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Abstract

In the absence of effective antiviral therapy, HIV-1 evolves in response to the within-host

environment, of which the immune system is an important aspect. During the earliest stages

of infection, this process of evolution is very rapid, driven by a small number of CTL escape

mutations. As the infection progresses, immune escape variants evolve under reduced

magnitudes of selection, while competition between an increasing number of polymorphic

alleles (i.e., clonal interference) makes it difficult to quantify the magnitude of selection act-

ing upon specific variant alleles. To tackle this complex problem, we developed a novel

multi-locus inference method to evaluate the role of selection during the chronic stage of

within-host infection. We applied this method to targeted sequence data from the p24 and

gp41 regions of HIV-1 collected from 34 patients with long-term untreated HIV-1 infection.

We identify a broad distribution of beneficial fitness effects during infection, with a small

number of variants evolving under strong selection and very many variants evolving under

weaker selection. The uniquely large number of infections analysed granted a previously

unparalleled statistical power to identify loci at which selection could be inferred to act with

statistical confidence. Our model makes no prior assumptions about the nature of alleles

under selection, such that any synonymous or non-synonymous variant may be inferred to

evolve under selection. However, the majority of variants inferred with confidence to be

under selection were non-synonymous in nature, and in most cases were have previously

been associated with either CTL escape in p24 or neutralising antibody escape in gp41. We

also identified a putative new CTL escape site (residue 286 in gag), and a region of gp41
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(including residues 644, 648, 655 in env) likely to be associated with immune escape. Sites

inferred to be under selection in multiple hosts have high within-host and between-host

diversity although not all sites with high between-host diversity were inferred to be under

selection at the within-host level. Our identification of selection at sites associated with resis-

tance to broadly neutralising antibodies (bNAbs) highlights the need to fully understand the

role of selection in untreated individuals when designing bNAb based therapies.

Author summary

During the within-host evolution of HIV-1, the diversity of the viral population increases,

with many beneficial variants competing against each other. This competition, known as

clonal interference, makes the identification of variants under positive selection a chal-

lenging task. We here apply a novel method for the inference of selection to targeted

within-host sequence data describing changes in the p24 and gp41 genes during HIV-1

infection in 34 patients. Our method adopts a parsimonious approach, assigning selection

to the smallest number of variants necessary to explain the evolution of the system. The

large size of our dataset allows for the confident identification of variants under selection,

alleles at certain loci being repeatedly inferred as under selection within multiple individu-

als. While early CTL escape mutations have been identified to evolve under strong positive

selection, we identify a distribution of beneficial fitness effects in which a large number of

mutations are under weak selection. Variants that were confidently identified under selec-

tion were primarily found to be associated with either CTL escape in p24 or neutralising

antibody escape in gp41, including sites associated with escape from broadly neutralising

antibodies. We also discovered four sites that are likely to be associated with immune

escape. We find that the most frequently selected loci have high diversity both within-host

and at the between-host level.

Introduction

In the absence of effective antiretroviral therapy, HIV-1 evolves rapidly during infection. A

key driver of evolution is the influence of the host immune system; cytotoxic CD8+ T-cells

(CTLs) and neutralising antibodies (nAbs) impose selection on the virus, leading to the emer-

gence of immune escape mutations[1]. However, other factors also influence viral evolution.

For example, the host-specific nature of the immune response leads to the accumulation of

mutations which are deleterious to the virus upon transmission to a new host. During the

course of a new infection such variants are often lost, in particular where they occur at sites

which in general are under strong purifying selection[2,3]. Selection may further act for pro-

tein or RNA secondary structure[4,5].

The complex nature of selection has led to multiple studies evaluating how the viral geno-

type may be both constrained and shaped during the course of evolution. These include the

use of techniques for in vitromutagenesis, and analyses of viral sequence data, evaluated at the

level of population consensus or through deep sequencing exploring within-host variation at

one or more time points during infection. For example, mutagenesis of HIV-1 proteins has

allowed the measurement in vitro of the effect of specific mutations [6]. The development of

technologies for high-throughput mutagenesis has enabled such measurements to be made

across very large sets of potential mutations[7–9]. Mathematical methods combining such
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results have been used to generate an overview of fitness costs and epistatic effects for the virus

[10]. Measurements of this form provide a base-level estimation of the general fitness land-

scape of the virus, although the extent to which in vitro data captures the behaviour of the

virus in a human host may be limited.

Many years of study of HIV-1 have led to the collection of consensus genome sequence

data for a large number of individual infections[11]. Such data have allowed techniques such

as the fitting of maximum entropy models, which characterise the fitness costs of non-consen-

sus variants in regions of the viral genome[12–14]. While the evolution of HIV-1 occurs in

within-host environments that differ between individual hosts, these models provide some-

thing of a mean picture of the viral response across an averaged, within-host environment

[15,16]. In these models the extent of conservation at a particular genetic locus indicates the

extent to which purifying selection acts upon the majority allele[17].

Short-read deep-sequencing data has provided valuable insights into how fitness effects

shape the evolution of HIV-1. Studies can be broadly categorised into those that consider

purifying selection, and those that consider positive selection. Purifying (or negative) selection

represents the process by which deleterious variants are purged from a population. Over time

the frequency of a variant under purifying selection evolves in a statistically predictable way

towards an equilibrium state via mutation-selection balance[18]. Exploiting this fact, allele

frequencies observed over time during single untreated infections[2], or at single time points

within multiple infections, have been used to estimate the magnitude of selection and the

mutation rate acting upon distinct regions of the genome[17,19].

Positive selection represents the process by which favourable variants are driven towards

fixation. As with purifying selection population genetic methods can be adopted for the infer-

ence of fitness effects. For example, a series of models have been developed for the inference of

HIV-1 escape rates from CTL responses. Whereas earlier approaches to this problem consid-

ered viral escape from a single CTL response[19–22], more recent studies have considered the

multiple immune responses that arise successively during infection [23–25]. Under such cir-

cumstances, interference between beneficial viral mutations affects the population dynamics

[26]. Therefore, accounting for this clonal interference is critical if the role of selection is to be

correctly inferred[27–29].

Studies assessing fitness effects in within-host HIV-1 infection have often focused upon the

earliest stages of infection when strong selection on CTL escape mutations typically dominates

the viral population dynamics[23,29]; in this circumstance, we can model evolution as a com-

petition between a relatively small number of viral genotypes [23,30]. Later in infection, where

escape mutations are less strongly beneficial, and where synonymous diversity has had longer

to accumulate [2], the potential for hitchhiking and clonal interference is greater, such that

variants observed at high frequency are less certain to have evolved under positive selection. In

this circumstance, distinguishing selected from non-selected variants is a substantial challenge.

To address this, we here present a de novo approach for inferring selection from HIV-1

sequence data in which any variant allele may, in theory, be detected as under selection. We

adopt a parsimonious approach, assigning selection to the smallest set of variants required to

explain the observed multi-locus sequence data under a likelihood model. Applied to targeted

sequence data from a substantial cohort of 34 untreated individuals living in Uganda[31], we

determine how selection drives viral evolution. In the presence of pervasive interference

between alleles in linkage disequilibrium with one another, our consideration of data from a

large number of individuals is fundamental in providing statistical confidence in the assign-

ment of selection. Specifically, the repeated inference of selection at the same locus in different

individuals enhances the power of our study to elucidate how selection during individual

infections shapes genetic diversity at the population level.
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Results

We applied an evolutionary inference method to deep-sequencing data spanning multiple

years of infection from 34 untreated individuals living in Rakai, Uganda, enabling us to infer

positive selection acting on part of the gp41 region of env (324 base pairs) and the p24 region

of gag (387 base pairs)[31].

Extent of selection

An initial application of our method found extensive evidence of positive selection in the

viral genome, with 74 (out of 387) nucleotide sites in p24 and 81 (out of 324) nucleotide sites

in gp41 being inferred to evolve under positive selection in at least one individual (S1 Table

and S1 Fig). Our method explicitly accounts for linkage disequilibrium between alleles

observed in the sequencing data[27,32]; a potential remains for interactions between

observed alleles in the targeted sequence region, and non-observed alleles in flanking regions

of the genome (Fig 1). To estimate the effect of these interactions on our results, we ran sim-

ulations to replicate the dynamics of real infections. In a multi-locus system where all alleles

under selection are observed (i.e. in which the full data of the system are available), our

approach performs very well, identifying the majority of variants under selection with very

few false positive inferences. However, when non-observed selected alleles interact with

observed alleles via linkage disequilibrium (i.e. where only partial data of the system is avail-

able), our approach is prone to generating false positive inferences of selection (S1 Text, S3

and S4 Tables). Data from our simulation study allowed us to set statistical criteria via which

we could combine inferences from multiple patients and confidently identify sites under

selection, despite the presence of false positive calls.

Strength and time of onset of selection

Inferred variants generally evolved under weak selection. In constructing a distribution of the

strength of selection among selected variants, we first assessed the degree of precision with

Fig 1. Linkage disequilibrium between alleles in the virus. Here positive selection at locus A affects the behaviour of alleles at locus B due to linkage.

Our method of inference corrects for such effects if A is observed, whereas a single-locus method could lead to incorrectly inferring selection at B.

However, in the system shown linkage disequilibrium also exists between alleles at A and B and those at the unobserved locus C. Such effects cannot be

accounted for by our approach. We used a simulation-based approach to estimate the importance of such effects, so as to account for their influence

upon the results generated by our method.

https://doi.org/10.1371/journal.ppat.1008171.g001
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which this statistic could be inferred at each locus. The uncertainty in a given estimate depends

upon the extent to which data are available. For example, when a variant emerges and fixes

between two time points, only a lower bound on the strength of selection can be inferred[33].

We therefore generated confidence intervals for each inferred magnitude of selection using a

likelihood-based method, retaining only variants for which the upper and lower bounds of this

interval differed by no more than an order of magnitude. Distributions of fitness effects com-

piled from these variants showed that most of the identified alleles under selection experienced

very weak selective effects, with long tails of alleles evolving under strong positive selection

(Fig 2). Application of our method to simulated data highlighted an undercalling of very

weakly selected variants, and an underestimation of the magnitude of selection affecting the

strongest variants (S2 Fig), however the overall inferred distribution of selection coefficients

was not statistically different to the ‘true’ distribution used to generate simulations (S3 Fig).

Further statistical details and notes on these simulations are provided in S1 Text, S4, S5 and

S6 Figs.

Fig 2. Histograms of inferred strengths of selection and times in days of onset of selection across 34 individuals. The maximum likelihood

estimates are shown in each case, for the subset of the data where the upper and lower bound confidence intervals on the strength of selection are within

an order of magnitude of each other. Bars indicate variants at nucleotide sites, and are coloured according to whether they are within AA positions

associated with differences in susceptibility to CTLs (pink) or susceptibility to NAbs (blue). Where a codon is implicated in both a NAb and CTL

response, for clarity it is coloured blue (see S2 Table).

https://doi.org/10.1371/journal.ppat.1008171.g002

PLOS PATHOGENS A de novo approach to inferring within-host fitness effects during untreated HIV-1 infection

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1008171 June 3, 2020 5 / 26

https://doi.org/10.1371/journal.ppat.1008171.g002
https://doi.org/10.1371/journal.ppat.1008171


In p24, around 65% of inferred selected variants had a strength of selection of less than 5%

per generation, while in gp41 approximately half of variants were under this threshold. In our

model, selection of 5% per generation would cause, in the absence of interference effects, a

change in allele frequency from 5% to 95% in a period of just under eight months. Most selec-

tion acting upon variants was inferred to kick in during the first year of infection and almost

all within two years, and we found no evidence of a correlation between the strength and time

of onset of selection (S7 Fig). Our approach underestimates the proportion of variants under

weak selection; very weak selection would not produce a change in the population sufficient to

be identified from the data. The extreme beneficial end of the distribution may also be under-

represented because variants which fixed within individuals before the first sample was col-

lected cannot be identified from our data. Finally, the finite period of time over which sequenc-

ing was performed could restrict the inference of more lately selected variation because a

selected variant arising later in infection would have less time to affect the composition of the

population in an observable way.

Distribution of selected variants among individuals

Using the simulated data, we identified a statistical threshold at which we could robustly iden-

tify specific sites in the genome containing variants under selection despite the presence of

false positive inferences of selection. A unique aspect of this dataset is the large number of

untreated individuals included in the study. Where alleles at the same locus were inferred to be

under selection in multiple individuals, a statistical approach was used to infer loci at which,

under conservative assumptions, at least one of the inferred variants is genuinely under selec-

tion. Taking into account different patterns for nonsynonymous and synonymous mutations,

we estimated per-site false-positive rates for nonsynonymous and synonymous mutations,

which were subsequently used to identify with statistical confidence sites that were under

selection in at least one individual in our dataset. The process used for estimation is described

in full in S1 Text. Taking all 34 individuals into consideration, we calculated that in p24 we

could be confident that a site is under selection in at least one individual if mutations were

inferred to be under selection in at least five individuals, and/or if nonsynonymous mutations

were inferred to be under selection in two or more individuals, while in gp41 we could be con-

fident if at least five mutations and/or three nonsynonymous mutations were inferred to be

under selection. This is a conservative approach, and will exclude sites genuinely under selec-

tion in only one or a few individuals, for example sites associated with escape from rare HLA

alleles or NAbs, or other less common forms of selection.

Applying these criteria, we identified 11 specific nucleotide sites, representing 10 amino

acid (AA) positions, under selection in p24, and likewise we identified 11 such sites, represent-

ing 8 AA positions, in gp41. All but four mutations at these AA positions represented nonsy-

nonymous changes (see Table 1). Occasionally two different codons at the same AA position

were found to be subject to selection in a single individual, but in general repeated inferences

of selection at an AA position occurred in distinct individuals (S1 Table). The positions of the

identified mutations in their respective protein structure are shown in Fig 3.

Using the Los Alamos HIV database (http://www.hiv.lanl.gov), for all of the AA positions

in our study, we determined whether they have previously been associated with changes in

CTL susceptibility or NAbs (see Methods, Fig 4, S2 Table). In p24, 43% of sites have previously

been associated with changes in CTL susceptibility and/or compensatory mutations, whilst

69% of the variants we inferred to be under selection were associated with CTL and/or com-

pensatory mutations. For the 10 AA positions identified as almost certainly under selection,

nine have previously been associated with changes in CTL susceptibility and/or compensatory
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mutations, and lie in epitope regions recognised by multiple HLA alleles present in the Ugan-

dan population[66–68]. The remaining codon (residue 286 in HXB2 gag) lies within CTL epi-

topes recognised by human leukocyte antigen (HLA) alleles that are relatively common in the

Ugandan population (A1101 and B27[66]) and therefore mutations at this site probably affect

sensitivity to CTLs, or possibly compensatory mutations. In gp41, 44% of AA sites have previ-

ously been associated with NAbs, whilst 61% of the variants we inferred to be under selection

were associated with NAbs. Of the eight AA positions identified as being almost certainly

under selection, five (residues 620, 624, 655, 674 and 677 of env) have previously been associ-

ated with NAbs, including broadly neutralising antibodies (bNAbs). These are associated with

the gp120/g41 interface and the membrane-proximal external region (MPER). The other three

codons (residues 641, 644 and 648 of env) all lie within an epitope region that is targeted by the

monoclonal antibody HGF24, which has been shown to neutralise some viruses isolated from

the African continent[58]. Although we cannot rule out other sources of selection in env, given

the position of these codons on the genome, we believe selection due to humoral immune pres-

sure is more likely. As such, all of the sites we identified as under selection in p24 probably

affect susceptibility to CTLs or associated compensatory mutations, whereas all of the sites

under selection in gp41 probably affect susceptibility to NAbs or associated compensatory

mutations.

Table 1. Summary of amino acid positions containing sites under selection.

Region Amino Acid Positiona Sensitivityb Nonsynonymousc Synonymous

Reversion Escape Neither

p24 215[34–37] CTL 0 2 1 2

p24 219[37–40] CTL 1 0 1 0

p24 223[37–40] CTL 2 4 2 0

p24 228[39,40] CTL 1 1 0 0

p24 242[40–45] CTL 2 0 1 0

p24 252[36,40] CTL 1 2 0 0

p24 286 1 1 0 0

p24 302[46] CTL 2 0 0 0

p24 310[47–50] CTL 1 1 0 0

p24 312[36,46,48,51,52] CTL 3 2 0 0

gp41 620[53–57] NAb 3 3 4 1

gp41 624[53,54] NAb 3 2 4 0

gp41 641[58] 0 2 1 1

gp41 644[58] 2 0 1 0

gp41 648[58] 1 3 0 0

gp41 655[59] NAb 1 3 0 0

gp41 674[56,60–65] NAb 0 2 1 0

gp41 677[56,62,63] NAb 1 3 0 0

aAmino Acid (AA) positions in gag (p24) or env (gp41) relative to the HXB2 reference genome
bSensitivity to CTLs or NAbs using the Los Alamos HIV database (http://www.hiv.lanl.gov; see Methods for further details). AA position 228 in gag is associated with

compensatory mutations, rather than affecting sensitivity to CTLs directly. Position 286 in gag occurs in an epitope position targeted by common HLA alleles in the

Ugandan population and so is likely associated with CTL escape. Positions 644, 648 and 655 were not associated with sensitivity to NAbs, but are in an epitope region

recognised by NAb HGF24 in some viruses isolated from Africa[58].
cA nonsynonymous change was classed as a reversion if the nucleotide changed towards the subtype-specific population-level consensus, as an escape if the nucleotide

changed away from the subtype-specific population-level consensus, and as neither of these if there was a nucleotide change which remained different to the subtype-

specific population-level consensus.

https://doi.org/10.1371/journal.ppat.1008171.t001
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Direction of selection

Since mutations that enable the virus to evade host immune responses are often costly in terms

of viral replication[69,70], sites harbouring escape mutations are likely to evolve towards the

population-level consensus when transmitted to a new host since the selective pressure of

a specific immune response is removed, but costs associated with the mutation remain

[2,31,71–74]. This hypothesis is supported by the observation that allelic substitutions during

the course of untreated infection occur towards population consensus much more frequently

than expected by chance [2,31]. If analysis is restricted to sites where substitutions are

observed, this bias is confined mainly to nonsynonymous substitutions[31], which is expected

if immune escape mutations are generally nonsynonymous.

Since the HLA types of the 34 individuals in our study are unknown, we followed previous

studies by classifying variants we confidently inferred to be under selection as escapes or rever-

sions depending on the population-level consensus[2,71]. Specifically, we classified selected

variants as escapes if they resulted in an AA change away from the subtype-specific popula-

tion-level consensus in Uganda during the period the individuals were being sampled (see

Methods for full details). Conversely, inferred selected variants were classified as reversions if

they resulted in change towards the subtype-specific population-level consensus. Of the 32

Fig 3. Locations of selected positions on the protein structures of p24 and gp41. Protein structures with pdb

identities and 3J34 and 6NIJ were used to plot these figures [103,104]. Parts of proteins that were covered by sequence

data are shown in gray, with the remainder of the protein in white van der Waals representation. Amino acid positions

identified by our analysis are shown in red. The gp41 structure does not show the entirety of the sequenced region,

with amino acids at positions 670 and 674 also identified in our analysis, but not in the protein structure. Other nearby

proteins are shown in white surface representation. Figures were created using the VMD software package [105].

https://doi.org/10.1371/journal.ppat.1008171.g003
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selected nonsynonymous mutations identified in p24, 13 were classified as escapes, 14 as rever-

sions, and five as neither. The similar number of escapes and reversions observed is expected if

CTL immune escape mutations are costly in non-HLA matched hosts, with escape in one indi-

vidual followed by reversion in the next. The observation of one escape and one reversion in

residue 286 of gag supports our prediction that this locus likely affects CTL susceptibility. Of

the 40 nonsynonymous mutations identified in gp41, 18 were classified as escapes, 11 as rever-

sions, and 11 as neither. The fact that over a quarter of AA changes are towards population

consensus suggests that in many cases antibody escape mutations are deleterious in hosts with-

out a matching antibody, but the stereotypical pattern of adaptation in one individual followed

by reversion in another found at CTL immune epitopes is likely more complex for antibody-

escape evolution, where escape mutations are sometimes, but not always costly in the absence

of an antibody response [75,76]. Among the three residues 641, 644 and 648 of env, five of

the nine nonsynonymous variants are escapes, three are reversions, and two are neither, sup-

porting our prediction that these sites affect susceptibility to host (probably NAb) immune

responses.

We also determined the direction of change for all variants inferred to be under selection,

which will likely include variants under direct selection and variants changing in frequency

due to hitch-hiking, and whether they represented synonymous or nonsynonymous changes

(S8 Fig). We found a clear correlation between the number of times that selection was inferred

at an AA position and the proportion of selected variants that were nonsynonymous (linear

Fig 4. Amino Acid (AA) positions containing nucleotide sites that with confidence were inferred to be under selection in at least one individual.

Codon positions are in relation to the HXB2 reference sequence and the vertical y-axis gives the number of times that codon was inferred to be under

selection across 34 individuals. Occasionally the same AA position was inferred to be under selection twice in the same individual. Pink: AA positions

associated with changes in susceptibility to CTLs or compensatory mutations; Blue: AA positions associated with susceptibility to NAbs. Selection at

Gag residue 286 possibly reflects CTL escape in one individual and reversion in another. Selection at Env residues 641, 644, and 648 possibly reflect

selection associated with NAbs; these are all within an epitope region targeted by the neutralising antibody HGF24 in some African Isolates[58]. Where

an AA position is implicated in CTL and NAb responses, for clarity they are coloured in blue.

https://doi.org/10.1371/journal.ppat.1008171.g004
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regression, p24 p = 0.009, r2 = 0.85; gp41 p = 0.007, r2 = 0.67). For gp41, a correlation was also

found between repeated selection at an AA position and a pattern of evolution towards the

population consensus (p = 0.011, r2 = 0.63); around half of inferred selection events were

towards population consensus at the AA position most frequently inferred to be under selec-

tion. Although for p24 the linear regression did not reveal a significant trend (p = 0.400, r2 =

0.18), there is a distinction between AA positions selected 2 or more times, which have a high

probability of being towards subtype-specific population consensus (44%), and AA positions

selected once, which have only a small probability of being towards the consensus (5%). Our

interpretation is that AA positions represented once in our analysis disproportionately repre-

sent mutations increasing in frequency due to hitch-hiking, with these mutations tending to

be synonymous and away from population level consensus. AA positions represented multiple

times, on the other hand, are more likely to represent immune escapes and reversions, and

therefore tend to be nonsynonymous but with only around half of mutations away from

consensus.

Comparing codon diversity at the within-host and population scale

Our data showed a strong relationship between within- and between-host sequence diversities,

where the diversity of codons was measured at each AA position. Within-host diversity was

measured approximately three years after seroconversion for each of the 34 individuals, and

the mean calculated. Diversity at the population scale was calculated as the mean of the diversi-

ties for each of the subtypes A, D, and C, using virus sequences from a large number of individ-

uals living in Uganda around the same time as the 34 individuals in our study (see Methods).

Consistent with previous studies [2], we identified a strong relationship between measure-

ments of sequence diversity calculated at the within-host and population scales (Fig 5, S2

Table), with all AA positions found to be highly diverse at the within-host level also highly

diverse at the population level. Moreover, all but one of the AA positions containing nucleo-

tide sites that we are confident are under selection are also diverse at the population level (the

exception being residue 302 in gag). Given that most changes at these sites probably reflect

escape from host immune responses, compensatory mutations, or reversions of these escapes

in subsequent individuals, diversity at the population scale at these AA positions is likely main-

tained by the differing selection pressures faced by variants in different hosts due to different

immunological backgrounds.

Fig 5. Within- and between-host codon diversity. For every AA position in our region of analysis we determined the within- and between-host codon

diversity. Large markers denote AA positions in which we are confident selection is occurring in at least one individual. Markers are coloured if they are

associated with changes in sensitivity to CTLs or compensatory mutations (pink) or NAbs (blue). The site confidently under selection in p24 but which

is unspecified (Gag residue 286) is possibly associated with CTL escape. The sites confidently under selection in gp41 but which are unspecified (Env

residues 641, 644, and 648) possibly reflect selection associated with NAbs; these are all within an epitope region targeted by the neutralising antibody

HGF24 in some African Isolates[58]. Where an AA position is implicated in CTL and NAb responses, for clarity they are coloured in blue.

https://doi.org/10.1371/journal.ppat.1008171.g005
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Not all AA positions found to be highly diverse at the population level were detected as

being under selection, with a high degree of confidence, at the within-host scale. This observa-

tion could arise if codons at these positions are under selection in some individuals in the

population, but we failed to observe it with confidence, either because we sampled too few

individuals, selection was too weak to be detected, and/or selection drove fixation events

before the first sampling time point. In addition, at unconstrained sites experiencing little or

no selection, diversity might gradually accumulate at the population scale due to drift, exacer-

bated by small bottleneck sizes at transmission. This could explain the high levels of population

diversity at positions 235 in gag and 609 in env; almost all of the diversity observed at these

codon positions is due to the presence of synonymous variants.

Discussion

We developed a novel inference framework to infer the extent of selection acting upon variants

which drive the evolution of within-host HIV-1 populations, considering data from the p24

region of gag, and gp41 of env, from 34 longitudinally sampled untreated individuals. A fre-

quent assumption is that beneficial mutations will rapidly spread within individuals once

they occur[77]. For example, it is well established that CTL-escape mutations accumulate and

spread rapidly during acute infection [19–25], though that the rate of allele fixation decreases

during chronic infection[22,25]. However, estimating the extent and strength of positive

selection during infection more generally is challenging due to genetic linkage among variant

alleles, which makes differentiating between selected variants and variants that are increasing

in frequency due to linkage with a selected variant (hitch-hiking) difficult. Our de novo
approach incorporates genetic linkage and recombination. Furthermore, it is generally

assumed that during untreated infection selected variants are associated with immune escape;

our approach is agnostic with regards to phenotypic data, potentially allowing any polymor-

phic site in the genome to be identified as under positive selection. Indeed, using our approach

we discovered four sites in the genome likely to be under immune pressure (both CTL and

antibody) that were not listed in the Los Alamos database.

Our results indicate a pattern of weak and slow selective sweeps characterising evolution

during chronic HIV-1 infection, with stronger faster selective sweeps being relatively rare. We

note that where ‘weak’ selection was inferred, this was still on a scale outweighing the effects of

genetic drift. Studies of the effective population size of HIV-1 have indicated a value in excess

of 105 [76]; given such a value, selection of the order of 5% per generation is comfortably

within a realm whereby the influence of selection dominates that of genetic drift [78]. An

important caveat is that the first sampling time point for each individual in our analysis is esti-

mated to be between 150 and 425 days since seroconversion, and therefore we will not detect

variants that were under strong selection and rapidly reached fixation before the first sampling

time point. Furthermore, the magnitude of the most strongly selected variants could not

always be quantified; where fixation occurs entirely in the interval between two consecutive

time points, no upper bound on the magnitude of selection could be fixed.

A unique aspect of our study is the large number of individuals for which we have data.

Comparisons among individuals revealed AA positions which were inferred to be under

selection in multiple (up to ten) individuals. Most of these sites have previously been identi-

fied as affecting sensitivity to CTLs (in p24) or NAbs (in gp41), with selected changes at these

sites likely reflecting the gain or loss immune-escape mutations, or escape-related compensa-

tory mutations (although other sources of selection cannot be ruled out). In addition, we

identified four AA positions under selection in multiple individuals that haven’t previously

been identified as affecting sensitivity to CTLs or NAbs (residue 286 in gag, and residues 641,
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644 and 648 in env). Given the patterns of selection at these sites, reflecting evolution both

away and towards population consensus, it is likely these sites also affect sensitivity to CTLs

(gag) or NAbs (env). Sites under selection in multiple individuals were also found to be

highly diverse at the population level. This again is consistent with a pattern where a minor-

ity of codons are repeatedly under selection, likely representing adaptation to the immuno-

logical background of some individuals, which revert upon transmission to subsequent

individuals; a pattern which has been referred to as “adapt and revert”[79]. Although we do

not know the HLA-type of the infected individuals in our study, the number of putative CTL

escapes and reversions is consistent with the frequency of different HLA alleles in the Ugan-

dan population.

Perhaps less expected in our analysis was the identification of AA positions that are asso-

ciated with NAbs and which were found to be under selection in a large number of individu-

als; for one site selection was inferred in nearly a third of individuals, with another inferred

in a quarter of individuals. The implication is that the same epitopes are frequently targeted

by antibodies in different individuals, and with similar means of viral escape. Moreover,

since around a quarter of changes at these sites are towards the subtype-specific population

level consensus, many may well represent the reversion of costly antibody-escape mutations

from previous individuals, supporting the observation that some but not all antibody-escape

mutations are costly [70,75,80–84]. These patterns can help explain why resistance to anti-

bodies has increased over the course of the epidemic [85–89], but also highlights that viral

evolution at the population level in response to bNAb-based interventions is likely to be

complex, involving evolutionary responses to both naturally and therapeutically induced

immune responses.

Even though our framework explicitly accounts for linkage disequilibrium between

observed variants, it is still vulnerable to false positive inferences of selection due to linkage

disequilibrium with unobserved variants flanking the genetic regions we analysed. Although

simulated data suggested that the overall distribution of fitness effects was robust to this vul-

nerability, our study should serve as a cautionary note; where multiple alleles evolve in linkage

disequilibrium, care is needed in identifying selection with any particular allele. The large

number of individuals included in our study enabled us to partly circumvent this problem by

only assigning confidence that any particular nucleotide site is under selection if it is inferred

to be under selection in multiple individuals. Indeed, evidence for the validity of our method

is provided by the repeated observation of variants under weak selection across multiple indi-

vidual infections, with these changes making biological sense under the “adapt and revert”

hypothesis. Our results emphasise the role of immune escape in driving evolution during

chronic infection, shaping patterns of diversity at the population level, and provides new

insights that could be useful in the development of immune-based interventions, particularly

in the context of viruses circulating in Africa.

Methods

In order to evaluate selection within a host, we employed a likelihood-based inference frame-

work to infer the most parsimonious explanation of the sequence data in terms of a model of

selection acting for specific nucleotides in the viral population. Some of the mathematical

aspects of this framework have previously been applied in studies of the within-host evolution

of the influenza virus[32,90], although the details of the model used here tailor it to HIV-1

infection. Our model explicitly accounts for linkage disequilibrium between alleles and builds

upon earlier approaches for inferring selection in cases where linkage is of importance for evo-

lution [23,27,91,92].
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Model outline

Our model proceeds through a number of steps (see below for full details). (1) We identified

variant alleles from the sequence data using a simple frequency cutoff. Measurements of the

frequencies of variant alleles over time were collected into trajectories, each trajectory describ-

ing the frequency of a single allele over time. (2) Sets of alleles with similar trajectories were

identified, and under the assumption that all of the differences between these similar trajecto-

ries resulted from noise in the data, the extent of noise, modelled as a single parameter, was

estimated. The noise parameter defines a likelihood function for the data, the existence of

which allows for fits to be made between the data and a number of models describing the evo-

lution of the population. (3) Models of evolution at a single locus were used to assess all of the

derived trajectories. Comparing the likelihoods of models describing evolution under selective

neutrality, and under selection, we identified, using model selection, a subset of trajectories

which potentially evolved under non-neutral selection. Such selection could arise either from

intrinsic selection for or against the allele, or via linkage disequilibrium with an intrinsically

selected allele elsewhere in the genome. (4) We combined the alleles present at each locus that

had a potentially non-neutral trajectory into haplotypes, with these haplotypes only describing

alleles at the loci identified to have potentially non-neutral trajectories (S9 Fig). (5) For each

patient, the number of reads with each observed haplotype at each time of sampling was

counted, forming a multi-locus dataset describing the evolution of the virus in that patient

over time. (6) A series of multi-locus evolutionary models were fitted to the data from each

patient, identifying the most parsimonious explanation of the data in terms of time-dependent

selection acting on individual alleles in each dataset. (7) Confidence intervals for the inferred

selection parameters were generated, again making use of the likelihood function. The model

is thus identical to that described in a previous publication [33] with differences only in the

approach to identifying noise in step two, in the models used to fit the data in step six, and in

the calculation of confidence intervals for selection.

Sequencing data

For our evolutionary analysis we used previously generated deep-sequence data from 34 longi-

tudinally sampled individuals participating in the Rakai Community Cohort study and co-

enrolled in the Molecular Epidemiology Research (MER) seroconverter study. Targeted short-

read deep-sequence data from the p24 region of gag (390 bp; HXB2 reference genome posi-

tions 1429–1816) and the gp41 region of env (324 bp; HXB2 7941–8264) had been sequenced

using the 454 sequencing platform (Roche, Branford, CT). All individuals were untreated, with

a first sampling time point around one year since seroconversion, and typically 3 or 4 subse-

quent time points spanning between two and seven years of infection (see Table 1 in Raghwani

et al 2019). Aligned sequences can be found at https://github.com/katrinalythgoe/

RakaiHIV. Further details on the individuals, including viral loads and CD4 counts, and

sequencing methods used have been given elsewhere[31,93].

Calling of variant alleles and trajectories from sequence data

Single-locus variants were identified in the data using the SAMFIRE software package[94].

Variants with a minimum allele frequency of at least 1% for at least one time point in the

course of infection were identified. Variant frequencies collected over time were described in

terms of trajectories. By way of notation, in a given patient we denote the trajectory

ði; aÞ ¼ f~qai ðtkÞgk¼1;...;K
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comprising the observed frequencies of allele a at locus i across all recorded times tk. Here K is the

total number of points in time at which the population was observed via sequencing, which varied

between 2 and 5. We note that the frequency is calculated simply as, the number of observations

of allele a at locus i at time tk divided by the total number of alleles observed at locus i at time tk.

Estimating the extent of noise in the data

Noise in sequence data can arise either through the collection of an unrepresentative sample of

viruses from a patient, or via errors induced in the experimental processing and sequencing of

that sample [93]. We here applied a heuristic method to derive a conservative estimate of the

extent of noise in the data from the data itself. This was achieved by exploiting effects caused

by genetic hitch-hiking[95]. If two alleles appear uniquely upon a shared genetic background,

they will initially share an identical allele frequency. Over time the allele frequencies will

change in a very similar manner, differences arising over time as a result of recombination

between distinct haplotypes. We thus identified putatively hitch-hiking trajectories to derive

an estimate of noise in the sequence dataset.

For this analysis, we considered loci at which a minor allele frequency of at least 10% was

observed in samples collected at two points in time. Loci in HIV can potentially have multiple

alleles satisfying this condition. For each pair of such loci, i, and j, we found the alleles a�, b�

minimising the statistic

da�b�ij ¼ min
a;b

1

K

X

k

j~qai ðtkÞ � ~qbj ðtkÞj

( )

where the minimisation was calculated over all polymorphic alleles at the loci i and j. Initially,

pairs of trajectories (i,a�) and (j,b�) were denoted as being ‘similar’ if

da�b�ij < 10%:

A set of further heuristic steps was then applied to refine these sets of trajectories. On time-

scales close to those over which the data for this study was measured, recombination in HIV-1

has been noted as being of importance over genetic distances greater than 100 nucleotides [2];

here a distance cutoff of less than or equal to 50 nucleotides was imposed between trajectories,

that is |i-j|� 50.

Next, under the assumption that pairs of our variants initially arose on the same background,

pairs were required to have similar frequencies at the first time of observation, requiring that

j~qa�i � ~qb�j j < 5%:

Further, so as to remove pairs of trajectories for which only one was polymorphic at a given

time, it was required that the maximum ratio between minor allele frequencies did not exceed

103 for the duration of the trajectories; the framework of a Dirichlet multinomial model we

subsequently use to estimate the extent of noise does not perform well on very low frequencies.

Remaining sets of pairs identified in each patient were clustered into sets via an iterative pro-

cess; beginning with an initial pair of trajectories (i1, a1) and (i2, a2), a trajectory (im, am) was

added to the set if, following filtering, (im, am) was similar to a trajectory (in, an) already in the

set. Sets of trajectories generated by the above process are shown in S10 Fig.

Having identified sets of trajectories, an inference process was used to evaluate the extent

of noise in the data. Conservatively, the ‘true’ allele frequencies of each set were calculated as

a simple mean of the observations, thereby assuming that all differences in frequencies result

from ‘noise’ in the sequencing process. Given a set of trajectories S from a single viral
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population, recalling that ~qa�i ðtkÞ was calculated as nai ðtkÞ=NiðtkÞ, the inferred frequency at time

tk was calculated as the mean fraction of variant alleles across all loci with trajectories in S.

That is,

qS tkð Þ ¼
P

mn
am
im ðtkÞP

mNim
ðtkÞ

A Dirichlet multinomial model was then parameterised across all trajectory sets, finding the

value of C satisfying

minC
X

s

X

m

X

k
LðNimðtkÞ;C; q

SðtkÞ; n
am
im Þ

n o

Where the summations are, respectively, calculated over sets of similar trajectories S, trajecto-

riesm in each set S, and samples k in each trajectory, and where the likelihood is the Dirichlet

multinomial function

L N;C; q; nð Þ ¼ log
GðN þ 1Þ
Q

aGðna þ 1Þ

Gð
P

aCq
aÞ

Gð
P

ana þ CqaÞ

Y

a

Gðna þ CqaÞ
GðCqaÞ

in which the sums and products with index a are calculated over all alleles at a specific locus,

or equivalently over all haplotypes within a population, while G indicates the gamma function.

GðzÞ ¼
R1

0
xz� 1e� xdx

The derived value of C provides a proxy measurement of the extent of noise in the data and

was used in further likelihood calculations; we inferred the value C = 100.359. Qualitatively,

this value represents the extent to which the variance of a sample of haplotypes is overdis-

persed in relation to a simple multinomial sample; a small value of Crepresents an increased

amount of uncertainty in the data, tending towards a uniform distribution, in which samples

are fully uninformative, while a high value of C represents increased uncertainty, tending

towards a multinomial sample in which every read precisely identifies a haplotype in a per-

fectly representative sample from the population. We note that patterns of noise in genome

sequence data may be substantially more complex than represented by our model; our likeli-

hood, combined with the BIC model selection framework, provides a simple yet analytically

tractable approach for the inference of selection parameters from real genome sequence data.

Identification of potentially non-neutral loci

Considering frequency data from each variant allele, ‘potentially non-neutral’ loci [92] at

which significant changes in allele frequency were observed over time were identified. In this

process, where q1(t) denotes the frequency of the variant allele at locus i at time t, deterministic

models of evolution at a single locus were fitted to the single-locus trajectories, using the

equation

q1

i tkþ1

� �
¼

q1
i ðtkÞe

skðtkþ1 � tkÞ

1 � q1
i ðtkÞ þ q1

i ðtkÞeskðtkþ1 � tkÞ

for neutral (σk = 0), constant (σk = s), and time dependent models of selection, retaining trajec-

tories for which the constant or time-dependent models of selection outperformed the neutral

model. This was evaluated using the Bayesian Information Criterion (BIC) to account for the

increased complexity of the models including selection [96].
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Construction of haplotypes

For each individual, only potentially non-neutral loci were retained for the rest of the analysis,

with each combination of alleles at these sites representing a haplotype. We converted the

sequence data into a set describing the number of times each haplotype was observed in the

sequence data, at each sampling time point. For example, if three non-neutral loci were identi-

fied, we might count the number of reads with the alleles G, A, and C at these loci at a given

time point; the proportion of such reads would specify the observed frequency of the haplotype

GAC. Only viral haplotypes which were observed in the sequencing data were considered,

generally representing a small fraction of the haplotypes that could potentially exist. This

approximation is equivalent to the assumption that non-observed viral haplotypes were under

sufficiently strong purifying selection to prevent them from reaching an observable frequency.

Multi-locus evolutionary models

Our evolutionary models considered the effect of mutation, selection, and recombination

upon the population. Within a model the frequency of the haplotype a at generation tk of

the within-host viral population was specified by the frequency qa(tk), frequencies changing

according to the three evolutionary processes. The model system was propagated within the

space of observed haplotypes using a Wright-Fisher approach of discrete generations, with

successive steps of mutation, recombination and selection.

Mutation was approximated as occurring between haplotypes that differ by a single nucle-

otide with rate μ per generation. Recombination was approximated as occurring in a pairwise

manner between haplotypes with rate ρ per base per generation. That is, if a recombination

event occurring between the loci indexed i and i+1, and involving the haplotypes a and b,

were to produce the haplotype c, then in our model the new haplotype was produced at rate

Δi,i+1ρqa(tk)qb(tk) where Δi,i+1 is the sequence distance between loci i and i+1.

A time-dependent model of selection acting upon haplotypes was applied, simulating the

changing selection acting upon HIV during an infection. The time-dependent fitness wa of a

haplotype a at time t was modelled via a hierarchical model of single-locus terms

waðtÞ ¼ exp
X

i

siIfi;a;Tig

 !

where the sum is calculated over all loci i in the set of potentially non-neutral loci identified

above. The parameter si denotes selection acting for or against all haplotypes with a variant at

locus i, and the parameter I{i,a,Ti} is a binary indicator function. Here, Ti is the time at which

selection begins to act upon the variant allele at locus i. The indicator function is set so that

I{i,a,Ti} = 1 if t>Ti, and if the haplotype a contains the variant allele at locus i, while I{i,a,Ti} = 0 if

it is true either that a does not contain the variant allele at i, or if t� Ti.
Selection then modifies the frequency of each haplotype according to the equation

qa t þ 1ð Þ ¼
waðtÞqaðtÞP
bwbðtÞqbðtÞ

where the sum with index b indicates a sum over all haplotypes, including a. In this manner

the frequency of a haplotype changes according to the relation between its fitness and the

mean fitness of the total viral population.

On the basis of previous studies[77,97–100], parameters for mutation and recombination

were set at μ = 3 x 10−5 per generation and ρ = 10−5 per base per generation, with a generation

time of two days[101], reflecting parameters derived from studies of chronic infection.
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Parameters σi and Ti, and initial frequencies qa(t0), were learnt from the data according to a

hierarchical model framework. An initial, neutral model contained no selection parameters,

every haplotype having equal fitness. Next, single-locus selection models were considered.

Such a model uses the set of parameters i, a, σi, and Ti, to describe the locus and allele at which

selection acted, the magnitude of selection and the time at which selection took effect. In each

model, given the loci and allele under selection, the optimal values for the magnitudes and

times of selection were identified, using a simple likelihood optimisation process. The Dirich-

let multinomial likelihood described above, with the inferred noise parameter C, was used in

this process, matching the observed haplotype frequencies to those produced by the evolution-

ary model. To improve coding efficiency a model lacking mutation and recombination was

used to derive reasonable starting parameters for selection and haplotype frequencies; the

subsequent application of a model with the addition of mutation, then the full model with

mutation and recombination gave the final likelihood and maximum likelihood parameters.

Replicate calculations with different random seeds were used to validate likelihood calcula-

tions. By means of an iterative process, more complex models of selection were considered.

Initially, selection parameters were added, taking the best n-locus models and adding selection

at an additional locus to each one. Upon the discovery of a model for which adding selection at

a further locus did not improve the model, a process involving both the addition and subtrac-

tion of parameters was initiated, to the point of discovering a model for which neither adding

a further pair of selection parameters, or removing an existing pair of parameters, improved

the model. The comparison of models was performed using the Bayesian Information Crite-

rion. As a conservative step, a model with an additional pair of selection parameters was

required to significantly outperform a simpler model to be accepted, this being denoted by

an improvement of 10 units of BIC given a maximum likelihood set of parameters for each

model. Compared to an earlier model of selection at multiple loci [28], our approach has the

advantage of parsimony, inferring selection at a locus only where there is specific evidence for

non-neutrality at that site. Our model of time-dependent selection accounts for the expected

behaviour of the host immune system against HIV. No prior distribution of selection coeffi-

cients was assumed.

Estimating confidence intervals for selection coefficients

Confidence intervals were calculated for each parameter si inferred in the maximum likeli-

hood calculation. Supposing the maximum log likelihood for a given inferred system to be

equal to some value L, error bars were generated via a constrained exploration of the model

space, in which a change in model parameters was accepted if the resulting likelihood was

not greater than L-2, and for which changes to the parameter of concern, σi, were con-

strained so that this parameter could only change in a specific direction; forcing this parame-

ter to increase generated an estimate, after repeated iteration, for the upper error bar of this

parameter, while forcing this parameter to decrease generated an estimate of the lower error

bar of this parameter.

Reporting selection coefficients

In our study we report the respective fitness advantage conferred by each beneficial mutation

as a percentage per generation. This statistic, s, is calculated from an inferred selection coeffi-

cient as

s ¼ esi � 1
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Direction of selection

For each of the selected mutations identified in our analysis, we determined whether evolution

was towards or away from the subtype-specific population consensus. The subtype of each

gene region for each individual and the population consensus for subtypes A, D and C in

Uganda during a similar period to which the individuals were sampled was previously deter-

mined[31].

Amino Acid position association with immune escape

Using the Los Alamos HIV database (http://www.hiv.lanl.gov), we determined for each of the

AA positions in the p24 and gp41 regions that we analysed whether they have previously been

associated with changes in CTL susceptibility or neutralising antibodies. For CTL susceptibility

we used the Epitope Variant and Escape Mutation Database CTL variant search tool (https://

www.hiv.lanl.gov/content/immunology/variants/variant_search.html?db=ctl). AA positions

were marked as being associated with susceptibility to CTLs if susceptible and/or resistant vari-

ants were returned in the search tool. We excluded codons inferred to be susceptible to CTLs

if the only evidence was high levels of diversity at the population level. For neutralising anti-

bodies we used the Neutralizing Antibody Contacts and Features search tool (https://www.hiv.

lanl.gov/components/sequence/HIV/featuredb/search/env_ab_search_pub.comp), marking

codons as associated with susceptibility if variants were shown or predicted to affect neutralisa-

tion by antibodies, or binding to neutralising antibodies.

Codon diversity

We used the diversity statistic π to measure mean intra- and inter-host diversity at the codon

level. Given a locus a at which the read depth is N, where na of each codon a was where ni of

each of the three-nucleotide codons i have been observed, we define the diversity statistic π as

p ¼
NðN � 1Þ �

P
iniðni � 1Þ

NðN � 1Þ
:

This diversity statistic has been shown to be less prone than some other metrics to biases at

the intra-host scale[102], and using codons (nucleotide triplet motifs) rather than amino acids

or single nucleotides means our measure incorporates synonymous and nonsynonymous

diversity whilst still enabling comparison with information on sensitivity to host immune

responses, which is typically given at the amino acid level. To determine the mean intra-host

diversity at a given codon position, we calculated π for each individual and then took the mean

for all 34 individuals. To determine the mean inter-host diversity at a given codon position we

calculated π for each subtype and then took the mean for all three subtypes (A, C and D).

Application of the method to simulated data

The performance of our method was evaluated using simulated data, generated in order to be

as close in nature as possible to the real data. A complete discussion of the methods used is

given in S1 Text.

Supporting information

S1 Fig. Codon positions containing nucleotide sites that are inferred to be under selection.

This includes codons that are genuinely under selection and those that are increasing in fre-

quency due to hitchhiking. Codon positions are in relation to the HXB2 reference sequence,

and the y-axis gives the number of times that codon is inferred to be under selection across 34
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individuals. Occasionally the same codon is inferred to be under selection twice in the same

individual. Pink: codons associated with changes in susceptibility to CTLs; Purple: codon

probably affects susceptibility to CTLs; Blue: codons associated with susceptibility to NAbs;

Cyan: codons in an epitope position targeted by the neutralising antibody HGF24 in some

African isolates. Where a codon is implicated in multiple responses, for clarity they are col-

oured in order of preference NAb, CTL, NAb (likely).

(TIF)

S2 Fig. Magnitudes of selection for variants that were inferred to be under selection, or not

inferred to be under selection, in simulated systems in which the full data about the evolu-

tion of the system was available to the inference code. A magnitude of 0.1 corresponds to a

10% fitness advantage per generation. More weakly selected variants were less likely to be identi-

fied as such. A variant will fail to be identified as under selection if it makes too small an impact

upon the evolution of the system to be detected by our code, which adopts a parsimonious

approach to identifying selected variants. Such an event can occur for a variety of reasons. For

example if a newly-selected variant exists at very low frequency, and if the addition of selection

for this variant is insufficient to raise the fitness of sequences carrying it to a value above the

mean population fitness, selection will not impact the population in a way so as to be detectable.

(TIF)

S3 Fig. Distributions of input and inferred magnitudes of selection for simulated data in

which the observed data described A. the full region of the virus simulated, containing all vari-

ants under selection and B. A fraction of the simulated region of the virus. Data are shown for

variants at which the magnitude of selection could be inferred with confidence.

(TIF)

S4 Fig. Observed (solid lines) and inferred (dashed lines) haplotype frequencies for simu-

lated data in which all loci under selection were observed. In some cases the lines cannot be

distinguished from one another.

(TIF)

S5 Fig. True and inferred magnitudes and timings of selection for simulated data. Confi-

dence intervals for the inferred selection coefficients are shown, calculated using the method

described in the main text. The red dashed line indicates agreement between the true and

inferred parameters. We note that in some cases, confidence intervals for selection coefficients

are large, as was the case for our inferences from the biological data. This can occur, for exam-

ple, where data is not collected at sufficient time resolution to quantify selection; for a sudden

fixation event only a lower bound for selection can clearly be identified.

(TIF)

S6 Fig. Observed (solid lines) and inferred (dashed lines) haplotype frequencies for simu-

lated data in which only data from within a fraction of a simulated region was observed. In

some cases the lines cannot be distinguished from one another.

(TIF)

S7 Fig. No correlation between time of onset and strength of selection. Linear regression,

p24, p = 0.20; gp41, p = 0.83.

(TIF)

S8 Fig. Proportion of mutations inferred to be under selection that are towards population

level consenus or are nonsynonymous. This includes codons that are genuinely under selec-

tion and those that are increasing in frequency due to hitchhiking. In all cases mutations are
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grouped according to the number of times the codon in which they appear is inferred to be

under selection across the 34 individuals (x-axis). Top row: the number of codons in each

group. Middle row: the proportion of mutations in each group that are towards population level

consensus. Bottom row: the proportion of mutations in each group that are nonsynonymous.

(TIF)

S9 Fig. Illustration of the construction of haplotypes. Using sequence data from a single

region in a single patient, loci containing potentially non-neutral trajectories were identified.

Alleles present at these loci were combined to construct haplotypes. The number of observa-

tions of each haplotype in the sequence data was counted for each time point at which the pop-

ulation was sampled. Inferences were performed using these haplotype counts.

(TIF)

S10 Fig. Sets of nucleotide trajectories that were identified as putatively hitchhiking. These

trajectories were used to create a conservative estimate of the extent of noise in the sequencing

data.

(TIF)

S1 Table. Summary of results for all sites inferred to be under selection

(XLSX)

S2 Table. Characteristics of all codons analysed: Sensitivity to host immunity, within- and

between-host diversity, and the number of times the codon was inferred under selection

(XLSX)

S3 Table. True and inferred selection parameters for a case in which sequence data

describes all selected alleles within a system.

(XLSX)

S4 Table. True and inferred selection parameters and times for a case in which sequence

data partially describes the selected alleles within a system. We here simulated the evolution

of populations of viruses, each comprised of genotypes containing 24 polymorphic alleles

(numbered 1 to 24 for convenience; genotype positions are also provided). The columns show-

ing the true model parameters describe, for each of the 20 simulated systems, which loci were

modelled as being under selection (seven loci were chosen at random in each case, the remain-

der being neutral), the time at which selection for the variant at each locus began, and the mag-

nitude of selection acting on this variant. The columns showing inferences show the loci at

which selection was inferred to act, and for each of these loci the time at which selection was

inferred to begin, and the magnitude of selection inferred to act upon the variant allele. Infer-

ences were conducted using a partial set of data restricted to a description of changes in the

system occurring between loci 441 and 759 in the genotype making it impossible to infer selec-

tion acting at loci outside of this window.

(XLSX)

S1 Text. Calculations performed on simulated data, where targeted reads describe the

complete evolution of the system, and where targeted reads do not describe the complete

evolution of the system.

(DOCX)
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