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The development of a vaccine able to prevent infection or severe disease course of SARS-CoV-
2 is a priority to stem the current COVID-19 pandemic and to be better prepared for future
flare-ups. To accelerate T-cell immunogen design, many current approaches are employing
epitope prediction strategies. Although such approaches have great merit, it is also important
that unbiased approaches to characterizing the T-cell response to SARS-CoV-2 are incorpo-
rated into vaccine design, in order to generate a comprehensive picture of the total virus-spe-
cific T-cell response and to define correlates of protective immunity against the virus.

Ever since the first identification of binding motifs for T-cell antigens presented by HLA
class I molecules by Rammensee and colleagues almost 30 years ago, epitope identification has
been greatly facilitated by epitope prediction algorithms [1]. Over the years, many vaccines
designs targeting infectious pathogens as well as cancer neoantigens have been based on in sil-
ico prediction of potential HLA class I-restricted epitopes, and a series of vaccine candidates
that apply such strategies to SARS-CoV-2 are currently in development. However, even though
numerous prediction algorithms have been developed and gradually improved, there are sev-
eral considerations that may threaten or limit the success of such approaches.

Epitope length is highly variable and not properly captured by
prediction algorithms

Although the initial characterization of eluted HLA class I epitopes by the Rammensee lab in
1991 produced predominantly 9-mer epitopes, there was already the notion of longer and
shorter sequences that can be bound and effectively presented by HLA class I molecules [1].
This observation has been validated many times over since, with some HLA class I alleles for
which the 9-mer seems to be rather the exceptional length than the rule (such as HLA-BS8, B35,
B57, B27, and others). In fact, even the first identified epitopes in influenza and HIV infection,
defined by other approaches a couple of years before the first binding motif was described,
turned out to be 13 and 10 amino acids in length, respectively [2,3]. Especially for HIV, we
have equally fallen victim to consider “optimal” HLA class I epitopes those for which func-
tional experiments have identified the shortest reactive peptide and thereby unwillingly con-
tributed to cementing the dogma of 9-mer optimal epitope length as the rule [4]. However,
based on elution studies by many laboratories and crystallographic structural analyses, it is
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evident that many epitope variants presented by HLA class I molecules can exceed the 9-mer
length [5,6]. In fact, even for members of the HLA-A11 allele family that have very strict and
limited C-anchor binding requirements, elution studies have demonstrated that only about
20% of the (self and viral) epitopes are exactly 9 amino acids in length [7]. Of note, this was
done in a system that uses soluble class I molecules secreted from the antigen-presenting cells
and thus limits the bias to also identify (longer) processing intermediates. Similar observations
have been made for other HLA class I alleles—for instance, HLA-B8, which consistently pres-
ents peptides that are shorter than 9-mers; or HLA-B57, for which the immunodominant and
protective HIV-specific epitope is an 11-mer; or where epitopes have been found to be entirely
embedded in other epitopes [8], all cases that are generally not identified or scored as indepen-
dent epitopes by prediction algorithms.

Multiple specificities toward the same epitope regions can be
elicited by allowing for length variants

One major limitation of using predicted epitope sequences of 9 amino acids in T-cell vaccine
designs is that T-cell responses to only that specific region will be induced by the vaccine.
However, the example of HIV infection (which likely has the best-characterized epitope “land-
scape” described) shows how this can limit the vaccine-induced response: by (1) screening just
5 amino acids up- and downstream of each described optimal (mostly 9-mer) epitope for suit-
able anchor positions satisfying the currently known allele-specific binding motif and (2)
allowing for an epitope length of 9 to 12 amino acids, the number of potential independent
epitopes that could bind the given HLA class I molecule and induce T-cell responses to the
same region more than doubles [5]. Although this may be of paramount importance to cope
with HIV variability and to prevent rapid cytotoxic T-lymphocyte (CTL) escape, other viruses,
even genetically robust DNA-based viruses such as Epstein-Barr virus (EBV), have been
shown to present as swarms of quasi-species and to be able to develop effective CTL escape
variants as well [9,10]. Thus, it seems critical that SARS-CoV-2 vaccine development take this
aspect into account and test immunogen designs that can target the same epitopic region by
multiple specificities, ideally composed of a polyclonal T-cell receptor repertoire to (1)
broaden the response and thus increase the chances of eliciting more potent clonotypes and
(2) more effectively prevent T-cell escape.

HLA class | binding is promiscuous and motifs are poorly defined
for less well-studied HLA class | alleles

There are to date more than 20,000 HLA class I alleles described that translate into more than
11,000 different HLA class A, B, and C molecules. For many of these alleles, sequence similari-
ties and structural analyses have allowed grouping them into larger, so-called HLA supertypes
that share epitope binding similarities [11]. However, there is extensive binding promiscuity
even by short 9-mer peptides that go well beyond the specific allele and its assigned supertype
and for which commonly used minimal cutoffs of binding affinities would not identify the
reactive peptides [12]. In fact, screening data using several hundred epitopes derived from dif-
ferent viral infections suggest that the current prediction algorithm may miss a large number
of reactive “optimal” epitopes and possibly an even larger proportion of responses when pre-
dicting potential epitopes on a full protein sequence [12]. An extreme example of this may be
epitopes predicted (and presented) by HLA-E, for which binding peptides showed an unex-
pected broad permissiveness at anchor positions and extensive structural freedom to bind to
the presenting class I molecule [13]. The current urgency by which the scientific community
attempts to achieve a viable T-cell vaccine to SARS-CoV-2 will, however, not allow generation
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of larger training sets that could improve these predictions and thus may mislead the design
into regions of the virus that are rich in epitopes fulfilling binding motifs of the most com-
monly studied class I alleles. In addition, these approaches will not be able to sufficiently cover
the genetically different, and often more numerous, populations with less well-characterized
genetics and, in parallel, less well-established healthcare systems in which vaccines may be the
only way to stem against the pandemic.

Antigen-processing preferences and TAP-mediated peptide
translocation

Another critical limitation that is not properly addressed by most epitope prediction tools is
the need to identify appropriate antigen-processing sites that could give rise to predicted, pre-
sented epitopes. As the composition of the antigen-processing machinery changes upon proin-
flammatory signals and can differ between different cell types, currently known prediction
algorithms will likely not be suited to estimate the processing efficacy of viral antigens in the
context of an infected target cell. Thus, without functional validation, there exists the risk that
predicted epitopes may represent great theoretical or actual binder to HLA class I molecules,
but they are either not processed at all or not processed at sufficient levels to induce a strong
immune response and to sensitize infected target cells for CTL-mediated killing. In addition,
the allelic diversity of TAP (transporter associated with antigen processing) genes, which
encode for proteins that form a bottleneck for the translocation of processed antigen into the
lumen of the endoplasmatic reticulum, are only partly integrated into peptide prediction
algorithms.

Functional characterization, cross-reactivity, and
immunopathology

Finally, there are evident advantages in identifying antigens not only to protect from SARS--
CoV-2 infection but to develop vaccine candidates that could act against past and future coro-
navirus outbreaks. This would call for focus on particularly conserved regions between isolates
and different coronaviruses, something that can be readily implemented in epitope prediction
strategies, even if conservation on an epitope level does not need to be complete. Whether
such cross-reactive T-cell responses could indeed mediate cross-protection and are associated
with effective control of different coronaviruses, remains to be seen. Of note, emerging data
start providing some insights into T-cell effector function profiles that may be protective and
those that may be associated with a more severe clinical course of SARS-CoV-2 infection [14].
This is reminiscent of the situation in Dengue virus infection, in which some cross-reactive T-
cell responses have been associated with the observed immunopathological consequence [15].
Thus, a functional assessment of T-cell responses in individuals with mild, moderate, and
severe COVID-19 disease courses may be indicated, so that potential detrimental effects of
preexisting, cross-reactive T-cell immunity can be avoided. However, without an unbiased
screening for total virus-specific T-cell responses with classical and alternative T-cell effector
functions [16], it will be difficult to differentiate most beneficial from potentially harmful T-
cell specificities.

Conclusions

With the urgency to develop effective measures to control the COVID-19 pandemic and to
design vaccine strategies useful to confront future outbreaks and epidemics of SARS-CoV-2
and related coronaviruses, accelerated programs for T-cell immunogen design are needed. T-
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cell epitope prediction algorithms are an effective tool to narrow down the potential immuno-
gen cargo in a future SARS-CoV-2 vaccine from the total viral proteome. However, approaches
exclusively based on 9-mer epitope prediction will potentially miss critically important
responses, and even those based on 9-mer and 10-mer epitope prediction have similar short-
comings, for the reasons described above. In addition, a relatively unbiased approach to char-
acterizing the T-cell response using overlapping peptides will facilitate understanding of
immune correlates of SARS-CoV-2 control versus disease. The benefit of the predicted 9-mer/
10-mer approach would be that, when used in combination with panels of overlapping pep-
tides spanning the viral proteome, optimal epitopes will be more rapidly identified and, at the
same time, immune correlates of disease protection evaluated in an unbiased fashion. These
considerations should not be overlooked, as invaluable time and resources could be directed in
directions that may not yield the desired success.
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