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Abstract

Resistance against different antibiotics appears on the same bacterial strains more often

than expected by chance, leading to high frequencies of multidrug resistance. There are mul-

tiple explanations for this observation, but these tend to be specific to subsets of antibiotics

and/or bacterial species, whereas the trend is pervasive. Here, we consider the question

in terms of strain ecology: explaining why resistance to different antibiotics is often seen on

the same strain requires an understanding of the competition between strains with different

resistance profiles. This work builds on models originally proposed to explain another aspect

of strain competition: the stable coexistence of antibiotic sensitivity and resistance observed

in a number of bacterial species. We first identify a partial structural similarity in these mod-

els: either strain or host population structure stratifies the pathogen population into evolution-

arily independent sub-populations and introduces variation in the fitness effect of resistance

between these sub-populations, thus creating niches for sensitivity and resistance. We then

generalise this unified underlying model to multidrug resistance and show that models with

this structure predict high levels of association between resistance to different drugs and

high multidrug resistance frequencies. We test predictions from this model in six bacterial

datasets and find them to be qualitatively consistent with observed trends. The higher than

expected frequencies of multidrug resistance are often interpreted as evidence that these

strains are out-competing strains with lower resistance multiplicity. Our work provides an

alternative explanation that is compatible with long-term stability in resistance frequencies.

Author summary

Antibiotic resistance is a serious public health concern, yet the ecology and evolution of

drug resistance are not fully understood. This impacts our ability to design effective inter-

ventions to combat resistance. From a public health point of view, multidrug resistance

is particularly problematic because resistance to different antibiotics is often seen on the
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same bacterial strains, which leads to high frequencies of multidrug resistance and limits

treatment options. This work seeks to explain this trend in terms of strain ecology and the

competition between strains with different resistance profiles. Building on recent work

exploring why resistant bacteria are not out-competing sensitive bacteria, we show that

models originally proposed to explain this observation also predict high multidrug resis-

tance frequencies. These models are therefore a unifying explanation for two pervasive

trends in resistance dynamics. In terms of public health, the implication of our results is

that new resistances are likeliest to be found on already multidrug resistant strains and

that changing patterns of prescription may not be enough to combat multidrug resistance.

Introduction

Antibiotic resistance and, in particular, multidrug resistance (MDR) are public health threats.

Multidrug resistant infections are associated with poorer clinical outcomes and higher cost of

treatment than other infections [1, 2] and there is concern that the emergence of pan-resistant

strains (pathogens resistant to all available antibiotics) will render some infections untreatable

[3].

From the point of view of finding effective treatment options, multidrug resistance is partic-

ularly problematic because resistance to different antibiotics tends to be concentrated on the

same strains: positive correlations between resistance to different drugs have been found in

multiple species (including Streptococcus pneumoniae, Neisseria gonorrhoeae, Staphylococcus
aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa andMycobacterium
tuberculosis) [2]. In other words, the frequency of MDR strains is higher than we would expect

from the frequencies of individual resistance determinants if these were distributed randomly

in the population (‘MDR over-representation’).

Understanding the causes of this MDR over-representation is important for limiting the

impact of resistance. A number of possible explanations have been suggested (Table 1) [2], but

the extent to which these processes contribute to the trend remains uncertain. Many of the

proposed mechanisms are specific to subsets of antibiotics and/or species. The pattern of

MDR over-representation, on the other hand, is pervasive: correlations have been observed

between resistance to antibiotics acting through different mechanisms, and between chromo-

somal and mobile genetic element (MGE) associated resistance determinants [2]. Explanations

for MDR over-representation must therefore be either sufficiently general or sufficiently

diverse to account for this pervasiveness.

In this paper, we approach the problem of explaining MDR over-representation in terms

of strain ecology: explaining why resistance to different antibiotics is often seen on the same

strain requires an understanding of the competition between strains with different resistance

profiles. For models of such competition to be credible, they must capture observed trends

in resistance dynamics whilst being ecologically plausible. Developing models that fulfil these

criteria has not been trivial: sensitive and resistant strains compete for the same hosts and sim-

ple models of competition therefore predict that the fitter strain will out-compete the other

(‘competitive exclusion’) [19]. However, this is rarely observed: resistance frequencies have

remained intermediate over long time periods in a number of species. For example, sustained

intermediate resistance frequencies are observed in Europe for various antibiotics and numer-

ous species, including E. coli, S. aureus and S. pneumoniae (European Centre for Disease Pre-

vention and Control Surveillance Atlas, available at https://atlas.ecdc.europa.eu). Stable

coexistence is also observed in surveillance data from multiple other locations (Centre for
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Table 1. Processes which may contribute to MDR over-representation.

Process Notes

Shared resistance mechanisms Particularly relevant for antibiotics of the same class (e.g. β-

lactamases and some penicillin-binding protein mutations

conferring resistance against multiple β-lactams), but also

applicable for some drugs of different classes: there are

examples of efflux pumps acting on multiple drugs in

numerous species [4] and evidence for clinical relevance of

efflux pumps in multidrug resistance [5]. However, MDR

over-representation is also observed where efflux pumps are

not thought to be a major mechanism of resistance (e.g.

between β-lactams and other classes of antibiotics in S.
pneumoniae [2]).

Linkage between resistance genes (when resistance

is associated with particular alleles)

In general terms, linkage (i.e. being inherited together)

between alleles is not a mechanism that generates association

between alleles. However, linkage slows down the rate at which

recombination breaks down associations between alleles [6], it

may therefore play a role in temporarily maintaining

associations between resistances. In this context, it is helpful to

distinguish between resistance mechanisms where a particular

allele of a gene confers resistance (e.g. changes to the protein

targeted by the antibiotics) and those where resistance is

associated with the presence of a resistance gene (e.g. enzymes

that break down the drug). When resistance is associated with

specific alleles, there is no a priori reason to expect the

resistance allele for one antibiotic to be linked to the

resistance, rather than sensitivity, allele of another antibiotic.

Linkage between resistance genes (when resistance

is associated with presence of gene)

When resistance is associated with presence of a particular

gene, absence of the gene from a particular MGE does not

necessarily imply sensitivity to the antibiotic (the gene may be

present on another element). As a consequence, spread of the

MGE will spread resistance for resistance genes present on the

element, but not spread sensitivity when resistance genes are

absent. Resistances are therefore more likely to be inherited

together than resistance and sensitivity. However, we would

still expect recombination and mutation to eventually

eliminate resistance determinants which do not confer a

fitness advantage, even from mobile genetic elements. For

example, in the PMEN1 pneumococcal lineage, there is

evidence for loss of aminoglycoside resistance from the Tn916
transposon which encodes tetracycline, and sometimes

macrolide, resistance [7]. However, the timescale at which this

loss would occur is unclear and there are examples of

(presumably) non-advantageous resistance determinants

persisting for long time periods [8, 9].

Correlated drug exposure of individual host Correlated drug exposure at the individual patient level can

arise through use of combination therapy, sequential drug

exposure (due to treatment failure with the first drug or

prophylactic therapy involving antibiotic cycling), or antibiotic

exposure among certain patients being particularly high due to

co-morbidities. While combination therapy is rare (in the UK

for example, monotherapy accounts for 98% of primary care

prescriptions [10]), the other two mechanisms play a

substantial role in shaping prescription patterns: prophylaxis

and repeat prescriptions make up 31% of primary care

prescriptions in England [11] and under 10% of patients

account for 50% of adult antibiotic prescriptions [12]. It is

unclear, however, whether correlation in antibiotic exposure at

the individual level can drive selection for MDR: in absence of

assortative mixing between patients, the distribution of

antibiotic consumption within a population has little effect,

although this result may be sensitive to assumptions about the

ecology of the bacteria in question (S1 Text Section 5).

(Continued)
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Disease Dynamics, Economics and Policy, available at https://resistancemap.cddep.org/

AntibioticResistance.php). For further review of evidence for stable coexistence, see references

[19, 20].

Recent work has explored the role of i) host population structure [21–23], ii) pathogen

strain structure [20, 21] and iii) within-host dynamics [24] in maintaining the coexistence of

antibiotic sensitivity and resistance. In this paper, we identify a structural similarity in the first

two categories of model. In these models, coexistence arises through a combination of two fac-

tors. First, the presence of groups within the host or pathogen population in which the evolu-

tionary dynamics of resistance are approximately independent from the other groups. Second,

the presence of variation in the benefit gained from resistance between these groups, so that

antibiotic resistance is selected for in some groups while sensitivity is selected for in others.

We show that if this variation is correlated for different antibiotics, models with this structure

also predict high levels of association between resistance to different antibiotics: all resistance

determinants will tend to be found where the fitness benefit gained from resistance is the

greatest. The observed high frequency of multi-drug resistance is therefore in line with ecolog-

ically plausible models of coexistence, making these models a parsimonious explanation for

both trends.

Results

Heterogeneity in the fitness effect of resistance: A generalised model of

coexistence

In this section, we discuss competitive exclusion and previously proposed coexistence mecha-

nisms in the context of multidrug resistance. We identify a structural similarity in plausible

Table 1. (Continued)

Process Notes

Resistance status/risk informs antibiotic choice Prescription practices may also contribute to MDR over-

representation in another way: the resistance status of an

infection or the presence of risk factors for resistance (e.g.

travel to certain areas) affect which antibiotic is prescribed.

Strains resistant to a particular antibiotic therefore have higher

rates of exposure to other antibiotics. The extent to which this

mechanism plays a role likely depends on the type of pathogen:

for mostly asymptomatic pathogens, the majority of antibiotic

exposure arises from prescriptions due to infections with some

other pathogen [13], and the resistance status of this pathogen

would therefore not affect the choice of antibiotic.

Cost epistasis (lower than expected fitness cost when

multiple resistance determinants are present)

There is evidence of cost epistasis between resistance

determinants occurring in laboratory competition experiments

for some antibiotics (e.g. between streptomycin and rifampicin

resistance in Pseudomonas aeruginosa [14] and in E. coli [15];

streptomycin and nalidixic acid resistance in E. coli [16]; and

rifampicin and ofloxacin resistance inMycobacterium
smegmatis [17]). Furthermore, for plasmid-associated

resistance genes, cost epistasis could also arise if the presence

of the plasmid in itself incurs a significant fitness cost (rather

than the fitness cost depending on the specific resistance genes

it carries). However, the extent to which epistasis plays a role

in vivo remains unclear [18]. In particular, we would not, a
priori, expect to observe cost epistasis between resistance to

antibiotics operating through entirely different mechanisms

(e.g. antibiotics targeting protein synthesis and antibiotics

targeting the cell wall).

https://doi.org/10.1371/journal.ppat.1007763.t001
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models of coexistence [20–22] and show that, in a multidrug context, models with this struc-

ture predict MDR over-representation. The model we present captures the dynamics of a

bacterial species which is mostly carried asymptomatically (e.g. E. coli, S. aureus or S. pneumo-
niae), so the probability of a host being exposed to antibiotics does not depend on whether the

host is infected with the pathogen [13]. Key results, however, are also applicable when this is

not the case (see Discussion).

Competitive exclusion in single and multi-drug systems. The coexistence of antibiotic

sensitivity and resistance has been previously discussed in the context of competition between

two strains (sensitive and resistance strains [19–21] or two resistant strains with different resis-

tance profiles [22]). Simple models of such competition predict competitive exclusion [19]; we

start by briefly re-introducing this result and then demonstrate that competitive exclusion also

applies in a multidrug context.

We consider a SIS (susceptible-infectious-susceptible) model of resistant and sensitive vari-

ants of an otherwise genetically homogeneous pathogen (one strain) circulating in a homoge-

neous host population. To avoid ambiguity later in the paper, we will refer to the sensitive and

resistant variants as ‘sub-strains’. Uninfected hosts (U) become infected with the resistant (Ir)
or the sensitive (Is) sub-strain at rate βr and βs; infections are cleared at rate μr and μs; the sensi-

tive sub-strain experiences an additional clearance rate τ corresponding to the population anti-

biotic consumption rate (we assume immediate clearance following antibiotic exposure); and

resistance is associated with a fitness cost affecting transmission (βr = βscβ, where fitness cost is

1 − cβ and 0� cβ� 1) and/or clearance (mr ¼
ms
cm

, where fitness cost is 1 − cμ and 0� cμ� 1).

The dynamics of this model are described by:

dIs
dt
¼ bsIsU � ðtþ msÞIs

dIr
dt
¼ brIrU � mrIr

ð1Þ

This system allows an equilibrium solution where both Is and Ir are non-zero (i.e. stable

coexistence of sensitivity and resistance) only when
bs
tþms
¼

br
mr

. In other words, the resistant and

sensitive sub-strains coexist only when their basic reproductive numbers (the average number

of new infections an infected host gives rise to in a fully susceptible population) are equal.

When this is not the case, the model predicts competitive exclusion: when resistance provides

a fitness advantage (
bs
tþms

<
br
mr

), only the resistant sub-strain will be observed, and vice-versa

when the sensitive sub-strain is fitter than the resistant sub-strain (
bs
tþms

>
br
mr

). Defining c = cμcβ
and strain clearance rate as μ = μs to simplify notation, this threshold can be expressed as resis-

tance being selected for when:

c½1þ
t

m
� > 1 ð2Þ

Thus, as reported previously [20], the fitness effect of resistance, which determines whether

the resistant sub-strain out-competes the sensitive sub-strain, depends on the population anti-

biotic consumption rate, the fitness cost of resistance and the strain’s mean duration of car-

riage (1

m
), because longer carriage episodes have a greater risk of antibiotic exposure than

shorter carriage episodes [20].

We now extend this model to n antibiotics administered as monotherapy (we do not model

combination therapy—see S1 Text Section 5). Sub-strains can be either sensitive or resistant to

each antibiotic, giving a total of 2n competing sub-strains. Similarly to the single drug model

On the evolutionary ecology of multidrug resistance in bacteria
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presented above, resistance to each antibiotic j has a transmission associated fitness cost 1 − cβj
and/or a clearance associated fitness cost 1 − cμj. We assume no cost epistasis between resis-

tance determinants: the fitness cost of resistance to an antibiotic does not depend on which

other resistances are present on the sub-strain. Note that this assumption is not necessary

for the demonstration of competitive exclusion in a multidrug context, but becomes important

in later sections of paper. For consistency, we introduce it here. Therefore, a sub-strain k,

resistant to the set of antibiotics Rk, has transmission rate bk ¼ b
Q

j2Rk
cbj and clearance rate

mk ¼
mQ
j2Rk

cmj
where β and μ are the transmission and clearance rates of the fully sensitive sub-

strain. In addition, each sub-strain is cleared by the antibiotics it is sensitive to (set of antibiot-

ics Sk), giving a total clearance rate of lk ¼ mk þ
P

j2Sk
tj, where τj is the consumption rate of

antibiotic j. The dynamics of each sub-strain are therefore described by:

dIk
dt
¼ bkIkU � lkIk ð3Þ

for all k 2 {1, . . ., 2n} and with U = 1 − ∑k Ik. At equilibrium,
lk
bk
¼ U holds for all strains with

non-zero frequency—we therefore recover the result from the single drug model: sub-strains

can only coexist when they have the same reproductive number. When this is not the case, the

frequency of resistance to each antibiotic is either 0% or 100% and a single resistance profile

with the highest reproductive number
bk
lk

is expected to out-compete all others. In a multidrug

context, therefore, coexistence-maintaining mechanisms are necessary to explain why multiple

different resistance profiles are observed.

Coexistence through heterogeneity in the fitness effect of resistance: Single drug con-

text. In this section, we note a structural similarity in plausible models of coexistence: a num-

ber of recently proposed coexistence mechanisms work by introducing variation in the fitness

effect of resistance within either the host population or the pathogen population. We show

that models with this structure can be simplified to a series of independent SIS models, which

will allow us to gain insight into the pattern of association between resistance to different anti-

biotics in a multidrug context. We start by presenting a simple model for conceptual insights;

additional complexity is explored in later sections.

In the first class of models we consider, coexistence arises from host population structure:

assortatively mixing groups within the host population promote coexistence if the groups dif-

fer in the fitness effect of resistance, thus creating niches for resistance and sensitivity within

the host population. Sources of population structure that have been proposed to promote coex-

istence in this manner include hospital vs community settings [22] (where variation in the fit-

ness benefit of resistance would arise from variation in antibiotic consumption rate) and age

groups [20, 21, 23] (where variation in the fitness benefit of resistance would arise from varia-

tion in both antibiotic consumption rate and clearance rate). Other potentially relevant host

groups include geographic areas and socio-economic groups.

For assortative mixing between host groups to promote coexistence, transmission

between groups must be very low: even modest transmission between groups causes the

groups to act as a single population and therefore abolishes coexistence [23] (see also section

Extension: additional complexity). By treating this very low transmission as no transmission,

we can represent host structure by modelling each of the host groups as a separate SIS model,

with dynamics captured by Eq (1). In other words, we model competition between sensitivity

and resistance within each host group as independent of the other host groups (Fig 1).

In the second class of models, coexistence arises from heterogeneity within the pathogen,

rather than host, population: the heterogeneity in fitness effect of resistance arises from the

On the evolutionary ecology of multidrug resistance in bacteria
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presence of strains with different durations of carriage, maintained by balancing selection

on the duration of carriage locus (e.g. serotype-specific acquired immunity allowing coexis-

tence of serotypes with different durations of carriage in the pneumococcus [25]) [20]. Hence,

similarly to assortatively mixing host groups in the first class of models, strains with different

durations of carriage act as niches for sensitivity and resistance: coexistence is maintained by

competition between sensitivity and resistance occurring independently within each strain. By

assuming no recombination, we can again represent competition between sensitivity and resis-

tance within each strain as a separate SIS model (Fig 1). Note that this class of models requires

the presence of balancing selection maintaining diversity at the duration of carriage locus. In

the simplified representation, this balancing selection is not modelled explicitly—coexistence

Fig 1. Host population and strain structure in maintaining coexistence of antibiotic sensitivity and resistance. Illustration of how host population

(panel A) and strain (panel B) structure maintain coexistence by introducing heterogeneity in the fitness effect of resistance and thus creating niches for

sensitivity and resistance within the population. Each of the SIS model diagrams represents the resistance dynamics described by Eq (1). A: The

resistance dynamics of assortatively mixing host groups can be modelled as independent SIS models by assuming no transmission between groups.

Heterogeneity in the fitness effect of resistance arises from between host group differences in antibiotic consumption rate or clearance rate. B: The

resistance dynamics of pathogen strains maintained by balancing selection can be modelled as independent SIS models by assuming no recombination.

Heterogeneity in the fitness effect of resistance arises from between strain differences in mean duration of carriage (i.e reciprocal of clearance rate).

https://doi.org/10.1371/journal.ppat.1007763.g001
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of the strains differing in duration of carriage is assumed (see S1 Text Section 1 for further dis-

cussion of this point).

Thus models in which coexistence arises from heterogeneity in the fitness effect of resis-

tance—either within the host or pathogen population—can be represented by a series of inde-

pendent SIS models. We refer to these individual SIS models as strata. In the case of a single

strain circulating in a structured host population, the strata correspond to assortatively mixing

host groups (e.g. age classes). In the case of multiple strains circulating in a homogeneous host

population, the strata correspond to different strains (e.g. serotypes in the pneumococcus).

When both strain and population structure are present, each stratum corresponds to a particu-

lar strain circulating in a particular host group. Following from Eq (2), resistance out-competes

sensitivity in stratum pi (host group p and strain i) when:

cð1þ
tp

mpi
Þ > 1: ð4Þ

Coexistence through heterogeneity in the fitness effect of resistance: Multidrug context.

We now extend this model to multiple antibiotics, which may differ in fitness cost and consump-

tion rate. We assume no cost epistasis between resistance determinants: resistance to antibiotic

a has the same fitness cost (i.e. the same ca) in presence and absence of resistance to antibiotic

b. We also assume that different antibiotics are consumed in the same proportions in all

host groups: antibiotic a accounts for proportion γa of total antibiotic consumption, with
Pn

a¼1
ga ¼ 1, where n is the number of different antibiotics. The consumption rate of antibiotic

a for host group p is therefore gaTp, where Tp is the total antibiotic consumption rate of group p.

Under these assumptions, following from Eq (2), resistance to antibiotic a out-competes

sensitivity in host group p and strain i when:

ca½1þ
gaTp

mpi
� > 1 ð5Þ

As before, there is no coexistence within the strata: below this threshold, sensitivity out-

competes resistance. In a multi-drug context, a single resistance profile will therefore out-com-

pete all others within each stratum.

Heterogeneity in the fitness effect of resistance: Predicted patterns of resistance. We

can separate Eq (5) into stratum (i.e host group and pathogen strain) and antibiotic related

effects (left-hand and right-hand sides of Inequality 6, respectively):

Tp

mpi
>

1

ga
ð
1

ca
� 1Þ ð6Þ

We call the ratio
T p
mpi

resistance proneness (Ppi) and the ratio 1

ga
ð 1

ca
� 1Þ resistance threshold

(Ta). Ppi reflects how advantageous resistance is within stratum pi. High antibiotic consump-

tion (high τp) and low clearance rate (low μpi) lead to high resistance proneness. Ta reflects

how advantageous resistance against antibiotic a needs to be for it to be selected for. High fit-

ness cost (low ca) and making up a low proportion of total antibiotic consumption (low γa)
lead to high resistance threshold. Rewriting Eq (6) using this notation, resistance to antibiotic

a is selected for in stratum pi when:

Ppi > Ta ð7Þ

Resistance proneness depends only on stratum and resistance threshold depends only on

antibiotic. As a consequence, the ordering of strata by resistance proneness is independent of

On the evolutionary ecology of multidrug resistance in bacteria
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antibiotic and the ordering of antibiotics by resistance threshold is independent of stratum.

Therefore, for a set ofm strata, with resistance proneness P1 < P2 < . . .< Pm and for a set of n
antibiotics, with resistance thresholds T1 < T2 < . . .< Tn, the following will hold:

Pi > Ta ) Pi > Tb 8 b < a ð8Þ

Pi < Ta ) Pi < Tb 8 b > a ð9Þ

That is, if resistance to antibiotic a is selected, resistance to antibiotics with a lower resis-

tance threshold will also be selected for. Conversely, if resistance to a is not selected for, resis-

tance to antibiotics with a higher resistance threshold will also not be selected for. Thus, the

ordering of antibiotics by resistance threshold (T1 < T2 < . . .< Tn) determines the ordering

of antibiotics by resistance frequency: the higher the resistance threshold, the lower the resis-

tance frequency and resistance to a particular antibiotic will only be seen on resistance profiles

with all more frequent resistances. Therefore, the fitness variation model predicts non-zero fre-

quencies for only n + 1 out of the 2n possible resistance profiles: the only profile with resistance

multiplicity ofm (i.e. resistance tom antibiotics) will be the one with themmost common

resistances (Fig 2). This pattern of resistance is referred to as ‘nested’ and predicts strong

association between resistance to different antibiotics, with all resistance pairs in complete

linkage disequilibrium (D’ = 1, where D’ is the normalised coefficient of linkage disequilibrium

(LD)—see Methods).

Fig 2. Example of a set of resistance profiles from a system with five strata and four antibiotics. Each row in the table corresponds to

the resistance profile of one isolate—i.e. there are three isolates from each strata (equal sampling/size of strata is not necessary).

Competitive exclusion within a stratum means all isolates from one stratum have the same resistance profile. The strata have been

arranged from top to bottom in order of decreasing resistance proneness (Ppi ¼
T p
mpi

). The antibiotics have been arranged left to right in

order of increasing resistance threshold (Ta ¼ 1

ga
ð 1

ca
� 1Þ), or, equivalently, decreasing resistance frequency. Resistance to a particular

antibiotic outcompetes sensitivity in a stratum when the resistance proneness of the stratum is greater than the resistance threshold of

the antibiotic. Resistance proneness being independent of antibiotic and resistance threshold being independent of stratum leads to

nested resistance profiles (i.e. rarer resistances only observed in the presence of more common ones) and complete linkage

disequilibrium between resistances. See Fig A in S1 Text for an example of a set of non-nested resistance profiles.

https://doi.org/10.1371/journal.ppat.1007763.g002

On the evolutionary ecology of multidrug resistance in bacteria

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007763 May 13, 2019 9 / 22

https://doi.org/10.1371/journal.ppat.1007763.g002
https://doi.org/10.1371/journal.ppat.1007763


Extension: Additional complexity

In this section, we explore how introducing additional complexity to the simplified model

affects our predictions about association between resistance determinants and nestedness.

The effect of resistance on clearance rate. The model presented above does not take

into account the effect of the absence/presence of resistance to other antibiotics on the

resistance threshold of antibiotic a. This is a simplification because i) in the absence of

resistance against other antibiotics, the exposure to these antibiotics will contribute to clear-

ance and ii) the presence of resistance to other antibiotics will affect clearance if the fitness

cost of resistance increases clearance rate. In a multidrug context therefore, Eq (5) is an

approximation.

In S1 Text Section 3, we show that this approximation does not meaningfully affect our

predictions about association between resistance determinants and nestedness of resistance

profiles. The effect of resistance on clearance rate does not give rise to incomplete linkage dis-

equilibrium (D0 < 1) and non-nested resistance profiles, except under very specific circum-

stances: if the fitness cost of resistance affects clearance rate and more commonly prescribed

antibiotics also have higher fitness cost. Even when incomplete linkage disequilibrium is possi-

ble theoretically, the parameter range under which it arises is extremely narrow (see S1 Text

Section 3), suggesting incomplete linkage disequilibrium and non-nested resistance profiles

being observed because of the effect of resistance on clearance rate is unlikely.

Intergroup transmission and recombination. In the model presented above, strata

are fully independent, with no transmission between host groups and no recombination. As

discussed, this is a simplification: coexistence can be maintained in the presence of mixing

between strata if the rate of mixing is low enough [23]. In order to investigate the effect that

mixing between strata has on our predictions about the association between resistance deter-

minants, we construct i) a model with three different antibiotics and five host groups differing

in clearance rate with transmission allowed between host groups and ii) a model with three dif-

ferent antibiotics and five strains differing in clearance rate with recombination allowed at the

duration of carriage locus (see Methods for details). In both models, complete linkage disequi-

librium is maintained in the presence of mixing between strata (Fig 3): mixing does not intro-

duce any source of selection that would favour non-nested resistance profiles.

We also investigate the effect of recombination at the resistance loci in the strain structured

model (see Methods). Unlike recombination at the duration locus, recombination at the resis-

tance loci breaks up linkage disequilibrium (Fig 3), decreasing the magnitude of association

between resistance determinants and giving rise to maladapted allele combinations (‘recombi-

nation load’). However, this effect is gradual and high levels of LD are maintained even at

unrealistically high rates of recombination (see S1 Text Section 4). We do not implement

recombination in the population structured model: we assume recombination requires co-

infection and expect no co-infection in this model because of competitive exclusion within

each host group. We expect that recombination together with inter-group transmission would

similarly give rise to decreased LD and recombination load.

Imperfectly correlated strata. In the simple model we present, the prediction of complete

LD arises because we can separate the variation in the fitness effect of resistance into strata-

related (i.e. pathogen and host) and antibiotic-related effects. This separability means that

resistance proneness of a stratum is independent of antibiotic, which gives rise to complete LD

between resistance to different antibiotics and resistance profiles with nested structure. This

separability requires two assumptions: first, that the fitness cost of a particular resistance is the

same in all strata (i.e. no variation in the fitness cost of resistance between strains) and second,

that different types of antibiotics are consumed in the same proportions in all strata (i.e.
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variation in the rate at which host groups consume antibiotics, but not in the mixture of antibi-

otic types).

Both of these requirements may represent oversimplifications of resistance dynamics. In

the case of the first assumption, there is no direct evidence for stable variation in the fitness

cost of resistance (i.e. variation in fitness cost maintained by balancing selection, preventing

the lower fitness cost phenotype reaching fixation). However, the processes determining fit-

ness cost are not fully understood and the fitness cost of resistance mutations is thought to

depend on both genetic background and environment [26]. It is therefore difficult to rule out

that stable between-strain variation might exist.

The second assumption (correlated antibiotic prescription profiles) may be plausible for

some host groups—for example, if strata correspond to geographical areas of the same country.

However, this assumption does not hold for other host groups. Children and adults have differ-

ent antibiotic consumption profiles for some antibiotics: for example, fluoroquinolones are pri-

marily used in adults but not children [27], which has been proposed as an explanation for why

association between resistances is weaker for fluoroquinolones than for other antibiotics [2].

To test the effect of allowing antibiotic consumption profiles to differ between strata, we

construct a two drug model with ten assortatively mixing host groups (see Methods for

details). For each drug, five of these host groups consume antibiotics at a high rate (which

selects for resistance) and five consume antibiotics at a low rate (which selects for sensitivity).

When the consumption rates of the two antibiotics are perfectly correlated across the host

groups, the resistance are in complete linkage disequilibrium (D0 = 1). This linkage disequilib-

rium decreases with decreasing correlation in the relative consumption of the two antibiotics

across groups (Fig 4). The extent of this decrease depends on whether the resistance proneness

of the strata is entirely determined by the antibiotic consumption rate or whether the strata

also differ in clearance rate. In the presence of large variation in clearance rate, even negatively

correlated antibiotic consumption rates can give rise to positive LD (Fig 4).

Fig 3. Strain frequencies and mean linkage disequilibrium (LD) between resistances in three models with three

antibiotics (A, B and C) consumed at different rates. Left: a model with host population structure (five assortatively

mixing host groups) with increasing levels of intergroup transmission. The rate of intergroup transmission on the x-

axis (parameterm in the model represented by Eq (10), see Methods) reflects the proportion of transmission events

that occur between, instead of within, host group. Middle: a model with strain structure (five strains differing in

duration of carriage) with increasing rates of recombination at the duration of carriage locus. Recombination rate on

the x-axis (parameter r in the model represented by Eq (11), see Methods) reflects the probability of co-infection, the

probability of recombination occurring during co-infection and the probability of the recombinant strain being

transmitted. Right: the same model with strain structure (five strains differing in duration of carriage) with increasing

rates of recombination at the resistance loci.

https://doi.org/10.1371/journal.ppat.1007763.g003
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Model predictions are consistent with trends in bacterial datasets

High levels of association between resistance determinants. The model we present is

motivated by the observed over-representation of MDR. Previous work [2] has quantified this

over-representation in terms of pairwise coefficients of determination (r2) between resistances.

This captures the extent to which isolates that are resistant to one antibiotic are also resistant

to another antibiotic. The prediction made by the fitness variation model is slightly different:

it predicts high D0 between resistances and a high proportion of resistance profiles with a

nested structure. D0 captures the extent to which resistance to two antibiotics will be found in

the same isolates, given the observed resistance frequencies. The key difference is that while r2

is affected by how similar resistance frequencies are and by the distribution of the resistance

determinants, D0 is only affected by the latter.

We measure D0 and the proportion of nested antibiograms in six bacterial datasets for

which data on resistance to multiple antibiotics was available (four hospital datasets from the

United States for different species and two pneumococcal datasets from Massachusetts and

Maela—see Methods for additional details). A high proportion of antibiograms have a nested

structure (Fig 5). Values of D0 for specific antibiotic pairs range from very low to very high, but

average values are always positive and generally above 0.5 (Table 2 and Fig G in S1 Text). In

the instances where the minimum D0 value is negative or close to zero, at least one of the resis-

tances in the pair this D0 value corresponds to was present at very low frequency in the dataset

(0.08% for the E. coli dataset, 1.3% in the S. aureus dataset, 6.1% for the Maela pneumococcal

dataset).

The trends in Table 2 are broadly consistent with the predictions of our model (i.e. high D0

and high proportion of nested antibiograms). We do not address the question of whether these

trends are more consistent with the fitness variation model than other possible mechanisms of

MDR over-representation (Table 1) because it is unclear what patterns of D0 and nestedness

these mechanisms predict (see Discussion).

Duration of carriage predicts resistance multiplicity. The fitness variation model pre-

dicts that duration of carriage and antibiotic consumption rate within strata will determine

resistance multiplicity. Fully testing this prediction is challenging, because we do not have a

Fig 4. Linkage disequilibrium (measured as D0) between resistances in a two drug model with ten assortatively mixing host groups, as a function

of the Spearman correlation between antibiotic consumption rates for the two antibiotics across the ten host groups. For each drug, five of these

host groups consume antibiotics at a high rate (τhigh = 0.075 which selects for resistance when μ = 1) and five consume antibiotics at a low rate (τlow =

0.025 which selects for sensitivity when μ = 1). Consumption rates vary from perfectly anticorrelated (all host groups consuming the first antibiotic at

high rate consume the second antibiotic at low rate) to perfectly correlated (all host groups consuming the first antibiotic at a high rate also consume the

second antibiotic at a high rate). Left-hand panel: all host groups have the same clearance rate (μ = 1). Middle panel: small variation in clearance rate

between host groups (0.5� μ� 1.5). Each red marker corresponds to one possible configuration of antibiotic consumption and clearance rates (see

Methods for details), the black markers represent the average of all possible configurations with the same correlation between antibiotic consumption

rates (horizontal jitter is for visualisation purposes only). Right-hand panel: similar to middle panel but with larger variation in clearance rate between

host groups (0.25� μ� 2). Other parameters are β = 2, cβ = 0.95 for both antibiotics, cμ = 1 for both antibiotics.

https://doi.org/10.1371/journal.ppat.1007763.g004
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Fig 5. Antibiograms (resistance profiles) in the six bacterial datasets. Dark shading indicates resistance, light

shading indicates sensitivity. Antibiograms with a nested structure are coloured red. Each row represents the

antibiogram of one isolate (sorted by nestedness and resistance multiplicity). Columns represent antibiotics, ordered

by frequency of resistance. A: aztreonam, B: tobramycin, C: cefepime, D: clindamycin, E: erythromycin, F: cefoxitin, G:

gentamicin, H: chloramphenicol, I: imipenem, J: piperacillin, K: amikacin, L: ciprofloxacin, M: ampicillin, N:

nitrofurantoin, O: oxacillin, P: penicillin, R: rifampin, S: trimethoprim-sulfamethoxazole, T: tetracycline, U:

ampicillin-sulbactam, V: levofloxacin, X: ceftriaxone, Z: ceftazidime.

https://doi.org/10.1371/journal.ppat.1007763.g005
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full understanding of which host and pathogen characteristics are relevant in defining the

strata. To partially test the prediction, we test the association between duration of carriage and

resistance using a dataset of pneumococcal carriage episodes and associated durations of car-

riage [28] (‘Maela dataset’, see Methods). The average resistance multiplicity of a serotype is

indeed positively associated with the serotype’s average duration of carriage (Kendall rank cor-

relation 0.27 95% CI 0.05-0.46, n = 38 excluding serotypes with fewer than 10 observations). A

caveat here is that the direction of causality for this association is not entirely clear: we suggest

long duration of carriage selects for resistance but resistance would also be expected to lead to

longer duration of carriage through decreased clearance from antibiotic exposure. However, at

the serotype level, differences in duration of carriage are thought to arise from the properties

of serotype capsules [29] (rather than differences in antibiotic resistance). This suggests that

longer duration of carriage favouring resistance does indeed contribute to the association

between duration of carriage and resistance multiplicity.

Discussion

Generalised model of coexistence predicts high frequencies of multidrug

resistance

In this paper, we approach the question of explaining observed patterns of association between

resistance to different antibiotics (‘MDR over-representation’) in terms of understanding the

competition between strains with different resistance profiles. We consider recent models of

the coexistence of antibiotic sensitive and antibiotic resistant strains [20–23] in which coexis-

tence is maintained by heterogeneity in the fitness effect of resistance, arising either from het-

erogeneity in the rate of antibiotic consumption and/or difference in duration of carriage. We

present a generalised version of these types of models, in which competition between antibiotic

sensitivity and resistance is simplified to a series of independent sub-models (strata). We show

that this model structure also gives rise to MDR over-representation because resistance to all

antibiotics will be selected for in the strata where the fitness benefit of resistance (‘resistance

proneness’) is the highest. Therefore, our results suggest that two pervasive trends in resistance

dynamics, the robust coexistence of antibiotic sensitive and resistant strains and the over-

representation of multidrug resistance, can both be explained by heterogeneity in the fitness

effect of resistance within the host or pathogen population.

We first present a simplified model for conceptual insights and then explore how additional

complexity affects predicted trends. Under the strong assumption of identical antibiotic pre-

scription patterns in all strata and no recombination, this model predicts complete linkage dis-

equilibrium (D0 = 1) between resistance to all antibiotics. Relaxing these assumption decreases

Table 2. Mean pairwise LD between antibiotic pairs (D̂ 0 ) and proportion of resistance profiles that are nested for six bacterial datasets.

Species Setting n Drugs D̂ 0 (min,max) Nested

Pseudomonas aeruginosa Hospital (USA) 991 9 0.55 (0.22,0.95) 0.62

Escherichia coli Hospital (USA) 4767 13 0.54 (-1,1) 0.67

Klebsiella pneumoniae Hospital (USA) 1095 13 0.75 (0.24,1) 0.79

Staphylococcus aureus Hospital (USA) 2534 9 0.58 (0.02, 1) 0.84

Streptococcus pneumoniae Community (Maela) 2244 6 0.46 (-0.66,0.95) 0.71

Streptococcus pneumoniae Community (Massachusetts) 603 4 0.58 (0.32,1) 0.82

The n column indicates the number of isolates in the dataset and the drugs column indicates the number of drugs resistance was tested for. Positive D0 indicates

resistance determinants tend to appear together. The values in parentheses give the range of pairwise D0 in the dataset. See Methods for details of datasets.

https://doi.org/10.1371/journal.ppat.1007763.t002
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the magnitude of linkage disequilibrium, giving rise to values of D0 similar to those observed

in multiple bacterial datasets. High D0 is maintained even at unrealistically high recombination

rates. A lower correlation in antibiotic consumption profiles between strata leads to lower

values of D0. However, the effect is gradual and the magnitude of the decrease depends on

whether the strata also differ in clearance rate. Thus, even in context where patterns of pre-

scription differ considerably between host groups, we would still expect a degree of association

between resistance determinants when variation in duration of carriage contributes to varia-

tion in the fitness effect of resistance.

Although the model builds on work exploring the stable coexistence of antibiotic sensitivity

and resistance and coexistence is robustly observed in multiple datasets, the prediction that

variation in the fitness effect of resistance leads to MDR over-representation does not require

coexistence to be stable. We would expect MDR over-representation in the presence of fitness

variation, even when this variation is not enough to maintain stable coexistence: for all antibi-

otics, the increase of resistance frequencies towards fixation would occur most rapidly in the

populations with the greatest selection pressure for resistance. Under these circumstances, fit-

ness variation would give rise to transient MDR over-representation.

Prevalence and sources of fitness variation

Our results show that when variation in the fitness effect of resistance is present and when this

variation is at least partially correlated for different antibiotics, it will give rise to MDR over-

representation. The extent to which this mechanism accounts for observed patterns of MDR

over-representation therefore depends on the extent to which this type of fitness variation is

present in pathogen populations.

It is not entirely straightforward to evaluate how common variation in the fitness effect of

resistance is. Wide-spread coexistence of sensitivity and resistance is not direct evidence for

the pervasiveness of fitness variation because coexistence may not always arise through this

mechanism. Although the majority of mechanisms proposed to date [20–23] work through fit-

ness variation, other mechanisms are also possible [19]. In particular, recent modelling sug-

gests that co-infection with sensitive and resistant strains gives rise to frequency-dependent

selection for resistance and thus promotes coexistence [24]. However, the magnitude of this

effect depends on the nature of within-host competition [24], for which there is limited data.

Thus while theoretically plausible, the extent to which this mechanism contributes in practice

is still unclear. It is worth noting that different coexistence mechanisms are not mutually exclu-

sive. If coexistence arises through a combination of fitness variation and other mechanisms,

we would a priori still expect the fitness variation to give rise to MDR over-representation.

In the work presented here, we consider fitness variation arising from heterogeneity in anti-

biotic consumption between host groups (hospitals vs communities, geographic regions, age

classes) and from heterogeneity in duration of carriage between host groups (age classes) and

between strains (pneumococcal serotypes). This is not an exhaustive list of possible sources of

heterogeneity. For example, serotype does not fully account for heritable variation in pneumo-

coccal duration of carriage [28], suggesting other genetic traits also play a role in determining

carriage duration. In light of recent results suggesting wide-spread negative frequency-depen-

dent selection in bacterial genomes [30, 31], it is not implausible to suggest these duration of

carriage loci may also be under frequency-dependent selection. If so, diversity at these loci

would create another source of variation in the fitness effect of resistance and hence promote

coexistence and MDR over-representation. More broadly, variation in the fitness effect of

resistance may arise through different mechanisms for pathogens with a different ecology

than modelled in this work. For example, we have modelled a pathogen that is mostly carried
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asymptomatically and therefore exposed primarily to antibiotics prescribed against other

infections. For pathogens where antibiotics prescribed due to infection with the pathogen itself

contribute to a significant proportion of antibiotic exposure, the presence of strains differing

in invasiveness would give rise to between-strain variation in antibiotic exposure and hetero-

geneity in the fitness effect of resistance. For bacterial species able to multiply both in hosts

and in the environment, the sort of structure and heterogeneity considered in this work may

also arise from differences between environmental niches.

Unanswered questions

This study does not fully address the role antibiotic prescription patterns in MDR over-repre-

sentation: we highlight two important remaining questions. Firstly, in the modelling frame-

work used in this study, the distribution of drug consumption within a stratum (i.e. a well-

mixed population) does not have an impact on MDR over-representation (S1 Text Section 5).

In other words, the presence of host groups consuming antibiotics at different rates only pro-

motes MDR over-representation if there is very little transmission between these host groups:

individual-level correlation in antibiotic exposure is not predicted to promote multi-drug

resistance. We have not explored this result in detail—it may arise because the model predicts

competitive exclusion within a stratum. Secondly, in contrast to the distribution of antibiotic

consumption within a stratum, our results suggest that the distribution of antibiotic consump-

tion between strata does matter: the prediction of MDR over-representation is sensitive to

how correlated prescription profiles are and the extent of this sensitivity depends on whether

variation in duration of carriage is also present. Relating these theoretical results to observed

correlations in the antibiotic consumption between different host groups and to the extent of

assortative mixing between these groups will provide additional insights into observed patterns

of MDR (e.g. why the association between some drugs is higher than others).

The fitness variation model playing a role in MDR over-representation does not preclude a

potential role for other mechanisms in contributing to the trend (Table 1). This study does not

address the relative extent to which the different possible mechanisms contribute to MDR

over-representation. This is for two reasons. Firstly, it is unclear what the patterns of MDR

predicted by alternative mechanisms of MDR over-representation are. Secondly, we do not

have a full understanding of which host and pathogen characteristics are relevant in defining

the strata so it is difficult to directly address whether these traits are predictors of MDR. One

alternative strategy for establishing the extent to which the fitness variation model contributes

to MDR over-representation would be to assess patterns of association between resistance

determinants in a single strain circulating in a well-mixed host population (i.e. a single stra-

tum). The fitness variation model predicts no MDR over-representation (as defined by D0 > 0)

under these circumstances. Therefore, if linkage disequilibrium is observed under these condi-

tions, this would indicate that fitness variation is not the only mechanism of MDR over-repre-

sentation. Furthermore, the magnitude of linkage disequilibrium could inform the relative

contribution of the fitness variation mechanism: observing similar levels of linkage disequilib-

rium within strata and within the whole population would suggest the fitness variation is not a

necessary mechanism for generating MDR over-representation.

Public health implications

From a public health perspective, the fitness variation model makes two concerning predic-

tions. Firstly, we predict frequencies of pan-resistance will be high: in a perfectly nested set of

resistance profiles, the frequency of pan-resistance is equal to the frequency of the rarest resis-

tance. As a consequence, we would expect resistance arising in response to adoption of new
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antibiotics or increased usage of existing antibiotics to appear on already multidrug resistant

lineages—an observation which has been made for the emergence of ciprofloxacin resistance

in N. gonorrhoeae in the United States [32].

Secondly, our analysis has implications for the effectiveness of potential interventions

against MDR. The variation in the fitness effect of resistance to different antibiotics need not

be perfectly correlated for it to promote MDR over-representation. If the variation in fitness

effect is maintained by multiple factors (e.g. differential antibiotic consumption between popu-

lations and variation in clearance rates), removing one of these factors (e.g. changing patterns

of prescription so that consumption of different antibiotics is no longer correlated between

host groups) may have limited impact on MDR over-representation.

The fitness variation model provides an explanation for MDR over-representation that is

consistent with long term stability in resistance frequencies. This is relevant when considering

temporal trends in resistance frequencies and predicting the future burden of resistance: other

explanations for MDR over-representation (e.g. cost epistasis, correlated antibiotic exposure at

the individual level—see Table 1) often require MDR strains to have an overall fitness advan-

tage over strains with lower resistance multiplicity. This would imply that the higher than

expected frequency of MDR is evidence for MDR strains out-competing other strains and thus

suggest that MDR strains will eventually take over. Conversely, in the model we present, MDR

strains are not out-competing other strains: all resistance frequencies are at equilibrium and

MDR over-representation arises from the distribution of resistance determinants. It is worth

noting, however, that even in the context of the fitness variation model, on a very long time-

scale, we might expect the frequency of resistance to rise if bacteria are able to evolve resistance

mechanisms that carry a lower fitness cost.

Conclusion

We show that previously proposed models in which coexistence of antibiotic sensitivity and

resistance is maintained by heterogeneity in the fitness effect of resistance also predict high

frequencies of multidrug resistance. The pervasive trends of coexistence and MDR over-

representation can therefore be considered, at least partially, facets of the same phenomenon.

We do not propose that the model we present fully explains observed patterns of association

between resistance determinants. However, this effect should be considered when evaluating

the role of antibiotic-specific MDR promoting mechanisms. From a public health point of

view, the model we present is concerning because it predicts high frequencies of pan-resis-

tance. On the other hand, heterogeneity in the fitness effect of resistance as an explanation

for MDR over-representation allows reconciling this trend with long term stability in resis-

tance frequencies.

Methods

Datasets

The Maela pneumococcal dataset [33], collected from a refugee camp on the border of Thai-

land and Myanmar from 2007 to 2010, consisted of 2244 episodes of carriage, with associated

antibiograms and carriage durations. Data were obtained from, and durations of carriage

calculated by, Lees et al. [28] (S1 File). Data on antibiotic sensitivity was provided for ceftri-

axone, chloramphenicol clindamycin, erythromycin, penicillin, co-trimoxazole (trimetho-

prim/sulfamethoxazole) and tetracycline. Ceftriaxone was excluded from the analysis

because data was missing for a large proportion of isolates (44%). The Massachusetts pneu-

mococcal dataset, collected as part of the SPARC (Streptococcus pneumoniae Antimicrobial

Resistance in Children) project [34], was obtained from Croucher et al. (2013) [35] (data
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available from Croucher et al [35]). Croucher et al. reported minimum inhibitory concentra-

tions (MICs) for penicillin, ceftriaxone, trimethprim, erithromycin, tetracycline and chlor-

amphenicol. Tetracycline and chloramphenicol were excluded from the analysis because

data was missing for a large proportion of isolates (47% and 67% respectively). Non-sensitiv-

ity was defined in accordance to pre-2008 Clinical and Laboratory Standards Institute

breakpoints [36]. For both datasets, ‘resistance’ as used throughout the paper refers to non-

sensitivity. The four hospital datasets were obtained from Chang et al. [2] (S2 File). All data

were analysed anonymously.

Linkage disequilibrium

If the frequency of resistance to antibiotic a is pa and the frequency of resistance to antibiotic b
is pb, the coefficient of linkage disequilibrium between resistance to antibiotics a and b is Dab =

pab − papb, where pab is the frequency of resistance to both a and b. The normalised coefficient

D0ab is given by: D0ab ¼
Dab

minðpapb ;ð1� paÞð1� pbÞÞ
if Dab< 0 and D0ab ¼

Dab
minðpað1� pbÞ;ð1� paÞpbÞ

if Dab> 0.

In general the sign of D0 is arbitrary because it depends on which alleles are chosen for the

calculation. We consistently calculate D0 using the frequency of resistance: positive D0 there-

fore means resistance to one antibiotic is associated with resistance to the other, while negative

D0 means association between sensitivity and resistance.

Model implementation and code availability

All described models were implemented in Wolfram Mathematica (version 11.2.0.0). Model-

ling results are numerical solutions at t = 100000 (equilibrium is reached considerably earlier,

see Fig H in S1 Text). For computing D0, numerical results for strain frequencies have been

rounded to the nearest 10−10 to ensure strain frequencies for absent strains are zero (as

opposed to zero within numerical error). The code is provided as a supporting file.

Effect of intergroup transmission and recombination

To test the effect of relaxing the assumption that the pathogen dynamics can be divided into

non-interacting sub-models, we include three additional models.

First, we model the dynamics of resistance to three antibiotics (i.e. eight possible resistance

profiles) spreading in a host population consisting of five host groups. The antibiotics make up

different proportions of total antibiotic consumption (20, 35 and 45% of total antibiotic con-

sumption rate τ). The pathogen experiences a different clearance rate within each host class

p (μp). In addition, sub-strain with resistance profile g experiences clearance from antibiotic

exposure at rate τg which depends on its resistance status: τg = τ(ia0.20 + ib0.35 + ic0.45), where

ia = 1 if g is sensitive to antibiotic a and 0 otherwise. Resistance to each antibiotic decreases

transmission rate by a factor of c. Uninfected hosts of class p (Up) are therefore infected at rate

cngb ð1 � mÞIg;p þ m
4

P
x2P0 Ig;x

h i
, where ng is the number of antibiotics strain g is resistant to,m

is a parameter that sets the extent of mixing between the classes and P0 is the set of population

classes excluding p. The dynamics of strain g within population p are thus described by:

dIg;p
dt
¼ cngb ð1 � mÞIg;p þ

m
4

X

x2P0
Ig;x

" #

Up � ðtg þ mpÞIg;p ð10Þ

Second, we model the dynamics of resistance to three antibiotics in a single host population

in pathogen with five strains differing in clearance rate (i.e. eight resistance profiles and five

strains, giving a total of 40 possible sub-strains) with recombination at the duration of carriage
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locus. Strain i is cleared at rate μi and, as above, sub-strains with resistance profile g experience

clearance from antibiotic exposure at rate τg which depends on its resistance status: τg =

τ(ia0.20 + ib0.35 + ic0.45). Resistance to each antibiotic decreases transmission rate by a factor

of c. Balancing selection is modelled similarly to Lehtinen et al. [20], by scaling transmission

rate of strain i by a factor ψi which depends on the strain’s prevalence: ci ¼ ð1 � ½

P
x
Ix;i

1� U �
1

5
�Þ
k
,

where k is a parameter setting the strength of balancing selection and U is the uninfected host

class. Recombination at the duration of carriage locus is modelled by allowing hosts infected

with strain i with resistance profile g to transmit strain j with resistance profile g at a rate r∑x
Ix,j. Recombination therefore decreases the transmission of strain i with resistance profile g by

ρg,i = rIg,i ∑x ∑y Ix,y and increases it by κg,i = r∑y ∑x Ig,y Ix,i. Note that the recombination rate

parameter r captures the probability of co-infection, the probability of recombination occur-

ring and the probability of transmitting the recombinant sub-strain. The dynamics of strain i
with resistance profile g are described by:

dIg;i
dt
¼ cngcib Ig;i � rg;i þ kg;i

h i
U � ðtg þ miÞIg;i ð11Þ

The third model is the same as the one above, with the exception that recombination

occurs at the resistance loci instead of the duration of carriage locus. It is therefore described

by Eq (11), but the expressions for ρ and κ are different. We define resistance profile g 0a as a

resistance profile otherwise identical to g, but with the other allele at locus a (i.e. if g is sensi-

tive to antibiotic a, g 0a is resistant), Ng,a as the set of resistance profiles with the same allele at

locus a as profile g and N 0g;a as the set of resistance profiles with the different allele at locus a
than profile g. Hosts infected with strain i with resistance profile g transmit a strain i with a

resistance profile g 0a at rate r
P

j

P
x2N0g;a

Ix;j. Recombination can occur at any of the three resis-

tance loci (we assume recombination rates are low enough to ignore the possibility of recom-

bination occurring at multiple loci at the same time). Recombination therefore decreases the

transmission of strain i with resistance profile g by ρg,i = 3rIg,i ∑x ∑y Ix,y and increases it by

kg;i ¼ rðIg0a ;i
P

y

P
x2Ng;a

Ix;y þ Ig0b ;i
P

y

P
x2Ng;b

Ix;y þ Ig0c;i
P

y

P
x2Ng;c

Ix;yÞ.

The parameter values for the results presented in Fig 3 are: c = 0.95, β = 2, {μ1, ‥, μ5} = {1.2,

1., 0.8, 0.6, 0.4}, τ = 0.12 and k = 5.

Effect of imperfectly correlated antibiotic consumption rates

To test the effect of relaxing the assumption that all host groups consume different types of

antibiotics in identical proportions, we model the dynamics of resistance to two antibiotics in a

population consisting of ten host groups. The dynamics within each host group are represented

by Eq 3, with parameter values cβ = 0.95 and cμ = 1 for both antibiotics, β = 2, and, unless other-

wise stated μ = 1. There is no transmission between these host groups. For both drugs, five of

these host groups consume the antibiotic at a rate which selects for resistance when μ = 1 (τhigh
= 0.075), and five at a rate which selects for sensitivity when μ = 1 (τlow = 0.025). There are

therefore six different ways in which the consumption rates of the two antibiotics can be com-

bined: all populations consuming the first drug at a high rate also consume the second drug at

high rate (Spearman’s rho: 1); four out of the five populations consuming the first drug at a

high rate consume the second drug at a high rate (Spearman’s rho: 0.6); etc. We run a simula-

tion for each of these six possible configurations. To test the effect of additional variation in the

resistance proneness of strata, we introduce variation in the clearance rate of these populations:

the five host groups consuming the first drug at the high rate now have different clearance rates

(evenly spaced between a maximum and minimum clearance rate), and similarly for the five
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host groups consuming the first drug at the low rate. We run a simulation for each of these pos-

sible ways the consumption of the second drug can be distributed among these host groups.
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