared to epi-

thelium samples, which again warranted further investigation into the possibility of virus-per-

sistence in association with FDCs [26].

Data from experiments in mice have been fundamental in demonstrating the complement

receptor-mediated retention of certain pathogens on FDCs [27,28]. For example, Ho et al.

were able to demonstrate the binding of HIV to lymph node FDCs by using a rat monoclonal

antibody (mAb) 7G6 to block CR2, which in turn prevented binding and retention of virions

[29]. This observation was confirmed with the use of CR2/CR1-deficient (Cr2−/−) mice,

whereby no virus could be detected on FDCs [29].

Using a mouse model of FMDV persistence, our previous data suggested that splenic

FDCs were able to trap and maintain FMDV for up to 63 days post infection (dpi) [30]. The

main aim of the current study was to identify the receptor(s) involved in the maintenance

of FMDV antigen within the spleen, and whether retention of antigen impacted the genera-

tion and maintenance of neutralising antibodies to FMDV in mice. We show that the block-

ing of CR2/CR1 on FDCs prevented binding and retention of FMDV, strongly suggesting

this interaction is mediated by FMDV binding to CR2/CR1. Further investigation using

super-resolution microscopy showed significant co-localisation of FMDV antigen with

CR2/CR1+ FDCs in the spleen. Moreover, blocking of CR2/CR1, and consequently absence

of FMDV antigen on FDCs, resulted in the significant reduction of neutralising antibody

responses to FMDV. A key function of FDCs in the GC reaction is the presentation of anti-

gen, in the form of ICs, to B cells, driving affinity maturation. Blocking CR2/CR1 resulted

in antibodies with a reduced capacity to neutralise virus and lower binding affinity to FMD

virus-like particles (VLPs) compared to control animals. Until now, CR2/CR1 were not

known to bind and maintain FMDV antigen on FDCs, or the impact of antigen retention

on the production of high avidity, neutralising antibodies; therefore, knowledge of this

interaction could enable a targeted approach to vaccine design, through the binding of

complement-coated FMDV-ICs on FDCs via CR2/CR1 to increase duration of immunity

post-vaccination.

Results

FMDV can only bind ex vivo to FDCs in the form of immune complexes

The binding of FMDV to the FDC network in spleen samples harvested from naïve mice was

examined in situ. Spleen samples embedded in O.C.T compound from naïve mice were used

to evaluate the ability of FMDV to bind in different forms. The three forms evaluated, all in the

presence of complement provided through the addition of normal mouse serum (NMS), were:

FMDV antibody (IB11) alone, FMDV antigen (O1/Manisa/TUR/69) alone and FMDV ICs

(antibody and antigen). FMDV was only able to bind in clusters typical of FDC networks, as

seen in spleen samples following in vivo FMDV infections in mice [31], when in the form of

ICs. The negative control condition, IB11 FMDV antibody alone with NMS, produced no sig-

nal (Fig 1A) and only a small number of isolated cells were positive for FMDV upon addition

of antigen alone with NMS (Fig 1B). A bright signal is detected when FMDV antigen, FMDV

antibody and NMS have been incubated together for 1 hour, to allow formation of ICs, prior

to addition to the spleen samples (Fig 1C).
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Fig 1. Ex vivo FMDV immune complex deposition assays. Confocal microscopy images of cryosections from naïve

mice spleens after addition of different forms of FMDV. (A) FMDV antibody (IB11), (B) FMDV antigen (O1/Manisa/

TUR/69) or (C) FMDV ICs (O1/Manisa/TUR/69 antigen and IB11 antibody) were pre-incubated for 1 hour with 5%

NMS prior to addition to the cryosections. FMDV (green) was labelled with polyclonal rabbit anti-FMDV-O1 and

detected using anti-rabbit 488. (A) Absence of signals for FMDV in spleen cryosections when treated with antibody

alone, (B) few isolated cells stained positive for FMDV upon addition of antigen alone and (C) large bright green

clusters showing the binding of FMDV ICs in the B cell follicles in the spleen. Nuclei stained blue (DAPI). Scale

bars = 100μm.

https://doi.org/10.1371/journal.ppat.1009942.g001
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Monoclonal antibody (mAb) 4B2 binds CR2/CR1+ in Balb/C mice and does

not affect the proportion of immune cells in the spleen

In order to study antigen retention, a mouse anti-CR2/CR1 mAb 4B2 was used, which had

been shown to block CR2/CR1 for up to 6 weeks in vivo in C57 Black mice, thus an excellent

reagent for studying long term persistence of FMDV on FDCs in mice [32]. First, mice were

injected with mAb 4B2, or IgG1 as an isotype control, and effects on splenocytes determined

by flow cytometry at intervals afterwards up to 35 days post injection. We chose three anti-CR

mAbs to test the blocking ability of mAb 4B2 up to 35 days post injection. The most notable

reduction was the binding of mAb 7G6 to splenocytes from 2 days post inoculation (Fig 2A).

This mAb binds a similar and overlapping epitope on CR1 and CR2 as mAb 4B2 as described

previously [32].

Up to 35 days post inoculation mAb 4B2 is still capable of blocking CR, with a significant

reduction of anti-CR2/CR1 mAbs binding to splenocytes, as demonstrated not only by mAb

7G6, but mAbs 8C12, which is monospecific to CR1, and 7E9, which binds a different epitope

on CR2/CR1 (Fig 2B). This is in alignment with previous data, whereby the blocking effect is

not purely due to steric inhibition, but induces a substantial decrease in the expression level of

receptors when mAb 4B2 is used in vivo [32].

Fig 2. Flow cytometric analysis of splenocytes from mice treated with mAb 4B2 or control IgG, comparing cell subsets and

availability of CR. Flow cytometry was used to identify the availability of complement receptors in mice after treatment with mAb 4B2

and the percentage of cell subsets, compared to control mice treated with IgG1. Spleen samples were taken at (A, D) early time points

and (B, E) late time points from mice treated with 4B2 or IgG1 and naïve animals. At the early time points (A) there is a trend whereby

mice treated with mAb 4B2 show a smaller number of positive cells to the CR antibodies, compared to the IgG1 or control groups,

although this is not significant; 8C12 p = 0.312; 7G6 p = 0.061; 7E9 p = 0.194. By the late time points (B) mice treated with 4B2 had

significantly reduced binding of the three anti-CR antibodies (p = 0.03) to their cells compared to the control mice. A representative

histogram (C) of the number of cells positive for mAb 7G6 (CR2/CR1) from a mouse in the control group compared to a mouse from

the mAb 4B2 treated group at the late time points. The percentage of the different splenic cell subsets CD8 and CD4 T cells, B cells

(B220), macrophages (CD169) and dendritic cells (CD11b) (D-E) remained unchanged after treatment with 4B2 when analysed from

both early and late time points after antibody treatment. A representative flow plot (F) of the CD8a and CD4 positive cells from a mouse

from the 4B2 group at a late time point. Naïve animals were used as controls as they were untreated. �p values are 0.03 using the non-

parametric Mann-Whitney U test to compare the medians of the two treatment groups.

https://doi.org/10.1371/journal.ppat.1009942.g002

PLOS PATHOGENS FMDV binding to CR2/CR1 on FDCs

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009942 May 5, 2022 5 / 27

https://doi.org/10.1371/journal.ppat.1009942.g002
https://doi.org/10.1371/journal.ppat.1009942


Treatment with mAb 4B2 did not affect the abundance of CD8a cytotoxic T cells, CD4 T

helper cells, B cells (B220+ cells), marginal zone macrophages (CD169) and monocytes

(CD11b), at early or late timepoints (Fig 2D and 2E respectively). Importantly, immunohis-

tochemistry (IHC) analysis showed the presence of CD21/CD35+ FDCs in the spleens of mice

treated with mAb 4B2 (Fig 3). These data are consistent with data from Kulik et al. that also

reported that in vivo injection of mAb 4B2 does not induce the death of immune cells includ-

ing FDCs, but leads to substantial blocking of binding of other mAb to CR2 and CR1 [32].

Reduced immune complex trapping by FDC in the spleens of mice treated

with mAb 4B2

We next investigated the effects of in vivo mAb 4B2 treatment on the ability of FDCs to trap

ICs. Mice were injected with mAb 4B2 (or an IgG1 isotype control) and 1 day later injected

with pre-formed peroxidase-anti-peroxidase (PAP) containing ICs which can bind to FDCs in
vivo via CR2/CR1 [33]. Spleen sections were analysed by confocal microscopy 1 day later (Fig

3). The presence of CR2/CR1-expressing FDC was detected using mAb 7E9. In control-treated

mice, PAP-ICs were consistently detected in association with FDC networks, with 95% of the

FDC networks positive for PAP. In contrast, in the spleens of mice treated with mAb 4B2,

PAP-ICs were detected in fewer than 2% of the FDC networks examined, similar to the back-

ground levels observed in naïve mice (Table 1). This data demonstrates that pre-treatment of

mice with mAb 4B2 effectively blocks the retention of ICs by splenic FDCs in vivo.

CR2/CR1-blockade enhances the viraemia during FMDV infection

Next, we determined the effects of mAb 4B2-mediated CR2/CR1-blockade on the viraemia

during FMDV infection. Mice were treated with mAb 4B2, or IgG1 as a control, and 1 day

later injected with FMDV. By two days after infection a statistically significant, 10-fold increase

in the viraemia in sera was detected in mAb 4B2-treated mice compared to control-treated

mice (Fig 4A). Viral RNA quantification corroborated the plaque assay results, whereby mAb

4B2-treated mice showed a statistically significant, 10-fold increase of viral genome in the

serum compared to the control-treated mice (Fig 4B). By 7 dpi the viraemia was cleared in

both groups and no detectable virus was detected by plaque assay or qPCR. Naïve mice were

used as negative controls and were negative for both the plaque assay and qPCR. These data

importantly show that blockade of CR2/CR1 did not affect the ability of the virus to replicate,

in fact the CR2/CR1 blockade resulted in a higher titre of virus in sera post-infection with

FMDV in mice.

CR2/CR1-blockade reduces the trapping and persistence of FDMV antigen

in the spleen

Next, we determined whether CR2/CR1 blockade similarly impeded the trapping and persis-

tence of FMDV in the spleen. Mice were treated with mAb 4B2 or IgG1, 1 day later injected

with FMDV, and spleens (n = 8/group) collected at weekly intervals afterwards. Spleens from

naïve mice were used as controls. The location of FMDV and FDC networks in the spleens

was determined by immunofluorescence confocal microscopy (Fig 5A–5D). We used mAb

7E9 to detect FDC since the treatment of mice with mAb 4B2 does not completely block the

binding of mAb 7E9 to CR2/CR1 (Figs 2 and 3). The total number of FDC networks and

whether they were positive or negative for FMDV is represented in Table 2.

Despite the differences in FMDV antigen retention on FDCs, the total number of FDCs

from mice in both the IgG1 control group and the mice treated with the CR2/CR1-blockade
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Fig 3. Effect of pre-treatment with mAb 4B2 on the binding of PAP on the FDC networks in mouse spleen. BALB/

c mice were treated with 500 μg of 4B2 (n = 3) or IgG1 (n = 4) control 24 hours before immunisation intravenously

with peroxidase anti-peroxidase (PAP). Naïve mice were untreated. Spleen samples were collected in OCT compound

from mice culled 1-day post inoculation with PAP. A) Cryosections were analysed via confocal microscopy for the

presence of PAP associated to the FDC network. Confocal microscopy images are arranged in rows and columns

according to the treatment and the staining. B) Mice from the 4B2 treatment group had significantly less PAP bound

to FDCs compared the control group, p value of 0.05 using the non-parametric Mann-Whitney U test to compare the

medians of the two treatment groups. PAP panels: show PAP labelled green, detected with anti-rabbit 488. PAP was

detected in FDC networks in IgG1 control mice, but not in 4B2 treated mice. Absence of signal to PAP in naïve mouse

spleen. FDC Network: light zone FDCs labelled red with Alexa Fluor 594-conjugated anti-mouse CD21/CD35 (CR2/

CR1) antibody, clone 7E9; FDC clusters were detected in all groups. Macrophages: marginal zone macrophages

surrounding the light zone GC labelled grey with conjugated mAb CD169-APC. Merged images: show deposition of

PAP within the FDCs network (yellow, co-localisation) of the IgG1 control mice but not in 4B2 treated mice or naïve

mice. Nuclei stained blue (DAPI). Scale bars = 50 μm.

https://doi.org/10.1371/journal.ppat.1009942.g003
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were not significantly different (Fig 6A). This confirms data obtained previously [32], and

therefore the significant reduction in FMDV antigen retention in mice pre-treated with mAb

4B2 is not due to the lack of FDC networks, but specifically as a result of the blockade of CR2/

CR1.

In IgG1 isotype control treated mice, FMDV antigen was detected in the majority of FDC

networks by 7 dpi. Although the number of FMDV-antigen-positive FDC networks gradually

declined as the infection progressed, FMDV antigen was detectable in association with approx-

imately 10% of the FDC networks at 28 dpi (Fig 6B). In contrast, no association of FMDV anti-

gen with FDCs above background levels was detected in the spleens of mAb 4B2 treated mice,

with the exception of 4 mice, suggesting that CR2/CR1-blockade had prevented the trapping

and retention of FMDV on FDC.

Table 1. Immunofluorescence examination of FDC networks in spleens of mice treated with CR block (4B2) or an

isotype control (IgG1) 1 day before PAP immunisation.

Groups 4B2a IgG1b

Total number of FDC networks imaged 128 166

Number of FDC networks positive for PAP 2 158

Percentage of FDC networks positive for PAP (%) 1.6 95.2

Medians of PAP-positive FDC networks 0.00 95

an = 3 mice
bn = 4 mice

https://doi.org/10.1371/journal.ppat.1009942.t001

Fig 4. Viraemia in 4B2 treated and control-treated mice in response to FMDV infection. The presence of viraemia in serum samples from mice treated with 4B2 or

IgG1 was investigated by (A) plaque assay and (B) qRT-PCR. Serum samples were collected from 4B2 and IgG1 treated mice at 2 and 7 dpi. The quantity of virus in the

mouse serum at 2 dpi is expressed as (A) log 10 of the number of plaque forming units (PFU) per 1 ml serum and (B) log 10 of the genome copy number (GCN), with

CT values� 35 for 3D FMDV deemed negative and recorded as 0. Each data point represents an individual animal, and the line represents the median values. Naïve

mice at 2 dpi and all serum samples harvested from 7 dpi were negative for viraemia. P values of<0.05 using the non-parametric Mann-Whitney U test to compare the

medians of the two treatment groups.

https://doi.org/10.1371/journal.ppat.1009942.g004
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Comparison of the presence of viral RNA similarly revealed that CR2/CR1-blockade had

prevented the accumulation and persistence of FMDV in the spleen. While high levels of viral

RNA were detected in the spleens of control-treated mice until 21 dpi, the levels in 4B2-treated

mice were below the detection limit (Fig 6C). However, although FMDV antigen was detect-

able in association with FDCs in the spleens of control-treated mice by 28 dpi, the levels of

viral RNA in whole spleen samples were below the detection limit in all groups at this time.

Thus, these data show that trapping and persistence of FMDV antigen is dependent on FMDV

binding to FDCs via CR2/CR1.

Fig 5. Effect of pre-treatment with 4B2 preventing the binding of FMDV on FDCs in mouse spleens. Confocal microscopy images are arranged in rows and

columns according to the treatment, day post infection and the staining. BALB/c mice treated with 500 μg of either mAb 4B2 or IgG1 control on day -1 before

challenge with FMDV. FMDV-infected mouse spleen samples were collected at (A) 7, (B) 14, (C) 21 and (D) 28 dpi from IgG1 control mice and 4B2 mice

(n = 8 per group per timepoint). Naïve mouse spleens were taken at 7 dpi (n = 4) and 28 dpi (n = 4). FMDV panels: show FMDV protein labelled green with

biotinylated llama single domain anti-FMDV 12S antibody VHH-M3 and streptavidin Alexa-Fluor-488. FMDV was detected in the IgG1 control group at all

timepoints. FMDV was not detected in the spleens of the 4B2 treated group at any of the time points, with the exception of four mice, three harvested at day 14

and one at day 21. There was an absence of signal for FMDV in naïve mouse spleen at all time points. FDC Network: show FDCs labelled red with Alexa Fluor

594-conjugated anti-mouse CD21/CD35 (CR2/CR1) antibody, clone 7E9; FDC clusters were detected at all time points in control, 4B2 treated and naïve mice.

Merged images: show deposition of FMDV within the light zone FDC network of IgG1 control mice (yellow–colocalization); but absence of FMDV within the

light zone FDC network of 4B2 treated mice and naïve mice (red). Nuclei stained blue (DAPI). Scale bars = 50 μm.

https://doi.org/10.1371/journal.ppat.1009942.g005
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Co-localisation of CR2/CR1 with FMDV

Localisation of FMDV was consistently found in murine spleens within the FDC networks.

Further investigation using stimulated emission depletion (STED) microscopy for super-reso-

lution images confirmed that FMDV proteins were predominantly co-localised with CR2/CR1

on FDCs (Fig 7). ImageJ software was used to confirm that the distribution of the CR2/CR1-

and FMDV-antigen-associated fluorochromes were preferentially co-localised, compared to

that predicted by the null hypothesis that each of these were randomly and independently dis-

tributed [33,34]. This analysis confirmed a highly significant and preferential association of

the FMDV antigen with CR2/CR1 on FDCs when compared to the null hypothesis that the

pixels were randomly distributed (Fig 7B).

Virus isolation

In order to determine whether the FMDV antigen retained on the FDCs in murine spleens

was infectious, an FMDV-susceptible cell line was inoculated with spleen homogenates from

FMDV infected animals. The spleens from 7 mice culled at 7 dpi were used: 2 mice pre-treated

with the mAb 4B2; 2 mice pre-treated with the IgG1 isotype control and 3 mice which received

no prior treatment before infection with FMDV. All samples were negative confirming previ-

ous reports, that in the mouse model [31], infectious FMDV could not be detected in whole

spleen samples even though antigen could be detected in the FDC networks.

CR2/CR1-blockade reduces the generation of neutralising antibodies in

FMDV infected mice

Since the retention of antigen on FDCs is important for the induction and maintenance of

high-titre antibody responses and B cell affinity maturation [14,35], we next tested the hypoth-

esis that CR2/CR1-blockade in FMDV-infected mice would impede the generation of virus

neutralising antibodies. Serum samples were collected from mAb 4B2- or control IgG1-treated

FMDV-infected mice and incubated with FMDV-susceptible cells and FMDV for their ability

to neutralise the virus.

High titres of virus-specific neutralising antibodies were detected in the sera of control

IgG1-treated mice by 7 dpi, titres increased by day 14 and these were maintained up to 28 dpi

(Fig 8). In contrast, while virus-specific neutralising antibodies were detected in the sera of

mAb 4B2-treated mice by 7 dpi, these did not increase at later time points post infection and

their titres were significantly reduced when compared to those in the serum of control IgG1--

treated mice (Fig 8).

Table 2. Immunofluorescence examination of mouse spleen treated with mAb 4B2 or control IgG1 for FMDV in FDC networks at 7, 14, 21 and 28 dpi and naïve

mice at 7 and 28 dpi.

Groups 4B2a IgG1a Naïveb

DPI 7 14 21 28 7 14 21 28 7 28

Number of FDC networks 579 1078 1100 1091 549 1106 1146 1236T 244 575

Number of FDC networks positive for FMDV 10 152 18 3 343 357 258 128 5 10

Percentage FDC networks positive for FMDV (%) 1.73 14.1 1.6 0.3 62.5 32.3 22.5 10.4 2.05 1.7

Medians of FDC networks positive for FMDV 0.83 0.31 0.96 0.00 63.09 32.97 22.64 9.11 1.89 1.76

an = 8 mice per time point
bn = 4 mice per time point

https://doi.org/10.1371/journal.ppat.1009942.t002
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Fig 6. Quantification of FMDV antigen and RNA in spleens from 4B2-treated and isotype control treated mice detected by confocal microscopy and RT-

qPCR. Spleen samples were collected from BALB/c mice at 7, 14, 21 and 28 dpi (n = 8/group/timepoint) following treatment with either mAb 4B2 or IgG1

isotype control one day prior to IP challenge with 106.2 TCID50 of FMDV/O/UKG/34/2001.Sections were cut using a cryostat and a cross-section was taken of

the spleens by consistently collecting 16 sections per animal with an approximate 70 μm gap between each section. A) FDC networks were visualised, imaged

and counted using mAb 7E9, an anti-CR2/CR1 antibody. There were no significant differences in the total number of FDC networks in the group treated with

mAb 4B2 compared to the IgG1 isotype control. B) FMDV was detected using a biotinylated llama single domain anti-FMDV 12S antibody VHH-M3, and the

percentage of FDC networks which were positive for FMDV was calculated. Mice treated with mAb 4B2 had significantly less FMDV in their FDC networks

compared to the isotype control mAb, with a P value of�0.001 from 7, 21 and 28 post infection. C) The samples were analysed by RT-qPCR for the presence of

FMDV RNA and the results are expressed as copies per 108 copies of 18S rRNA. Each data point represents an individual animal, and the line represents the

median values. CT values� 35 for 3D FMDV were deemed negative and recorded as 0. Naïve mice (n = 4) were tested at 7 and 28 dpi as negative controls.

Using the non-parametric Mann-Whitney U test to compare the medians of the two groups, at 7 dpi p value of 0.001; 14 dpi p value of 0.007; 21 dpi p value of

0.031.

https://doi.org/10.1371/journal.ppat.1009942.g006
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CR2/CR1-blockade had no effect on the total IgG/IgM FMDV-specific

antibody titres

We next used indirect ELISAs to determine the isotypes of the FMDV-specific antibodies pro-

duced in the sera of mice from each treatment group. Despite the significant decrease in the

level of virus-neutralising antibodies in the sera of the mAb 4B2-treated mice, there were no

significant differences in the titre of virus-specific IgG produced at any of the time points ana-

lysed (Fig 9A). A FMDV mAb of known concentration was used in the ELISA as a standard to

determine the concentration of FMDV-specific IgG in the polyclonal sera (Fig 9B). At 7 dpi, 4

mice from the 4B2 group and 3 mice from the IgG1 group had FMDV-specific IgM antibodies,

and as expected no mice had IgM titres after this timepoint (Fig 9C).

CR2/CR1-blockade reduces antibody titres to the neutralising FMDV G-H loop

Next, an ELISA was carried out to compare the antibody titres in the mAb 4B2-treatment

group and the control group against the O/UKG/12/2001 VP1129-169 G-H loop (Fig 10A). In

Fig 7. Co-localisation of FMDV with FDCs. BALB/c mice were infected with FMDV/O/UKG/34/2001 and high-resolution images were taken of spleen samples using

a STED confocal microscope. A) Spleen taken from an infected mouse 7 dpi, demonstrating the co-localisation of FMDV (green) with FDCs (red). B) Morphometric

analysis using ImageJ confirmed that FMDV was preferentially associated with FDCs in spleen tissues (n = 7) and significantly greater than the null hypothesis that the

pixels were randomly distributed, with a p value of 0.0023.

https://doi.org/10.1371/journal.ppat.1009942.g007
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mice, the G-H loop is a neutralising epitope of FMDV, and a G-H loop peptide vaccine is suffi-

cient to protect against FMDV challenge [36,37]. Mice treated with mAb 4B2 had significantly

lower antibody titres to the G-H loop compared to the control group, which may have contrib-

uted to the decreased ability of the antibodies from the 4B2-treated mice to neutralise FMDV.

However, addition of G-H loop peptide to inhibit the G-H loop activity in mouse sera did not

significantly reduce the titre of the VNT assays; therefore, virus neutralisation is not solely con-

ferred by binding to the GH-loop.

Fig 8. Effect of 4B2 treatment on titres of FMDV neutralising antibodies in mouse serum. FMDV neutralising antibodies were evaluated from serum

samples taken from BALB/c mice at 7, 14, 21 and 28 dpi with FMDV. Mice had either been pre-treated with mAbs 4B2 or IgG1 1 day prior to FMDV infection.

Naïve mice were used as controls. Each data point represents an individual animal, and the line represents the median antibody titre. Neutralising antibody

titres are expressed as the serum dilution that neutralised 50% of 100 TCID50 of the virus. Using the non-parametric Mann-Whitney U test to compare the

medians of the two groups, at 14 dpi p value of 0.001, 21 dpi p value of 0.004 and 28 dpi p value of 0.003.

https://doi.org/10.1371/journal.ppat.1009942.g008

PLOS PATHOGENS FMDV binding to CR2/CR1 on FDCs

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009942 May 5, 2022 13 / 27

https://doi.org/10.1371/journal.ppat.1009942.g008
https://doi.org/10.1371/journal.ppat.1009942


CR2/CR1-blockade decreases antibody avidity to FMD VLPs

We then investigated whether CR2/CR1-blockade had affected the avidity of the FMDV-spe-

cific antibodies for FMDV antigen (Fig 10B). Using the data shown in Fig 9B, known concen-

trations of FMDV-specific IgG in polyclonal sera from infected mice from each group were

incubated with stable FMD VLP and the antibody dissociation/association rates (koff/kon) rates

Fig 9. Effect of 4B2 treatment on titres of FMDV specific antibodies. FMDV-specific antibodies in serum samples from mice treated with mAb 4B2 or an

isotype control antibody (IgG1) were detected by ELISA. Serum samples were collected at 7, 14, 21 and 28 dpi and tested for (A, B) IgG and (C) IgM

antibodies. Naïve sera were included on all ELISA plates and the cut-off was set at 1.5 times the OD of the naïve sera. Antibody titres were either expressed as

(A, C) the reciprocal log10 of the last positive dilution or (B) using a known FMDV IgG standard to plot the concentration of IgG antibodies in mg/ml. Each

data point represents an individual animal, and the bars represent median values. Using the non-parametric Mann-Whitney U test to compare the medians of

the two groups, there were no statistically significant differences at any time points.

https://doi.org/10.1371/journal.ppat.1009942.g009
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and KD values determined. The KD is the equilibrium dissociation constant between an anti-

body and its antigen and is measured using the ratio of koff/kon, therefore KD values were used

to represent the avidity of the polyclonal antibodies, based on the individual affinities of the

antibodies in the polyclonal serum samples, to the FMD VLP. These data clearly showed that

the KD values in the sera of mice treated with mAb 4B2 were significantly lower than those in

the sera of IgG1-treated control mice (Fig 10B); suggesting that virus-specific antibodies

induced after CR2/CR1-blockade had reduced avidity to FMD VLP. This decrease in antibody

avidity to the FMD capsid is likely the predominant cause of the reduced capacity of the anti-

bodies generated after the CR2/CR1 blockade to neutralise FMDV, when compared to the con-

trol animals (Fig 8).

Discussion

Our previous studies suggested that in cattle FMDV is localised on FDCs in the B cell follicles

[24]. Similar to studies with HIV where the interaction of virus with FDCs has been explored

in detail in mice, we have demonstrated FMDV localises to FDCs in mice after the resolution

of viraemia. The mouse model for FMDV persistence showed FMDV antigen retention in the

spleen in association with FDC for up to 63 dpi [31]. We have now used this FMDV mouse

model to gain novel insight into the mechanisms of FMDV persistence on FDCs. In this study,

FMDV protein was detected in FDC networks up to 28 dpi and FMDV genome up to 21 days

in spleen samples. We suspect the absence of detectable genome at 28 days is because the RNA

will be in a small number of localised deposits in association with the FDC which may not be

Fig 10. Effect of 4B2 treatment on titres of IgG antibodies specific to the FMDV G-H loop and the avidity of FMDV specific IgG antibodies in mouse

serum. BALB/c mice treated with 500 μg of either mAb 4B2 or IgG1 control on day -1 before challenge with FMDV and sera was collected at 7, 14, 21 and 28

dpi. A) An indirect peptide ELISA showed that mice treated with 4B2 had significantly less antibodies to the FMDV G-H loop compared to the IgG1 control

group, with a P value of�0.05 using the non-parametric Mann-Whitney U test. Naïve sera were included on all ELISA plates and the cut-off was set at 1.5

times the OD of the naïve sera. B) The avidity of antibodies was measured using biolayer interferometry and was performed using an Octet Red96e. FMD O1/

Manisa/TUR/69 VLP were bound to streptavidin sensors and dipped into three dilutions of sera per mouse. Each data point represents the mean avidity of

these measurements for each individual mouse, represented as -Log10 of the KD (M) value. Sera which produced a negative response rate, and therefore had

too few antibodies bound to FMD VLPs to reach the limit of detection, are recorded as 0. The results demonstrate that mice treated with 4B2 had significantly

lower avidity antibodies compared to the control group, with a P value of�0.05 using the non-parametric Mann-Whitney U test.

https://doi.org/10.1371/journal.ppat.1009942.g010
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detected when the whole spleen is sampled. We have shown previously in cattle and African

buffalo that FMDV genome does persist in the GC-containing regions of infected lymphoid

tissues for prolonged periods [24,26].

The absence of FMDV antigen and genome by IHC and PCR in mice treated with mAb

4B2 as reported here, demonstrates the role of CR2/CR1 as the major receptor involved in the

trapping and retention of FMDV. Our data demonstrating no loss in viraemia is an important

observation to show that the mAb 4B2 does not prevent viral replication, and therefore is not

the reason for the lack of FMDV detection on the FDC networks in the animals treated with

the CR2/CR1 blockade. In fact, our results showed that this blockade increased viraemia in

these mice, and although we are not certain why, one hypothesis is that virus was unable to be

cleared from the blood as effectively when CR2/CR1 was blocked.

Furthermore, blocking of CR2/CR1 results in a significant reduction of neutralising anti-

body titres against FMDV. Although two mechanisms have been described for antigen trap-

ping by FDC, CR mediated [15] and FcR mediated [38], the near complete elimination of

FMDV on FDCs after treatment with mAb 4B2 leads us to believe the trapping is predomi-

nantly CR2/CR1-dependent. However, we do not exclude that longer persistence of the virus

on FDCs after natural infections, when anti-virus antibody forms, are due to a combination of

FcR and CR2/CR1 binding.

Ochsenbein et al. used Cr2-/- mice to investigate antibody responses to a T-independent

antigen, VSV. They showed similar findings, that early antibody responses to infection were

unaffected in these knockout mice, including no significant effect on the IgM response to

infection in mice deficient in CR2/CR1. However, longer term antibody responses to VSV

were not significantly different in Cr2-/- mice compared to the wild type (WT) [39]. Unlike

FMDV [13], VSV is able to induce B cell memory, therefore, the contrast to our findings could

be because the induction of antibody responses to VSV are less dependent on antigen persis-

tence on FDCs compared to FMDV. The murine Cr2 gene encodes two proteins, CR1 and

CR2, via alternative splicing [40], therefore inactivation of the Cr2 gene leads to deficiency in

both CR1 and CR2. The similarity in these receptors also leads to blocking of both CR1 and

CR2 upon administration of an anti-CR2 and/or -CR1 mAb.

Cr2-/- mice have abnormalities in the maturation of GCs including the GC B cells associated

with the CR2/CR1 deficiency, which may complicate the interpretation of some studies where

they are used. These Cr2-/- mice have been shown in multiple studies to have a discernible

impairment in their ability to mount a humoral immune response [41,42]. A recent study by

Anania et al. used image analysis to demonstrate that FDCs lacking CR1 and CR2 not only

have a decreased ability to capture ICs, but in the Cr2-/- mice, GCs are fewer and smaller and

FDCs are poorly organised [43]. FDCs use chemokine gradients within the B cell follicles to

interact with B cells and T follicular helper, therefore disorganisation of the FDC networks

leads to a variety of abnormalities, including impaired B cell survival and reduced Ig produc-

tion [44].

Although Cr2-/- mice are unable to mount a normal humoral immune response to various

antigens, a study showed that Cr2-/- mice had reportedly normal levels of total IgM and of the

different IgG isotypes, showing no evidence of altered B- or T- cell development [42]. These

studies showed antibody titres were similar in Cr2-/- and WT mice, however functional differ-

ences in antibodies were not specifically investigated. We also showed IgM and IgG titres were

similar in treated and control mice, but went on to show low avidity, non-neutralising anti-

bodies were produced which could be due to a defective affinity maturation process due to the

lack of binding of FMDV proteins to CR2/CR1 on FDCs. Furthermore, it has been established

that in mice the G-H loop is a neutralising epitope inducing protection against FMDV [36];

and mice treated with mAb 4B2 had a modest reduction of antibodies to the G-H loop. These
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results correlate with the reduced ability of the antibodies from the mice treated with 4B2 to

neutralise FMDV from 7 dpi, although the reduction in avidity of the FMDV-specific antibod-

ies appears to be the predominant reason for the differences in the virus neutralisation between

the 2 groups.

Due to the off-target effects from using Cr2-/- knockout mice to study the function of

FMDV antigen on FDC, we used the mAb 4B2 to block CR2/CR1 on FDCs. This antibody had

been previously described to block these receptors for up to 6 weeks in vivo in mice, without

disrupting other cell types. Bioimaging and flow cytometry analysis confirmed that the num-

ber and size of FDC networks were normal, and the percentage of other immune cell subsets

in the spleen, including B- and T- cells were unaltered after blocking up to 35 days. We were

therefore confident that the mAb 4B2 treatment would indicate whether antigen bound to

CR2/CR1 on FDCs impacted on the immune response.

A number of studies have used Cr2-/- mice reconstituted with Cr2+/+ WT bone marrow

(BM) to allow a more specific investigation of the role of CR2/CR1 on FDCs without impairing

B cell functions [45–47]. This is possible because FDCs are derived from stromal cells, whereas

B cells are BM in origin. Initial IgG and IgM responses were shown to be similar in Cr2-/- mice

with or without WT BM (Cr2+/+ B cells), suggesting antigen can induce a B cell response in the

absence of CR expression [45,46]. However, studies investigating the long-term antibody

response of these chimeric mice have shown a significant reduction in both long-term anti-

body production and memory when FDCs specifically did not express Cr2 [46,47]. This is in

line with our results where neutralising antibody responses up to day 7 post infection were

similar in mice with or without a CR2/CR1 block, yet after this timepoint, there was a signifi-

cant reduction in FMDV neutralising antibodies in mice treated with the anti-CR2/CR1 mAb.

It is well established that CR1 and CR2 are essential for binding ICs and are expressed at

high levels on FDCs; and while FDCs can also trap ICs via the FcR, it is to a lesser degree [14–

16,48]. FDCs can acquire antigen through various pathways, including direct interaction by

small antigens as well as by binding to complement component 3 (C3) fragments on ICs via

CR2/CR1 when presented to them via B cells [17,48]. It has been previously described that C3

fragments, specifically C3d, could therefore be used as a vaccine adjuvant [49]. A study by

Ross et al. demonstrated the effectiveness of C3d-fusions to Influenza virus haemagglutinin in

enhancing antibody production and maturation, leading to a protective immune response in

the influenza mouse model [50]. This would be a particularly interesting area of research for

FMDV, due to the short duration of immunity after FMD vaccination. If fusion of C3d to

FMD vaccine antigens resulted in targeted antigen deposition on FDCs, this could improve

the magnitude and duration of the neutralising antibody response.

Similar to other studies with FMDV [31], we have been unable to demonstrate that FMDV

retained by FDCs in mice is infectious. Furthermore, in cattle persistently infected with

FMDV, viral non-structural proteins associated with viral replication were not detected in the

GC-containing regions of lymphoid tissues, therefore suggesting that persisting FMDV anti-

gen, likely associated to FDCs, is non-replicative [24]. Bachmann et al. reported similar find-

ings with VSV, that whilst VSV was not infectious on FDCs, the long duration of immunity

seen was possible due to FDCs trapping and retaining antigen for long periods of time [20].

Therefore, despite the presence of FMDV on FDCs for long periods of time, this is in a non-

infectious form, thus indicating a potential for non-infectious vaccines to reproduce this per-

sistence to enhance the duration of immunity by eliciting FMDV-specific antibodies without

the need for infectious virus.

Although the current study has highlighted the role of FDCs in the maintenance of neutral-

ising antibodies to FMDV, further experiments are required to delineate GC and extrafollicu-

lar responses in order to understand how FMDV persistence results in the generation and
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maintenance of the specific immune response in greater detail. Studies have shown that low-

affinity plasmablasts are produced in transient primary extrafollicular foci, prior to somatic

hypermutation and affinity maturation in GCs [51–54]. Therefore, up to 7 dpi the lack of sig-

nificant differences in the results between 4B2 treated and control mice could be because of an

extracellular, GC-independent response in both groups, which would also explain the low

avidity of antibodies to the FMD capsid as shown by BLI. Although Ig class switching occurs

extrafollicularly, there is evidence of only low-level hypermutation, thus the production of low

affinity B cells in the initial stages of infection [55–57]. Consequently, the mAb 4B2 may have a

lesser effect in the early stages of the adaptive immune response, where the GC reaction and

FDCs are less involved. Furthermore, the similar titres of antibodies seen in both groups from

14 dpi could indicate a long-term extrafollicular response in the mAb 4B2 treated group,

where plasma cells are produced, but the affinity maturation process is less effective than in

the GC, which is then reflected in the lower avidity antibodies produced in mice treated with

mAb 4B2 compared to the control mice. A review by Elsner et al. highlighted potential factors

which could be studied to help understand the FMDV GC and extrafollicular responses in

more detail [58]. For example, interleukin (IL)-12 has been shown to block T follicular helper

cells (Tfh) and suppress GCs, resulting in an extrafollicular dominant response. Whereas, IL-6

promotes early GC reactions by promoting Tfh and blocking Th1.

Our study provides new insight into the immune pathogenesis of FMDV by demonstrating

the interaction of the virus with FDCs. Studies in cattle and African buffalo have shown the

virus localises to GC-containing regions of lymphoid tissues after the resolution of acute infec-

tion, but now we have demonstrated that FMDV binds as an IC to FDCs via CR2/CR1 in

mice. We have also shown this interaction is crucial for the production of high avidity neutral-

ising antibodies after FMDV infection. Furthermore, when CR2/CR1 is blocked, there is a sig-

nificant reduction in the avidity of antibodies and a significant reduction in FMDV

neutralising responses in serum. Short duration of immunity is one of the major problems

with current killed FMDV vaccines, these studies provide insights into how the duration of

protective antibody responses may be increased post-vaccination.

Materials and methods

Ethics statement

All animal experiments were performed in the animal isolation facilities at the Pirbright insti-

tute and were conducted in compliance with the Home Office Animals (scientific procedures)

ACT 1986 and approved by the Pirbright Institute’s Animal Welfare and Ethical Review Board

(AWERB).

Mice and experiment design

Experiments were carried out to address 3 objectives; firstly, to determine whether the mAb

4B2 successfully blocked CR2/CR1 by using PAP which is known to bind to FDCs via the

CR2/CR1. Secondly, to determine the effect of 4B2 on the cell subsets of the spleen. Finally, a

challenge study to determine whether FMDV needs to bind to FDCs via the CR2/CR1 to main-

tain a neutralising antibody response. Female BALB/c mice (8–12 weeks) were used in these

experiments and were purchased from Charles River Laboratories, UK. Mice were acclima-

tised for 7 days before being used in experiments and were maintained with food and water

ad-libitum and full environmental enrichment. Mice were humanely culled using isoflurane

and a rising concentration of carbon dioxide (CO2) method. Naïve mice were used as negative

controls throughout the study and remained untreated and were not infected with FMDV.
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4B2 treatment. BALB/c mice were given a single intraperitoneal (i.p.) injection of 200 μl

of 0.5 mg purified mAb 4B2 to mouse CR2/CR1 (32). Animals treated with the same dose of a

mAb anti-OVA IgG1, F2.3.58 antibody (2B Scientific, UK) were used as isotype matched con-

trols. Two mice treated with 4B2 and two with the IgG1 control mAb were culled at 2- and

7-days post treatment “early time points”, and a further two from each group at 22- and

35-days post treatment “late time points” to assess the effects of 4B2 on spleen cell subsets. The

spleen samples were collected in RPMI media (Gibco, UK) and immediately processed in the

lab for flow cytometry.

PAP treatment. To test the ability of 4B2 to block CR2/CR1 in vivo, mice were given a

single injection of 100μl preformed rabbit peroxidase-anti-peroxidase (PAP) immune com-

plexes (Sigma) intravenously 1 day after treatment with 4B2 (n = 4) or anti-OVA IgG1 (n = 4).

Mice were culled 1 day later, and their spleens were collected in optimal cutting temperature

(OCT) compound (VWR Chemicals, UK) and stored at -80˚ C to test for the presence of

FDC-associated IC by confocal microscopy.

FMDV infection. 1 day after treatment with mAbs 4B2 or IgG1, mice were inoculated i.p.

with a total dose of 106.2 TCID50 of FMDV/O/UKG/34/2001 in 200μl. After challenge, mice

were bled from the tail vein at 2, 7, 14, 21 and 28 dpi. Terminal bleeding after culling from car-

diac puncture and spleens from culled mice were collected from 8 animals at 7, 14, 21 and 28

dpi from each treatment group. The spleens were cut in half, with half collected in OCT for

analysis by confocal microscopy and half collected in RPMI medium (Gibco, UK) for analysis

by PCR. The whole blood samples were stored at 4˚ C overnight to allow blood clotting, the

samples were centrifuged, and the serum was collected and stored at -80˚ C.

FMDV immune complex deposition

Spleens from naïve BALB/c mice embedded in OCT compound were cut using a cryostat (7–

9 μm) and sections mounted on a superfrost slides. The samples were blocked with 5% normal

goat serum (NGS) (abcam, UK) for 30 minutes prior to addition of ICs and controls. The

FMDV ICs consisted of inactivated O1/Manisa/TUR/69 FMDV vaccine antigen and IBII

FMDV O antibody at 1:1 ratio and incubated with NMS, providing the necessary complement,

for 30 minutes. The controls were O1/Manisa/TUR/69 antigen or IBII FMDV O antibody

with only the addition of complement in the form of NMS. The ICs and controls were diluted

in PBS 1:10, resulting in a final concentration of 5% NMS, and added to the tissue sections for

1 hour at room temperature. The slides were washed and fixed with fixed with 4% paraformal-

dehyde for 20 minutes. A polyclonal rabbit anti-O FMDV was added to the slides for 1 hour at

room temperature to detect FMDV ICs bound to the cryosections. The slides were washed and

4 μg/ml goat anti-rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 488 (Invi-

trogen) was added for 1 hour at room temperature in the dark. The sections were counter-

stained with DAPI to distinguish cell nuclei. Spleen sections were visualised, imaged and all

data was collected using a Leica SP8 confocal microscope (Leica Microsystems GmbH,

Germany).

Processing splenocytes

The spleen samples collected in RPMI medium were homogenised and passed through 70 μm

cell mesh strainers (BD Biosciences, UK). Cells were washed in RPMI medium by centrifuga-

tion and red blood cells were lysed with ACK lysing buffer (Sigma-Aldrich, UK). Following

lysis, cells were washed twice in RPMI by centrifugation and re-suspended in RPMI complete

medium (RPMI with 10% foetal bovine serum (Gibco, UK), 1% Gibco penicillin-streptomycin

(10,000 U/ml) (Life Technologies, UK) and 1% Gibco MEM non-essential amino acids (100X)
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(Life Technologies, UK)), counted and stored at 4˚ C overnight prior to flow cytometric

analysis.

Flow cytometry

The processed splenocytes were distributed at 1 x 106 per well into Nunc 96-well round bottom

microwell plates (Thermo Scientific, UK). The cells were blocked by adding 5μg/ml purified rat

anti-mouse CD16/CD32 (mouse BD Fc Block) clone: 2.4G2 (BD Biosciences, UK) in autoMACS

buffer (Miltenyi Biotec, UK). Cells were stained with CD8a-FITC (Life Technologies), CD4-PE

(Miltenyi Biotec) to detect cytotoxic and helper T cells respectively and B220 biotin RA3-6B2

Alexa Fluor 647 to detect B cells (CD45R), CD11b-APC to detect dendritic cells and CD169

(Siglec-1)-APC to detect marginal zone macrophages. Streptavidin Molecular Probe Alexa-Fluor-

633 conjugated secondary mAb (1μg/ml) (Invitrogen) was used to detect biotinylated antibodies

7E9 (BioLegend, UK) and 7G6 (BD Biosciences, UK) to identify CD21/CD35 (CR2/CR1) and

8C12 (BD Biosciences, UK) to identify CD35 (CR1). Single staining controls and no staining con-

trols were also included for compensation purposes. The cells were then fixed with 1% parafor-

maldehyde, washed and resuspended in MACS buffer, before being read on the MACS Quant

(Miltenyi Biotec, UK). The analysis was completed using FCS Express (De Novo Software, US).

Quantification of viraemia by plaque assay

Foetal goat tongue cells (ZZR cells), which are highly susceptible to FMDV, were grown up to 95–

100% confluency in 6 well plates. Cells were washed in PBS and a 10-fold dilution of serum sam-

ples from 2 dpi (n = 30 and n = 22 from 4B2 and IgG1 treatment group, respectively) and 7 dpi

(n = 4 per treatment group) were added to the wells. Serum from 2 naïve animals at 2 dpi and 1

naïve animal at 7 dpi were used as negative controls. Plates were incubated for 30 minutes at 37˚C

with 5% CO2 and then 3ml/well of Eagle’s Overlay-Agarose (Eagle’s overlay media (TPI, UK) and

2% agarose (Sigma, UK)) was added and allowed to set at room temperature. Plates were incu-

bated at 37˚C with 5% CO2 for 48 hours. Following incubation, plates were fixed, and plaques

visualized by staining the cell monolayer with methylene blue in 4% formaldehyde in PBS for 24

hours at room temperature. The plates were washed with water and the agarose plugs discarded.

The viraemia was expressed as the Log10 of the number of plaque forming units per ml (PFU/ml).

One Step RT-qPCR of serum samples

Due to low volumes of serum collected from the tail vein, serum samples from animals taken

at 2 dpi were pooled to reach 50 μl. Therefore, FMDV genome copy number was measured by

RT-qPCR in 6 pools of serum from IgG1 and 4B2 treated mice and 3 pools from the naïve

groups. Fifty μl of serum samples taken from terminal bleeds from culled animals at 7 dpi were

also analysed. The RNA was extracted using the MagVet Universal Isolation Kit (Thermo

Fisher Scientific, UK) and the KingFisher Flex (Thermo Fisher Scientific, UK). The PCR was

performed, using the SuperScript III Platinum One-Step Callahan 3D quantitative RT- qPCR,

according to the standard protocol of the World Referenced Laboratory for FMDV, with a

cut-off cycle threshold (Ct) of� 35 [59]. Results were expressed as Log10 FMDV genome copy

number (GCN)/ml of sample by extrapolating the Ct values to GCN by using a linear regres-

sion model with serial dilutions of in vitro synthetized 3D RNA standard.

RT-qPCR from tissues

Spleen samples were homogenised in 200 μl DMEM media (Gibco, UK) using the FastPrep-24

and lysing matrix tubes (MP Biomedicals) prior to RNA extraction (as described above).
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Following RNA extraction, cDNA was generated using TaqMan reverse transcription reagents

(Applied Biosystems, UK,). The EXPRESS qPCR SuperMix Universal Kit (Invitrogen, UK)

was used for real time-PCR and the PCR reactions for FMDV 3D were performed as previ-

ously described, with a cut-off Ct value of� 35[59]. The 18S ribosomal RNA housekeeping

gene was used for normalisation based on previously published primers [60,61]. The PCR

reaction was performed on a Stratagene MX3005p quantitative PCR instrument (Stratagene,

USA). Results were expressed as Log10 FMDV RNA copies/108 copies 18S.

Immunofluorescence by confocal microscopy

The frozen spleens embedded in OCT compound were cut on a cryostat (7–9 μm), mounted

on a superfrost slide and stored at -20˚ C overnight. The slides were air-dried, fixed with 4%

paraformaldehyde and blocked with 5% NGS (abcam, UK). FDC networks visualised by stain-

ing with 1μg/ml Alexa Fluor 594-conjugated anti-mouse CD21/CD35 (CR2/CR1) antibody,

clone 7E9 (BioLegend, UK), marginal zone macrophages were visualised using 1μg/ml CD169

(Siglec-1), clone MOMA-1 (Bio-Rad, UK), 2 μg/ml biotinylated llama single domain anti-

FMDV 12S antibody VHH-M3 (Kindly provided by Dr M Harmsen, Central Veterinary Insti-

tute of Wageningen, AB Lelystad, The Netherlands) [62] was used to detect FMDV/O/UKG/

34/2001 and goat anti-rabbit Molecular Probe Alexa-Fluor-488 was used to detect PAP IC.

Goat anti-rat and streptavidin Molecular Probes Alexa-Fluor-488 and 633 conjugated second-

ary mAbs (Invitrogen) were used at 2 μg/ml and all sections were counterstained with DAPI to

distinguish cell nuclei. Spleen sections were visualised, imaged and all data was collected using

a Leica SP8 confocal microscope (Leica Microsystems GmbH, Germany).

The same protocol was used for the stimulated emission depletion (STED) with the follow-

ing changes: goat anti-rat and streptavidin Molecular Probes Alexa-Fluor-488 and 555 conju-

gated secondary mAbs (Invitrogen) were used at 4 μg/ml, ToPro3 was used for nuclear

staining and a super-resolution Leica TCS SP8 STED 3X microscope (Leica Microsystems

GmbH, Germany) equipped with 592 and 660nm depletion lasers was used to image and col-

lect data. STED images were then deconvolved in Huygens Professional software 21.04 (Scien-

tific Volume Imaging, Netherlands) using the Deconvolution Wizard with a theoretical PSF.

Data was analysed using ImageJ software as previously described [33,34] to compare the null

hypothesis (that the pixels were randomly distributed) to the observed levels of co-localisation.

Virus isolation

Virus isolation was carried out to determine whether FMDV persisting in the murine spleens

was infectious. Spleens were homogenised using FastPrep Lysing Matrix D tubes with the Fas-

tPrep-24 (MP Biomedicals). The spleen homogenate was then added to T25 flasks containing

ZZR cells (goat tongue epithelial cells), which are susceptible to FMDV. The cells and homoge-

nate were incubated at 37˚C in 5% CO2 and checked daily for cytopathic effect (CPE). After

48 hours the flasks were stores at -20˚C, and once frozen were defrosted, centrifuged and

supernatant was collected. The supernatant from each sample was then added to new flasks of

confluent ZZR cells and the process was repeated for a total of 3 passages. The presence of

CPEs would demonstrate that the FMDV was infectious, absence of CPEs would demonstrate

no infectious FMDV. A flask inoculated with FMDV-OUKG and a flask of ZZR cells only

were used as positive and negative controls respectively for each passage.

Virus neutralising test

Serum samples collected at 7, 14, 21 and 28 dpi were heated at 56˚ C for 1 hour to inactivate

complement and analysed for their ability to neutralise a fixed dose of FMDV on IB-RS-2 cells
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porcine cells). Samples were then diluted 2-fold in 96 well plates in duplicate in serum free

medium starting from a 1:8 dilution. Naïve mouse serum and cells only were used as negative

controls. One hundred tissue culture infectious dose 50 (TCID50) of FMDV OUKG was added

to all wells excluding cell only controls. Plates were incubated for 1 hour at room temperature

before 5 × 104 IB-RS-2 cells were dispensed to each well. The plates were incubated at 37˚C in

5% CO2 and checked daily for cytopathic effect (CPE). After 72 hours the plates were inacti-

vated with 1% Trichloroacetic acid (TCA) (Sigma-Aldrich, UK) washed with water and stained

with methylene blue. Neutralising antibody titre was calculated using the Spearmann-Karber

formula and results expressed as the log10 reciprocal serum dilution that neutralised 50% of

100 TCID50 of the virus [63].

IgG and IgM ELISA

An indirect enzyme-linked immunosorbent assay (ELISA) was developed to detect FMDV-spe-

cific mouse antibodies. The assay was adapted from the FMDV isotype specific ELISA protocol

to detect antibodies to FMDV in cattle and swine serum [11]. ELISA plates were coated with a

rabbit anti-O FMDV polyclonal antibody (TPI, UK), washed with PBS containing 0.05%

Tween20 (Sigma, UK) and then 0.5 μg/ml inactivated FMDV O1/Manisa/TUR/69 vaccine anti-

gen (Merial, UK), diluted in blocking buffer (1:1 PBS and SEA BLOCK (Thermo Scientific,

UK)), was added to each well. Serum samples were added, and bound antibodies were detected

by incubating the plates with horseradish peroxidase-conjugated goat anti-mouse IgG or IgM

(Invitrogen, UK), diluted in blocking buffer. TMB substrate (Thermo Scientific, UK) was used

as a developer and the reaction was stopped with 0.3M H2SO4 and the optical density (OD) was

read at 450 nm. Antibody titres were expressed as either log10 of the reciprocal of the last dilu-

tion with a mean OD greater than 1.5 times the mean of the OD of the negative control serum

or using an FMDV-specific IgG standard (IB11 mAb [11]) of known concentration, a standard

curve was generated to determine the concentration of the FMDV-specific IgG in the serum

samples analysed. The O1/Manisa/TUR/69 vaccine antigen was used due to good cross-reactiv-

ity and cross-protection with OUKG as demonstrated in previous studies [64–66].

Peptide ELISA

An indirect peptide ELISA using a biotinylated O/UKG/12/2001 G-H loop peptide

(VYNGNCKYGESPVTNVRGDLQVLAQKAARTLPTSFNYGAIK) (Peptide Protein Research

Ltd, UK) was developed to determine the presence of antibodies directed against the FMDV

VP1129-169 G-H loop. The highest concentration of each serum sample was also tested with a bioti-

nylated negative control peptide with a similar molecular weight and number of charged residues

vs hydrophobic residues (PSRDYSHYYTTIQDLRDKILGATIENSRIVLQIDNARLA) (Peptide

Protein Research Ltd, UK) to ensure the sera wasn’t binding non-specifically. Streptavidin coated

ELISA plates (Thermo Scientific) were incubated with 8 μg/ml G-H loop peptide diluted in PBS at

37˚C for 2 hours. The plates were washed with TBS containing 0.1% BSA 0.05% Tween20 (Sigma,

UK) and then serum samples were added in duplicate. Bound antibodies were detected by horse-

radish peroxidase-conjugated goat anti-mouse IgG (Invitrogen, UK) and SIGMAFAST OPD (o-

Phenylenediamine dihydrochloride) (Sigma, UK). The optical densities (OD) were measured at

450nm, and antibody titres were expressed as log10 of the reciprocal of the last dilution with a

mean OD greater than 1.5 times the mean of the OD of the negative control serum.

Biolayer interferometry

Biolayer interferometry was performed using an Octet Red96e instrument (ForteBio, Inc.) and

ForteBio Data Analysis HT software (v 11.1.0.25) was used to determine the response rate,
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koff/kon rates and the KD (M) values. This method was adapted from previously described

methods using polyclonal sera [67,68]. A 5 μg/ml concentration of biotinylated stable O1/

Manisa/TUR/69 FMD VLP [69] (kindly provided by Alison Burman) was immobilised on

streptavidin-coated biosensors (Sartorius UK Limited) for 900 s. A baseline was established by

measurements taken when sensors were immersed for 60 s in HEPES 10 mM, NaCl 150 mM,

EDTA 3 mM, 0.005% Tween 20 (HBS-EP) buffer (Teknova). The sensors were then immersed

in a dilution series of polyclonal sera, with known FMDV-specific IgG concentrations, from

mice taken at 7, 14 or 21 dpi with FMDV for 1200 s in the association phase. Subsequently, the

sensors were immersed in HBS-EP buffer for 1200 s in the dissociation phase. Unloaded sen-

sors and reference wells were used to subtract non-specific binding. Mean KD (M) values were

obtained from the dilution series of each mouse based on their global fit to a bivalent model,

with a full R2 value of�0.9. The KD values were measured using the ratio of koff/kon, to deter-

mine the avidity of antibodies in the polyclonal serum samples to the FMD VLP. The values

were expressed as -Log10 of KD (M) values, and sera which had a response rate below 0 were

recorded as 0.

Statistical analysis

The comparisons between the experimental groups and their corresponding control groups

were carried out using Minitab software (Minitab, US). The non-parametric Mann-Whitney

U test was used to compare the medians of viremia, presence of antigen, antibody titres and

avidities and splenic cell subsets between the 4B2 and IgG1 treated groups. A P value of� 0.05

was considered statistically significant.

Supporting information

S1 Table. A summary list of the animals used in the in vivo CR2/CR1-blockade experiment

and their corresponding results.

(XLSX)
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