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Abstract

Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to

lysozyme, a key effector of the innate immune system. This high level of resistance requires

a complex network of transcriptional regulators and several genes (oatA, pgdA, dltA and

sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide

activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance

to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/pgdA/dltA/

sigV mutant led to the identification of several independent insertions clustered on the chro-

mosome. These mutations were located in a locus referred to as the enterococcal polysac-

charide antigen (EPA) variable region located downstream of the highly conserved epaA-

epaR genes proposed to encode a core synthetic machinery. The epa variable region was

previously proposed to be responsible for EPA decorations, but the role of this locus

remains largely unknown. Here, we show that EPA decoration contributes to resistance

towards charged antimicrobials and underpins virulence in the zebrafish model of infection

by conferring resistance to phagocytosis. Collectively, our results indicate that the produc-

tion of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis

infections and reveal an essential role of the modification of this surface polymer for entero-

coccal pathogenesis.

Author summary

Enterococcus faecalis is a commensal bacterium colonizing the gastro-intestinal tract of

humans. This organism can cause life-threatening opportunistic infections and represents

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007730 May 2, 2019 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Smith RE, Salamaga B, Szkuta P,

Hajdamowicz N, Prajsnar TK, Bulmer GS, et al.

(2019) Decoration of the enterococcal

polysaccharide antigen EPA is essential for

virulence, cell surface charge and interaction with

effectors of the innate immune system. PLoS

Pathog 15(5): e1007730. https://doi.org/10.1371/

journal.ppat.1007730

Editor: Paul M Sullam, University of California, San

Francisco, UNITED STATES

Received: November 27, 2018

Accepted: March 26, 2019

Published: May 2, 2019

Copyright: © 2019 Smith et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: RES was funded by a Biotechnology and

Biological Sciences Research Council studentship

(grant BB/M011151/1 to SM; http://www.bbsrc.

ac.uk/). TKP was supported by Medical Research

Council grant MR/N02995X/1 (https://mrc.ukri.

org/). MPW was supported by Biotechnology and

http://orcid.org/0000-0003-4948-7174
http://orcid.org/0000-0001-9157-5800
http://orcid.org/0000-0003-4794-2858
http://orcid.org/0000-0001-8627-9994
http://orcid.org/0000-0001-5572-1903
http://orcid.org/0000-0002-8446-9011
http://orcid.org/0000-0003-1648-4890
https://doi.org/10.1371/journal.ppat.1007730
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007730&domain=pdf&date_stamp=2019-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007730&domain=pdf&date_stamp=2019-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007730&domain=pdf&date_stamp=2019-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007730&domain=pdf&date_stamp=2019-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007730&domain=pdf&date_stamp=2019-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007730&domain=pdf&date_stamp=2019-05-02
https://doi.org/10.1371/journal.ppat.1007730
https://doi.org/10.1371/journal.ppat.1007730
http://creativecommons.org/licenses/by/4.0/
http://www.bbsrc.ac.uk/
http://www.bbsrc.ac.uk/
https://mrc.ukri.org/
https://mrc.ukri.org/


a reservoir for the transmission of antibiotic resistance genes such as resistance to vanco-

mycin. E. faecalis strains responsible for nosocomial infections are also found in healthy

individuals and the virulence factors identified so far are not strictly associated with clini-

cal isolates. The molecular basis underpinning E. faecalis infections therefore remains

unclear. In this work, we identify several mutations clustered on the chromosome, which

play a role in the resistance of E. faecalis to effectors of the innate immune system such as

lysozyme and bile salts. We show that the corresponding genes contribute to the decora-

tion of a conserved polysaccharide called the enterococcal polysaccharide antigen and that

this decoration is essential for E. faecalis virulence. This mechanism critical for pathogene-

sis represents an attractive therapeutic target to control enterococcal infections.

Introduction

Enterococcus faecalis is a commensal bacterium found in the gastro-intestinal tract of humans

and frequently isolated from the environment as a result of faecal contamination [1, 2].

Although this organism is considered harmless in healthy carriers, E. faecalis has been pro-

posed to contribute to the pathogenesis of inflammatory bowel disease and colorectal cancer

[3, 4]. E. faecalis can also cause a wide range of hospital-acquired opportunistic infections that

can be life-threatening [1]. E. faecalis infections can be difficult to treat due to the resistance of

this organism to antibiotics such as cephalosporins and glycopeptides (Vancomycin Resistant

Enterococci, VRE) and its capacity to form biofilms [5]. Interestingly, E. faecalis strains

responsible for hospital-acquired infections are also found in healthy individuals and genes

associated with virulence are not only present in clinical isolates [6]. How this organism can

cause infections is therefore not entirely understood. One property of E. faecalis that contrib-

utes to the onset of infections is its resistance to the host innate immune system. Cell surface

polymers including teichoic acids (TAs), a capsule and the enterococcal polysaccharide anti-

gen (EPA) confer phagocytosis evasion and resistance to complement activation [7–9]. E. fae-
calis also displays an intrinsically high resistance to lysozyme, a key component of the innate

immune system representing a first line of defence against pathogens. Lysozyme is found in

virtually all human biological fluids including saliva, milk, serum and tears where it is found at

concentrations between 1–2 mg ml-1 [10, 11]. Lysozyme has two distinct antimicrobial activi-

ties. Firstly, it hydrolyses the glycan chains of peptidoglycan, the major component of the bac-

terial cell wall, causing cell lysis [12]. Secondly, lysozyme displays cationic antimicrobial

peptide (CAMP) activity. Lysozyme contains highly charged C-terminal sequences (RAW-

VAWRNR in human lysozyme) sufficient to inhibit bacterial growth [13] by causing mem-

brane permeabilization [14].

In addition to a complex signalling network involving ireK as a key regulator and the two

component system croRS [15], four genes (oatA, pgdA, dltA and sigV) contribute synergisti-

cally to lysozyme resistance in E. faecalis. Both OatA and PgdA modify peptidoglycan glycan

strands, thereby inhibiting lysozyme catalytic activity. OatA is an O-acetyl transferase that

transfers an acetyl group onto the C6-OH group of N-acetylmuramic acid residues [16]. PgdA

is produced in response to lysozyme and is an esterase that removes the acetyl group in posi-

tion 2 of N-acetylglucosamine residues [17]. DltA is a D-alanine-D-alanyl carrier ligase essen-

tial for the alanylation of TAs. It has been proposed that this modification reduces the net

negative charge of TAs and inhibits the CAMP activity of lysozyme [18]. SigV is an extracyto-

plasmic sigma factor that controls the expression level of pgdA in response to lysozyme [19,

20]. oatA, pgdA, dltA and sigV act synergistically to confer high-level resistance to lysozyme in
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E. faecalis. Deletions in these genes (alone or in combination) have been associated with a

reduction in virulence in mice or Galleria mellonella [19, 20] and a decrease in survival within

murine peritoneal macrophages [16].

In this study, we show that the quadruple mutant (oatA pgdA dltA sigV; OPDV strain) still

displays a relatively high resistance to lysozyme in comparison to other Firmicutes. We used

this quadruple mutant to carry out transposon mutagenesis and to identify additional genes

involved in lysozyme resistance. We show that several genes contributing to the decoration of

the enterococcal polysaccharide antigen play an essential role in the resistance to effectors of

the innate immune system and in virulence.

Results

The E. faecalis quadruple mutant harboring deletions in oatA, pgdA, dltA
and sigV displays a relatively high residual resistance to lysozyme

We determined the minimal inhibitory concentrations (MIC) of lysozyme for several Gram-

positive bacteria (Table 1; see S1 Fig for a representative set of MIC assays). Micrococcus luteus,
used as a reference substrate to define lysozyme activity [21], had an expected very low MIC of

5 x 10-4 mg ml-1. MIC values were higher for all Firmicutes tested. Growth of several species

was inhibited by lysozyme concentrations of 0.0312 mg ml-1 (Aerococcus viridans, Bacillus sub-
tilis, Bacillus megaterium and Lactobacillus cellobiosus). Lactococcus lactis growth was inhibited

by concentrations of 0.125 mg ml-1. The MIC of lysozyme for all pathogens tested was rela-

tively high: 4 mg ml-1 for Listeria monocytogenes and>16 mg ml-1 for Staphylococcus aureus,
and all enterococci and streptococci tested. In L. monocytogenes, lysozyme resistance was

largely due to peptidoglycan de-N-acetylation. Deletion of the gene encoding the deacetylase

PgdA led to a 32-fold decrease in resistance (MIC = 0.125 mg ml-1). Interestingly, abolishing

Table 1. MIC of lysozyme for Firmicutes.

Strain lysozyme MIC

(mg ml-1)

Staphylococcus aureus COL >16

Streptococcus gallolyticus UCN34 >16

Streptococcus gordonii DL-1 Challis >16

Streptococcus mutans UA159 >16

Enterococcus faecium DO >16

Enterococcus hirae ATCC9790 >16

Enterococcus faecalis OG1RF >16

Enterococcus faecalis O (ΔoatA) >16

Enterococcus faecalis OP (ΔoatAΔpgdA) >16

Enterococcus faecalis OPD (ΔoatA ΔpgdA ΔdltA) >8

Enterococcus faecalis OPDV (ΔoatA ΔpgdA ΔdltA ΔsigV) >0.5

Listeria monocytogenes EGD >4

Listeria monocytogenes EGD ΔpgdA >0.125

Lactococcus lactis MG1363 >0.125

Bacillus subtilis 168 >0.0312

Bacillus megaterium KM >0.0312

Lactobacillus cellobiosus ATCC11739 >0.0312

Aerococcus viridans ATCC11563 >0.0312

Micrococcus luteus ATCC4698 >0.0005

https://doi.org/10.1371/journal.ppat.1007730.t001
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peptidoglycan O-acetylation or de-N-acetylation in E. faecalis only had a minor impact on

lysozyme resistance [17, 20]. The combined deletions in the four genes contributing to E. fae-
calis lysozyme resistance (oatA, pgdA, dltA and sigV; OPDV strain) was required for 100-fold

reduction in the MIC of this antimicrobial compound (0.5 mg ml-1). However, the lysozyme

MIC for the OPDV mutant was still higher than that of non-pathogenic Gram-positive

bacteria.

Transposon mutagenesis of the OPDV epa variable region confers

resistance to lysozyme

E. faecalis wild-type strains present an extremely high resistance to lysozyme and make them

unsuitable to identify novel genes modulating lysozyme activity. We therefore used the OPDV
quadruple mutant strain to construct a transposon mutant library using the Mariner-based

system previously described for E. faecium [22].

Our objective was to identify components of the genetic network contributing to lysozyme

resistance in E. faecalis. We first decided to follow a straightforward selection to identify

mutants that suppress the susceptibility to lysozyme, aiming at unravelling the transcriptional

network underpinning the coordination of lysozyme resistance. Transposon mutants were

selected on agar plates containing lysozyme at a concentration of 2 mg ml-1, four times the

MIC for the parental OPDV strain. Approximately 2 x 105 mutants were plated and after 24 h

incubation at 37˚C, 16 mutants forming colonies at this concentration were isolated and fur-

ther analysed.

Mapping the transposon insertion sites surprisingly revealed that 9 out of 16 mutants had

insertions downstream of the conserved epaA-epaR region encoding the core synthetic appara-

tus likely required to produce the enterococcal polysaccharide antigen EPA (Fig 1A) [23]. The

region containing the insertions displays genetic variability between strains and has been pro-

posed to be responsible for the decoration of the EPA polysaccharide [23–25]. Mutations were

clustered around three genes encoding putative glycosyltransferases and a homolog of wcaG,

an epimerase/dehydratase (Fig 1B).

Transposon mutants were complemented to formally establish that the insertions in the epa
variable region were responsible for lysozyme resistance. Four plasmids were constructed to

express OG1RF_11720, OG1RF_11715 (epaOX), OG1RF_11714 (epaX-like) and OG1RF_11707
under the control of the inducible tet promoter. Following transformation into E. faecalis,
gene expression was induced in the presence of anhydrotetracycline (ATc) and the production

of his-tagged proteins was checked by western blot (S2 Fig). Complementation was evaluated

by measuring susceptibility to lysozyme (Fig 2). Lysozyme resistance associated with transpo-

son insertions in genes OG1RF_11720, OG1RF_11715, OG1RF_11714 and OG1RF_11707
could be complemented when the disrupted gene was expressed in trans. By contrast, the

parental susceptibility to lysozyme could not be restored when complementation experiments

were carried out with plasmids encoding a gene distinct from the one disrupted (Table 2).

Altogether, these experiments confirmed that the resistance phenotypes of the mutants ana-

lysed were due to the disruption of the genes indicated in Fig 1.

Mutations in the epa variable region alter the negative surface charge of E.

faecalis and are associated with minor changes in sugar composition

The impact of epa transposon insertions on the production of EPA was investigated. Polysac-

charides were extracted from cultures at the end of exponential growth as previously described

[26]. Similar amounts of EPA were extracted as assessed by neutral sugar assays and dry weight

(between 20 and 30 mg l-1). Each purified EPA sample was run on a polyacrylamide gel and
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stained with the cationic dye alcian blue (Fig 3A). Whilst OG1RF and OPDV polysaccharide

bands previously named PS1 and PS2 were present [8], these were not detected in mutant sam-

ples, possibly because the reduced negative charge no longer allowed EPA to migrate into the

gel or no longer allowed these polymers to be stained by alcian blue. As expected, complemen-

tation restored the detection of EPA after staining by alcian blue (Fig 3A).

We tested the impact of the transposon insertions on EPA charge by measuring the electro-

phoretic mobility of E. faecalis cells using micro-electrophoresis, which allows single particle

Fig 1. Identification of epa mutants resistant to lysozyme. A. Description of individual transposon insertions. B. Mapping of

transposon insertions in the epa variable region. Insertion sites are indicated by vertical arrows. ORFs in the epa variable region are

depicted in grey.

https://doi.org/10.1371/journal.ppat.1007730.g001

Fig 2. Growth defect of E. faecalis Tn mutants in the presence of antimicrobials targeting the cell envelope. Cell suspensions were prepared as

described in S1 Fig and 1.5 μl of serial dilutions were spotted on BHI-agar plates containing 10 ng ml-1 anhydrotetracycline and various concentrations

of lysozyme. Concentrations showing a clear difference in susceptibility are shown.

https://doi.org/10.1371/journal.ppat.1007730.g002
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tracking (Fig 3B) [27]. OG1RF cells displayed a negative electrophoretic mobility (migration

towards the anode), even at low pH, indicating a negative surface charge. Despite the increased

susceptibility of OPDV cells to lysozyme, the electrophoretic mobility measured with this

strain was not significantly different from the mobility of OG1RF cells at all pHs tested

(Fig 3B; S1 and S2 Tables). Three of the four insertion mutants (OPDV_11720::Tn2.5,

OPDV_11715::Tn2.13 and OPDV_11720::Tn2.8) displayed similar electrophoretic mobilities,

very distinct from the parental OPDV strain. The negative surface charge of these mutants was

significantly reduced as compared to that of the parental OPDV strain (����P<0.0001 for all

pH conditions), the difference being most prominent at pH 3.0 (Fig 3B). As expected, differ-

ences between OPDV, OPDV_11720::Tn2.5, OPDV_11715::Tn2.13 and OPDV_11720::Tn2.8
cells were abolished when the mutations were complemented. Mutant OPDV_11714::Tn2.14
only showed a difference with the parental OPDV strain at pH 2.0 (����P<0.0001). This differ-

ence was no longer detected when the mutation was complemented.

To confirm that the lack of detection of EPA on polyacrylamide gels was due to a loss of

negatively charged groups rather than a lack of rhamnopolysaccharide production, we carried

out carbohydrate composition analyses on purified EPA (Fig 3C). As anticipated, EPA compo-

sition was very similar in OG1RF and OPDV strains; rhamnose, glucose, N-acetylglucosamine

(GlcNac) and N-acetylgalactosamine (GalNAc) accounted for approximately 95% of the sugars

identified (ca. 30%, 30%, 20% and 15%, respectively) and galactose was found in limited

amounts (5%). The proportion of glucose and GlcNAc remained similar to parental OPDV lev-

els in all epa mutants, whilst both GalNAc and galactose amounts decreased, matching an

increase in rhamnose. Interestingly, these changes were different depending on the mutant

considered. For example, EPA extracted from OPDV_11718::Tn2.8 was the only mutant EPA

that still contained some galactose. The relative proportion of rhamnose increased in all

mutants. GalNAc content decreased dramatically in all mutant EPA and could not be detected

in OPDV_11715::Tn2.13.

NMR analyses reveal that the epa variable region contributes to minor

modifications of the EPA polysaccharide

To gain further insight into the contribution of epa variable genes to the structure of EPA, we

carried out NMR analyses on purified polysaccharides. The 1D proton NMR spectra of all

Table 2. Complementation of epa transposon mutants.

Complementation gene

Mutant OG1RF_11720 OG1RF_11715 OG1RF_11714 OG1RF_11707
OPDV_11720::Tn2.9 + ND ND ND

OPDV_11720::Tn2.5 + - - -

OPDV_11715::Tn2.10 ND + ND ND

OPDV_11715::Tn2.13 - + - -

OPDV_11715::Tn2.16 - + - -

OPDV_11714::Tn2.14 - - + -

OPDV_11720::Tn2.12 ND ND ND +

OPDV_11720::Tn2.8 ND ND - +

OPDV_11720::Tn2.6 ND ND ND +

a, Complementation was assessed on BHI-agar plates containing lysozyme at a concentration of 0.5 mg ml-1

+, complementation restoring lysozyme sensitivity; -, no impact on lysozyme MIC;

ND, not determined.

https://doi.org/10.1371/journal.ppat.1007730.t002
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Fig 3. Analysis of purified EPA polysaccharides and their contribution to cell surface charge. A. Analysis of

purified EPA by acrylamide gel electrophoresis. 40 μg of material was loaded on a 10% (v/v) acrylamide-bisacrylamide

(33:0.8) gel and stained with the cationic dye alcian blue. B. Electrophoretic mobility of E. faecalis OG1RF, OPDV and

insertion mutants resistant to lysozyme. Representative mutants harbouring a transposon insertion in OG1RF_11720
(OPDV_11720::Tn2.5), OG1RF_11715 (OPDV_11715::Tn2.13), OG1RF_11714 (OPDV_11714::Tn2.14) or

OG1RF_11707 (OPDV_11707::Tn2.8) were analysed. Wild-type OG1RF and parental OPDV strains were included as

controls. C. Carbohydrate composition of purified EPA polysaccharides. The relative percentage corresponding to

each monosaccharide was determined from three independent extractions.

https://doi.org/10.1371/journal.ppat.1007730.g003
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polysaccharides were overall similar but mutations in the epa variable region were associated

with modifications in the anomeric region (Fig 4A). Clear differences were also detected in the

relative intensities of methyl protons in the mutant spectra. For all mutants, the intensity of N-

acetyl signals (1.9–2.2 ppm) decreased whilst the intensity of methyl protons corresponding to

Fig 4. Structural analysis of purified EPA polysaccharides. A. 1D proton spectra of the EPA polysaccharides extracted from strains

OPDV, OPDV_11720::Tn2.5, OPDV_11715::Tn2.13, OPDV_11714::Tn2.14 or OPDV_11707::Tn2.8. The grey boxes indicate

anomeric (4.5–5.5 ppm) and methyl protons (1.2–2.5 ppm). B. 2D 1H-13C HSQC spectra of EPA polysaccharides. The region

corresponding to anomeric protons (4.2–5.5 ppm) and anomeric carbons (90–105 ppm) is shown. OPDV signals are in black,

mutant signals in red. Boxes show signals with a lower intensity or a shift in the mutant EPA samples. Close-up views of the boxed

regions are shown in S4 Fig.

https://doi.org/10.1371/journal.ppat.1007730.g004
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rhamnose residues (1.2–1.6 ppm) increased, suggesting a lower content of hexosamine in

mutant EPAs and a relative increase of rhamnose. This result is in agreement with the carbo-

hydrate analyses following acid hydrolysis (Fig 3C and S3 Fig). 1H-13C HSQC spectra revealed

that EPA has a very complex structure, as evidenced by the detection of over 30 signals in the

anomeric region (Fig 4B). The comparison of 2D spectra corresponding to OPDV and mutant

polysaccharides revealed that each epa mutation only led to a limited number of changes

including changes in the signal intensity, signal shifts and disappearance (S4 Fig). The number

and the nature of the signals affected in the epa mutants were different depending on the muta-

tion considered. Altogether, NMR and sugar analyses supported the idea that the epa variable

genes are involved in limited modifications of the EPA rhamnopolysaccharide previously

described as “decorations”.

Epa decoration determines susceptibility to antimicrobials targeting the

cell envelope

All epa transposon insertions were combined with four other mutations present in the OPDV
strain (oatA, pgdA, dltA and sigV), leaving the possibility of epistatic interactions between

these mutations. To avoid this potential issue, we built in-frame epa deletions in the OG1RF

genetic background (S5 Fig) before testing the impact of EPA decorations on resistance to

antimicrobials targeting the cell envelope (Fig 5). All epa mutants in the OG1RF genetic

background were more resistant to lysozyme, like it is the case in their OPDV counterparts

(Fig 5A). All mutants were more sensitive to SDS than OG1RF (Fig 5B), mutants

Fig 5. Growth defect of E. faecalis OG1RF in-frame epa mutants in the presence of antimicrobials targeting the cell envelope. Cell suspensions

were prepared as described in S1 Fig and 1.5 μl of serial dilutions were spotted on BHI-agar plates containing 10 ng ml-1 anhydrotetracycline and

lysozyme (A), SDS, sodium cholate, polymyxin B or nisin (B). In the case of lysozyme, tellurite was added to the plate (20 μg l-1) to increase the contrast

of colonies. For each antimicrobial, one concentration showing a difference in susceptibility is shown.

https://doi.org/10.1371/journal.ppat.1007730.g005
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OG1RF_Δ11714 and OG1RF_Δ11707 being less sensitive than the two others. Interestingly,

mutant OG1RF_Δ11714 (ΔepaX-like) was the only one that did not display increased suscepti-

bility to sodium cholate, a primary bile salt. Mutant OG1RF_Δ11720 was the only one with an

increased susceptibility to both polymyxin B and nisin, two cationic peptides targeting the cell

envelope. Mutant OG1RF_Δ11707 was more susceptible to polymyxin B than the wild-type

strain, but barely more susceptible to nisin. Deletions of OG1RF_11715 and OG1RF_11714
had no detectable impact on resistance to either of the CAMPs tested. Taken together, these

results indicated that genes in the epa variable region are required for resistance to antimicro-

bials targeting the cell envelope and display distinct phenotypes depending on the compound

tested.

Mutations in the EPA decoration genes reduce peptidoglycan crosslinking

We further investigated the impact of epa mutations on cell envelope integrity by analysing the

peptidoglycan structure of these strains and their complemented derivatives (Fig 6). Peptido-

glycan was extracted from each strain in biological triplicates, digested by mutanolysin and

reduced. Disaccharide-peptides were separated by reverse-phase HPLC and the relative abun-

dance of muropeptides was quantified using UV absorbance. All strains displayed a very simi-

lar profile suggesting no major changes in peptidoglycan composition (Fig 6A). However, all

mutants revealed a relative increase of uncrosslinked muropeptides (monomers) and a relative

decrease of crosslinked muropeptides (dimers, trimers and tetramers). A significant difference

was found between the wild-type strain and all mutants except ΔOG1RF_11707 likely due to a

higher variabililty between samples (Fig 6B). Although a similar trend was observed in this

mutant (S6 Fig), this failed to reach statistical significance. Collectively, these results suggest

Fig 6. Peptidoglycan structural analysis of epa muants. Peptidoglycan was extracted from three biological replicates, digested with mutanolysin,

reduced, and disaccharide-peptides were separated by reverse-phase HPLC. The traces shown represent averaged values from the three independent

analyses A. A representative set of HPLC traces corresponding to the wild type OG1RF, mutant Δ11714 and complemented mutant is shown. For the

sake of comparison, the UV values were normalised, using the intensity of the most abundant monomer as a reference. B. Statistical significance

determined by unpaired t-test with Welch’s correction comparing the relative abundance of major monomers in peptidoglycan samples; ns, P>0.05;
�P<0.05; ��P<0.01.

https://doi.org/10.1371/journal.ppat.1007730.g006
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that EPA decorations are required for the optimal polymerisation of peptidoglycan and that

the defect observed in the mutants may contribute at least in part to impair their cell envelope

integrity.

The decoration of the EPA rhamnopolysaccharide is essential for virulence

and underpins phagocyte evasion

The impact of epa mutations on E. faecalis virulence was tested in the zebrafish experimental

model of infection. Cell suspensions corresponding to approximately 1,200 CFUs were

injected in the bloodstream of LWT embryos 30 h post fertilization (hpf) and the survival of

larvae was monitored for 90 h post infection (hpi). As a preliminary experiment, we analysed

the virulence of the OPDV transposon mutants (S7 Fig). Each epa transposon mutant had a

significantly reduced virulence as compared to the wild-type OG1RF strain. Even though the

combined deletions in oatA, pgdA, dltA and sigV did not impair the virulence of E. faecalis in

the zebrafish model of infection (S8 Fig), we could not exclude the possibility of an epistatic

relationship between the OPDV and epa mutations. We therefore repeated the zebrafish infec-

tions using the in-frame epa deletion mutants in the wild-type OG1RF genetic background

(Fig 7). All epa mutants showed a significant decrease in virulence as compared to the wild-

type OG1RF, killing only between 0–10% of the larvae as opposed to the 40 to 55% of killing

following injection of the wild-type strain; Fig 7A–7D). As expected, the complementation of

each epa deletion fully restored the virulence. Although the epa deletion mutants (except the

ΔepaX-like strain) present a slight defect in their growth rate, it is unlikely that this accounts

for the lack of virulence; all complemented strains (and the wild-type OG1RF harbouring an

empty complementation vector) also present a growth defect (S9 Fig) and yet kill zebrafish lar-

vae as well as the wild-type strain (Fig 7).

The production of EPA has been associated with an increased resistance to phagocytosis,

which represents a key step during pathogenesis [8, 28]. We therefore quantified phagocytosis

in zebrafish larvae infected with the wild-type OG1RF and one representative epa mutant

(OG1RF_Δ11714, epaX-like) expressing the red fluorescent protein mCherry (Fig 8). Confocal

microscopy images were used to measure bacterial uptake by phagocytes labelled with anti L-

plastin antibodies coupled to Alexa-488, a green fluorophore, as previously described [29]. The

ratio between red fluorescence inside to red fluorescence outside phagocytes was significantly

higher for the epaX-like mutant (OG1RF_Δ11714) than for the wild-type strain (���P = 0.0006)

or the complemented strain (OG1RF Δ11714 + pTetH-OG1RF_11714; ��P = 0.0049). As

expected, no difference in phagocytosis was observed between the wild-type and comple-

mented strain (ns, P>0.05) (Fig 8A). Representative pictures shown in Fig 8B–8D clearly

indicate that unlike the wild-type strain, the epaX-like mutant was no longer able to evade

phagocytes.

Altogether, our data therefore indicate that decoration of the EPA polysaccharide is essen-

tial for E. faecalis pathogenesis.

Discussion

Previous studies revealed that E. faecalis resistance to lysozyme is unusually complex and

results from several mechanisms acting synergistically. These include peptidoglycan O-acety-

lation and de-N-acetylation, D-alanylation of teichoic acids and transcriptional control by the

extracytoplasmic sigma factor SigV and other transcriptional regulators such as IreK and

CroRS [15]. Despite a 100-fold decrease as compared to the wild-type strain, the residual

resistance of the quadruple OPDV mutant is still relatively high (MIC = 0.5 mg ml-1) as com-

pared to other Firmicutes. This result contrasts with other bacteria in which a limited number
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of genes play a key role in resistance. For example, the combined deletions of oatA and dltA
in S. aureus led to a decrease of at least 2,000-fold in resistance as compared to parental strain

[13]. Deletion of pgdA alone in L. monocytogenes is associated with a 32-fold decrease in

resistance.

Fig 7. Virulence of epa mutants and complemented strains in the zebrafish model of infection. Survival of zebrafish larvae

(n>20) following infection with E. faecalis OG1RF (WT) and epa deletion mutants was monitored over 90 h post infection. A.

Mutant Δ11720. B. Mutant Δ11715. C. Mutant Δ11714. D. Mutant Δ11707. E. Statistical significance determined by Log-rank test;

ns, P>0.05; ��P<0.01; ��� P<0.001; ���� P<0.0001. All injections presented in Fig 4A and 4D were carried out on the same day. The

same data corresponding to the OG1RF strain are therefore shown for the 2 experiments.

https://doi.org/10.1371/journal.ppat.1007730.g007
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Fig 8. epaX mutant cells are more prone to phagocytosis than wild-type and complemented cells. A. Quantification of E. faecalis uptake by zebrafish

phagocytes. Embryos were infected with 1,600 CFUs of E. faecalis cells constitutively producing mCherry and fixed in 4% paraformaldehyde 1.5 h post

infection. Phagocytes were immunolabelled using rabbit anti L-plastin antibodies and detected with goat anti-rabbit antibodies conjugated to

Alexafluor 488. The infected and immunolabelled embryos were imaged using a scanning confocal microscope. The ratio of mCherry fluorescence

signal area associated with phagocytosed and free bacteria was measured using the Fish Analysis Fiji plugin. The uptake of mutant OG1RF Δ11714
(ΔepaX) was significantly higher when compared to the wild-type (OG1RF; ���P = 0.0006) and complemented strain (OG1RF Δ11714 + pTetH-

OG1RF_11714; ��P = 0.0049). No difference in phagocytosis was observed between the wild-type and complemented strains (ns, P>0.05).

Representative images showing E. faecalis uptake in zebrafish embryos are shown. Each picture corresponds to the quantification result indicated with a

red dot in A, following infection with OG1RF (B), OG1RF Δ11714 (ΔepaX) (C) and the complemented strain (D). Phagocytes labeled with L-plastin

appear in green, mCherry labelled bacteria in red. Scale bar is 25 μm.

https://doi.org/10.1371/journal.ppat.1007730.g008
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Using random transposon mutagenesis of the OPDV strain, we showed that the disruption

of several genes proposed to encode the decoration of the EPA rhamnopolysaccharide [23, 25]

increases E. faecalis resistance to lysozyme. In-frame deletion of these genes in the wild-type

background had the same effect. This result was unexpected since a mutation in the conserved

region (epaB) was reported to render cells more susceptible to lysozyme [3]. Whilst the mecha-

nisms underpinning this difference remain unknown, these results indicate that EPA composi-

tion plays a critical role in lysozyme resistance.

In agreement with previous studies, three distinct polysaccharide bands (named PS1, PS2

and PS3) were detected on polyacrylamide gels ([8] and Fig 3A). The two upper bands simulta-

neously disappeared in all the transposon mutants, suggesting that both are structurally related

to EPA. The nature of the third band is unknown and could be either a metabolic intermediate

of EPA or an unrelated polymer. The lack of detection of PS1 and PS2 in EPA polysaccharides

from mutants suggested that either their charge did not allow them to enter the gel and/or that

they were no longer stained by the cationic dye alcian blue. A similar result was previously

described for mutants harbouring deletions in OG1RF_11715 (epaOX) [24] and the homolog

of OG1RF_11714 in V583 (epaX) [25]. By comparing the electrophoretic mobility of the trans-

poson mutants to that of the parental OPDV strain, we confirmed that the epa genes down-

stream of the epaA-epaR locus contribute to the negative charge of the EPA polysaccharide.

This negative charge could at least in part be due to the presence of phosphate in the polymer

[26]. Interestingly, the OG1RF and OPDV strains displayed similar electrophoretic mobilities.

Previous studies also showed that alanylation of teichoic and/or lipoteichoic acids in L. lactis
had no detectable impact on the electrophoretic mobility of this organism [30]. The dlt operon

has been shown to modify lipoteichoic acids [18]. Since these polymers are embedded inside

the cell wall, it is likely that their modification does not lead to a change in the bacterial surface

charge. Further experiments are required to test whether alanylation of cell wall polymers only

has a moderate impact on the charge of the cell wall or if such modifications can simply not be

detected by measuring electrophoretic mobility. Three of the mutants identified in this work

carry a transposon in genes encoding putative glycosyl transferases. Despite the low amino

acid identity between the glycosyl transferase sequences (19–27% depending on the compari-

son), these proteins have very similar predicted secondary structures, with two transmembrane

domains and both the N- and C-termini exposed at the cell surface. Tertiary structure

predictions suggest that all 3 proteins have a very similar fold and are GalNAc transferases.

These predictions are in agreement with our NMR and sugar analyses indicating that EPA

polysaccharides from all glycosyl transferase mutants (OPDV_11720, OPDV_11715 and

OPDV_11714) contain less GalNAc and less intense N-acetyl proton signals. In addition to a

reduced amount of GalNAc, EPA polymers from the glycosyl transferase mutants also con-

tained a reduced amount of galactose. Further analyses are required to explore the catalytic

activity of these glycosyl hydrolases. It remains unclear whether they can use distinct sugars as

a substrate or if the addition of GalNAc is required for the activity of other glycosyl transferases

adding Gal residues. Since none of the heterologous complementations of the transposon

mutants were able to restore the parental phenotype, we anticipate that the 3 glycosyl transfer-

ases identified play distinct roles. This idea is supported by several independent observations:

(i) mutants OPDV_11720::Tn2.5, OPDV_11715::Tn2.13 and OPDV_11714::Tn2.14 present dis-

tinct alterations in their EPA carbohydrate compositions and the deletion mutants present dif-

ferences in their antimicrobial susceptibility profiles; (ii) 2D-NMR spectra indicate that each

mutation is associated with distinct modifications of the signals in the anomeric region; (iii)

the OPDV_11714::Tn2.14 (epaX-like) mutant behaved differently from the other epa mutants

studied since it displayed a less pronounced defect in surface charge. Altogether, our results

suggest that glycosyltransferases in the epa variable region fulfil distinct roles. The complexity
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of EPA structure precludes any conclusion about the specific role of individual epa genes.

However, based on the 2D NMR spectra, it is tempting to assume that OG1RF_11720, the first

gene of the epa variable region encodes a glycosyl transferase involved in an early step of the

biosynthesis of EPA decoration, whilst EpaOX and EpaX-like contribute to later stages.

epa deletion mutants displayed distinct resistance to antimicrobials targeting the cell enve-

lope. Deletions of OG1RF_11720 and OG1RF_11707, which had pronounced impacts on EPA

structure, led to the most pronounced increased susceptibility to antimicrobials. Since epa
mutants were susceptible to both anionic (SDS, sodium cholate) and cationic (polymyxin B,

nisin) antimicrobials, the charge of EPA does not entirely account for the resistance to these

compounds and an additional defect(s) in cell envelop integrity exists. To test the hypothesis of

a cell envelope integrity defect previously suggested [24, 25], we analysed the peptidoglycan

structure of epa mutants. All mutants showed a reduced proportion of crosslinked muropep-

tides, indicating that the decoration of EPA is required for the optimal polymerisation of pepti-

doglycan by penicillin binding proteins. The impact of this crosslinking defect is unlikely to

influence the diffusion of small size antimicrobials such as the ones tested in this study. How-

ever, we propose that this defect potentiates bacterial cell death, increasing bacterial cell lysis.

This idea is supported by a previous study which showed an increased release of β-galactosidase

in the OG1RF_11715 (epaOX) mutant [24]. Collectively, our results revealed that the epa muta-

tions are pleiotropic and cause several changes in cell envelope properties (surface charge, over-

all EPA structure and peptidoglycan structure). It is likely that these factors act synergistically

to modulate the susceptibility to antimicrobials through a decrease of the cell envelope stability.

A contribution of epa decoration genes in biofilm formation [31], resistance to antimicrobi-

als [24] and colonisation [25] was previously suggested, but no information was available on a

potential role in the context of pathogeny. E. faecalis pathogenesis in the zebrafish model of

infection involves two critical steps: phagocyte evasion and tissue damage caused by the metal-

loprotease GelE [28]. Since oatA, pgdA, dltA and sigV are unlikely to contribute to these pro-

cesses, it was expected that their simultaneous deletion would have a very limited impact on

virulence. By contrast, several studies have reported the contribution of the epa conserved

genes to pathogenesis including resistance to phagocytic killing [8, 28] as well as a critical role

in virulence both in experimental mouse and zebrafish infections [3, 28, 32–34]. We therefore

hypothesized that epa mutations altering the decoration of EPA would impair virulence. In

agreement with this hypothesis, all epa transposon mutants (in the OPDV background) and

in-frame deletions in the wild-type OG1RF background were avirulent in the zebrafish model

of infection. Further investigations revealed that the epaX-like mutation leads to a significant

increase in E. faecalis uptake by phagocytes. Our previous work has shown that uptake by

phagocytes is not followed by intracellular killing, as determined by CFU counts [28]. We

therefore propose that the decoration of EPA mediates phagocyte evasion and underpins viru-

lence allowing E. faecalis to disseminate in the host to cause disease.

Collectively, the results provide a paradigm shift in our understanding of E. faecalis patho-

genesis, revealing that the modifications of EPA, rather than EPA backbone itself, underpin

phagocyte evasion, an essential step during host infection. Whether epa is directly recognized

by the host immune system or is shielding other surface components remains an open question.

Materials and methods

Ethics statement

Animal work was carried out according to guidelines and legislation set out in UK law in the

Animals (Scientific Procedures) Act 1986 under Project License P1A417A5E. Ethical approval

was granted by the University of Sheffield Local Ethical Review Panel.
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Bacterial strains, plasmids and growth conditions

Bacterial strains, plasmids and oligonucleotides used in this study are described in S3 Table.

All strains were routinely grown at 37˚C in Brain Heart Infusion (BHI) broth or BHI-agar

1.5% (w/v) plates unless otherwise stated. For E. coli, erythromycin was added at a final con-

centration of 200 μg ml-1 to select pTetH derivatives. When necessary, E. faecalis was grown in

the presence of 10 μg ml-1 chloramphenicol, 128 μg ml-1 gentamicin or 30 μg ml-1 erythromy-

cin. For complementation experiments, anhydrotetracycline was used at a final concentration

of 10 ng ml-1 to induce gene expression.

Construction of the OPDV strain

The work describing the contribution of oatA, pgdA, dltA and sigV to lysozyme resistance was

carried out using E. faecalis JH2-2 as a genetic background [17, 20]. Since this laboratory strain

is avirulent in the zebrafish model of infection, we decided to use OG1RF as a parental strain

[35]. The quadruple OG1RF mutant harbouring deletions in oatA, pgdA, dltA and sigV was

built using existing plasmids (S3 Table) to create in-frame deletions in the following order:

oatA, pgdA, dltA and sigV.

Transposon mutagenesis

A Mariner-based transposon mutagenesis system previously described was used [22]. Plasmid

pZXL5 was introduced in E. faecalis OPDV by electroporation, and transformants were

selected at 28˚C on plates containing chloramphenicol and gentamicin. Cells harbouring

pZXL5 were grown to mid-exponential phase at 28˚C and transposition was induced by addi-

tion of nisin (25 ng ml-1). The culture was then transferred to 42˚C overnight to counter-select

the replication of the plasmid. The library was then amplified by growing the cells at 42˚C in

the presence of gentamicin.

Isolation of transposon mutants resistant to lysozyme

Serial dilutions of the transposon library were plated on BHI agar plates containing 1, 2 or 4

times the lysozyme MIC for the OPDV strain (0.5 mg ml-1) and gentamicin. After 24 to 48 h at

42˚C, individual colonies growing at the highest concentration (2 mg ml-1) were chosen for

further characterisation.

Mapping transposition sites

Transposon insertion sites were mapped by reverse PCR using two divergent primers

(Mar_up and Mar_dn) on the transposon (S10A Fig). Chromosomal DNA was extracted

using the Promega Wizard kit and digested by SspI in a final volume of 30 μl at a concentration

of 4 ng μl-1 (S10B Fig). Digestion products were further diluted to 1 ng μl-1 and self-ligated at

16˚C for 16 h after addition of 100 U of T4 DNA ligase (NEB) (S10C Fig). Three microliters of

the ligation product were used as a template for PCR amplification using oligonucleotides

Mar_up and Mar_dn (S10D Fig). PCR products were gel extracted and sequenced using oligo-

nucleotide T7 (S10E Fig). The insertion site was defined as the first nucleotide of the E. faecalis
OG1RF genome immediately downstream of the inverted repeat sequence flanking the

transposon.

Construction of complementation plasmids

DNA fragments encoding OG1RF_11720, OG1RF_11715, OG1RF_11714 and OG1RF_11707

were amplified by PCR using the oligonucleotides described in S3 Table. PCR products were
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digested by NcoI and BamHI and cloned into pTetH, a pAT18 derivative allowing anhydrote-

tracycline-inducible expression. Each open reading frame was fused to a C-terminal 6-Histi-

dine tag.

Antimicrobial assays

Colonies from a BHI agar plate were resuspended in PBS and diluted to an OD of 1 at 600 nm.

Ten-fold dilutions were prepared in PBS and 1.5 μl of each cell suspension were spotted on

BHI agar containing antimicrobials at various concentrations. MICs of lysozyme were defined

as the concentration of antimicrobial inhibiting the growth of 1.5 μl of a cell suspension corre-

sponding to a 1000-fold dilution of the cell suspension at OD of 1 at 600 nm. For complemen-

tation experiments, anhydrotetracycline was added at a final concentration of 10 ng ml-1. At

least two biological replicates were carried out for each susceptibility assay.

Measurement of electrophoretic mobility

An overnight culture was diluted 1000-fold in 25 ml of BHI broth and grown for 17 h at 37˚C

in static conditions. Anhydrotetracycline (100 ng ml-1) was added to all cultures to induce

gene expression for complementation and exclude the possibility that this chemical could

account for differences between strains. Cells were harvested by centrifugation (5 min, 8,000 x

g at room temperature), washed twice in 25 ml of 1.5 mM NaCl and resuspended at a concen-

tration of 3 x 107 CFU ml-1 in 1.5 mM NaCl at various pHs. The electrophoretic mobility was

measured in an electric field of 8 V cm-1 using a laser zetaphoremeter (CAD Instrumentation,

Les Essarts le Roy, France). For each measurement, results were based on the analysis of 200

individual particles. The results presented in Fig 3, S1 and S2 Tables are the combined results

of three independent experiments (biological replicates).

Peptidoglycan extraction and analysis by reverse-phase HPLC

Peptidoglycan was purified from exponentially growing cells with boiling SDS as described

previously [36], freeze-dried, and resuspended in distilled water at a concentration of 20 mg

ml-1. Peptidoglycan (2 mg) was digested overnight with 200 μg of mutanolysin at 37˚C in

200 μl of 20 mM sodium phosphate buffer (pH 6.0). Soluble disaccharide peptides were recov-

ered in the supernatant following centrifugation (20,000 x g for 20 min at 25˚C) and reduced

with sodium borohydride as described previously [36]. The reduced muropeptides were sepa-

rated by reverse-phase HPLC on a Hypersil Gold aQ C18 column (3-mm particles, 4.6 by 250

mm; Thermofisher) equilibrated in 10 mM ammonium phosphate, pH 5.6 (buffer A) at a flow

rate of 1.25 ml/min. Muropeptides were eluted with a 4-min linear methanol gradient (0 to

7.5%) in buffer A followed by a second 40-min gradient linear methanol gradient (7.5 to 30%)

in buffer A.

NMR

NMR experiments were conducted on a Bruker NEO 600 MHz spectrometer with TCI cryo-

probe at 25˚C. EPA polysaccharides were freeze-dried and resuspended in 100% D2O. Spectra

were processed and analysed using TOPSPIN (version 4.0.5). Trimethylsilylpropanoic acid

was used as a reference. Standard Bruker pulse programs were used for 2D 1H-13C HSQC and

1D 1H with presat water suppression. The 2D experiments were run for 128 scans with an

acquisition time of 0.136s and a relaxation delay of 1.5s.
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Carbohydrate extraction and analyses

EPA was extracted as previously described from standing cultures in BHI at the end of expo-

nential growth (OD600nm = 0.8) [26]. The method previously described to analyse pneumo-

coccal polysaccharides and conjugates was followed, with the exception of the first acid

hydrolysis step [37]. Briefly, purified EPA polysaccharides were hydrolyzed in 4 N trifluoroa-

cetic acid for 4 h at 100˚C. Hydrolysis products were analysed by high-performance anion-

exchange chromatography (HPAEC) coupled to pulsed-amperometric detection (PAD)

using a Dionex DX 500 BioLC system (ThermoFisher). Monosaccharides were separated on a

Carbopac PA10 (4 mm × 250 mm) analytical column (Thermofisher Scientific) at a flow

rate of 1 ml min-1. Solvent A was 18 mM NaOH, solvent B was 100 mM NaOH, and solvent C

was 100 mM NaOH containing 1 M sodium acetate. NaOH and NaAc gradients were used

simultaneously to elute the carbohydrates by mixing the three eluents. The gradients used

were as follows: after 15 min of isocratic elution in buffer A, a 3 min gradient to 100% of

buffer B was applied. A second gradient was applied between 18 and 35 min using buffer C to

reach 300 mM sodium acetate. The column was re-equilibrated in 18 mM NaOH for 20 min

after every run. The following pulse potentials and durations were used: E1 = 0.1V, t1 = 400

ms; E2 = −2V, t2 = 20 ms; E3 = 0.6V, t3 = 10 ms; E4 = −0.1V, t4 = 70 ms. Data were collected

and analysed on computers equipped with the Dionex PeakNet software. Carbohydrate anal-

yses were made in triplicate using three independent EPA extractions from 3 distinct

colonies.

Construction of pGhost derivatives for allele replacement

All plasmids for allele replacement were constructed with the same strategy. Two homology

regions were amplified: the 5’ homology region (referred to as H1) was amplified with oligonu-

cleotides H11 (sense) and H12 (antisense). The 3’ homology region (referred to as H2) was

amplified with oligonucleotides H21 (sense) and H22 (antisense). Both PCR products were

purified, mixed in an equimolar ratio and fused by overlap extension using oligonucleotides

H11 and H22 [38]. The assembled PCR fragment flanked by two restriction sites was digested

and cloned into pGhost9 [39] similarly digested. Oligonucleotide sequences and restriction

sites used for cloning are described in S3 Table.

Construction of E. faecalis OG1RF in-frame epa mutants

Isogenic derivatives of E. faecalis OG1RF were constructed by allele exchange using the proce-

dure previously described [40]. Briefly, pGhost9 derivatives were electroporated into OG1RF

and transformants were selected at a permissive temperature (28˚C) on BHI plates with

erythromycin. To induce single crossover recombination, transformants were grown at a non-

permissive temperature (42˚C) in the presence of erythromycin. The second recombination

event leading to plasmid excision was obtained after 5 serial subcultures at 28˚C without eryth-

romycin. The last overnight subculture was plated at 42˚C without erythromycin. A clone har-

boring a double crossover mutation was identified by PCR (S5 Fig) and further confirmed by

sequencing of the recombined region.

Zebrafish strains and maintenance

London wild type (LWT) zebrafish were provided by the aquarium facility at the University of

Sheffield. Embryos were maintained in E3 medium at 28˚C according to standard procedures

previously described [41].
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Microinjections of E. faecalis in zebrafish embryos

Cells were grown to mid-exponential phase (OD600nm~0.3) and harvested by centrifugation

(5,000 x g for 10 min at room temperature). Bacteria were resuspended in filtered phosphate

buffer saline (150 mM Na2HPO4, 20 mM KH2PO4, 150 mM NaCl [pH 7.5], PBS) and trans-

ferred to microcapillary pipettes. Embryos at 30 h post fertilization (hpf) were anaesthetized,

dechorionated, embedded in 3% (w/v) methylcellulose and injected individually with 2 nl of a

cell suspension corresponding to ca. 1,000 cells as previously described [28]. The number of

cells injected was checked before and after each series of injections with a given strain. Zebra-

fish embryos were monitored at regular intervals until 90 h post infection (hpi). At least 20

embryos per group were used.

Imaging of infected larvae by confocal microscopy and quantification of

uptake by phagocytes

Immuno-labelled embryos were immersed in 0.8% (w/v) low melting point agarose in E3

medium and mounted flat on FluoroDish (World Precision Instruments Inc.). Images were

collected using a DMi8 confocal microscope (Leica). Image acquisition was performed with

the Volocity software and the images were processed with ImageJ 1.49v software. Bacterial

phagocytosis was quantified using an ImageJ custom script called Fish Analysis, which can be

obtained from http://sites.imagej.net/Willemsejj/ or via ImageJ updater. All bacteria were

identified based on their fluorescence (mCherry, Channel 2). Subsequently, the fluorescence

intensity of the phagocytes (Alexa 488, Channel 1) surrounding the phagocytosed bacteria was

measured. The phagocytosed bacteria had high fluorescence intensity of Channel 2 and low

fluorescence intensity of Channel 1. The area of phagocytosed bacteria was compared with the

area of non-phagocytosed bacteria and their ratio was calculated.

Statistical analyses

Statistical analyses were performed using GraphPad Prism version 7.03. Comparisons

between survival curves were made using the log rank (Mantel-Cox) test. Electrophoretic

mobilities were compared using two-way ANOVA. Comparison of uptake by zebrafish mac-

rophages was carried out using an unpaired non-parametric Dunn’s multiple comparison

test. Comparison of muropeptide abundance was carried out using an unpaired t-test with

Welch’s correction.

Supporting information

S1 Fig. Lysozyme MICs for Firmicutes. A cell suspension in phosphate saline buffer was

adjusted to an OD at 600 nm of 1 and 1.5 μl of serial dilutions were spotted on BHI-agar plates

containing various concentrations of lysozyme. ND, undiluted cell suspension; 10−1, 10-fold

dilution; 10−2, 100-fold dilution; 10−3, 1000-fold dilution; 10−4, 10000-fold dilution; 10−5,

100000-fold dilution.

(PPTX)

S2 Fig. Western blot analysis of complementation strains. Cultures were grown in BHI to

an OD at 600 nm of 0.5 and expression of the epa genes was induced by addition of anhydrote-

tracycline (10 ng ml-1). After 2 h, cells were harvested and mechanically broken in the presence

of glass beads. Crude extracts (20 μg) were loaded on SDS-PAGE, transferred onto a nitrocel-

lulose membrane and probed with a polyclonal serum against the polyhistidine tag. Bands of

the expected molecular weights were detected (OG1RF_11707, 36.7 kDa; OG1RF_11714, 38.9
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kDa; OG1RF_11715, 38.4 kDa; OG1RF_11720, 30.8 kDa).

(PPTX)

S3 Fig. HPLC analysis of TFA-hydrolysed EPA polysaccharides. Following gel filtration,

fractions containing neutral sugars were pooled and freeze-dried. EPA was hydrolysed in the

presence of 4 N TFA at 100˚C for 4 h. Monosaccharides were separated on a carbopac PA10

column by high performance anion exchange chromatography coupled to pulsed-amperomet-

ric detection. Representative chromatograms are shown for monosaccharide standards and

each transposon mutant. EPA polysaccharides were extracted from three independent cultures

to give average values in Fig 3C.

(PPTX)

S4 Fig. 1H-13C HSQC spectra showing signals altered in epa mutants. A. Region corre-

sponding to anomeric protons (4.2–5.5 ppm) and anomeric carbons (90–105 ppm) highlight-

ing four regions of the spectra (boxed) with signals shifted or changing in intensity in the epa
mutants. B. Boxed regions in A. are shown for individual mutant and one complemented

strain.

(PDF)

S5 Fig. PCR analysis of OG1RF derivatives harbouring in-frame deletions in

OG1RF_11720, OG1RF_11715, OG1RF_11714 and OG1RF_11707.

(PPTX)

S6 Fig. Structural analysis of peptidoglycan extracted from epa decoration mutants. Pepti-

doglycan was extracted from three biological replicates, digested with mutanolysin, reduced,

and disaccharide-peptides were separated by reverse-phase HPLC. The traces shown represent

averaged values from the three independent replicates. The wild-type OG1RF muropeptide

profile is shown for comparison, alongside the traces corresponding to each mutant and its

complemented derivative: A, mutant OG1RF Δ11720; B, mutant OG1RF Δ11715; C, mutant

OG1RF Δ11714; D, mutant OG1RF Δ11707.

(PPTX)

S7 Fig. Virulence of epa transposon mutants and complemented strains in the zebrafish

model of infection. Survival of zebrafish larvae (n>20) following infection with E. faecalis
OG1RF (WT) and epa insertion mutant was monitored over 90 h post infection. A. Mutant

OPDV_11720::Tn2.5. B. Mutant OPDV_11715::Tn2.13. C. Mutant OPDV_11714::Tn2.14.

D. Mutant OPDV_11707::Tn2.8. Statistical significance was determined by Log-rank test; NS,

P>0.05; ��P<0.01; ��� P<0.001; ���� P<0.0001. The same data corresponding to the WT

strain are shown in Fig 4A/4C and 4B/4D.

(PPTX)

S8 Fig. Comparative analysis of OG1RF and OPDV virulence in the zebrafish model of

infection. Survival of zebrafish larvae (n = 28) following infection with 1,000 CFUs of E. faeca-
lis OG1RF (WT) and OPDV mutant was monitored over 90 h post infection. The lack of statis-

tical significance (P = 0.645) was determined by Log-rank test.

(PPTX)

S9 Fig. Growth rate analysis of E. faecalis OG1RF and epa derivatives. Cells from overnight

cultures in BHI were diluted to an OD at 600 nm of 0.01 in 25 ml BHI and growth of standing

cultures was monitored over 6 h. The data presented are the average of 3 independent cultures.

The same OG1RF growth curves were used as a control in each graph.

(PPTX)
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S10 Fig. Step-by-step description of the transposon mapping strategy. A. Schematic repre-

sentation of the mariner transposon used. It consists of a gentamycin resistance cassette

flanked by two inverted repeats. B. Step 1: digestion of chromosomal DNA with SspI, which

has a unique cleavage site in the gentamycin resistance cassette. C. step 2: self-ligation of

SspI digestion products. D. step 3: reverse PCR on ligation products with two divergent oligo-

nucleotides (Mar_dn and Mar_up). E. step 4: sequencing of the PCR product using oligonucle-

otide T7.

(PPTX)

S1 Table. Electrophoretic mobility measurements. The values presented are the average of

three independent biological replicates ± standard deviation.

(DOCX)

S2 Table. Statistical significance of pairwise comparisons of electrophoretic mobility. The

significance values have been calculated using two-way ANOVA.

(DOCX)

S3 Table. Bacterial strains, plasmids and oligonucleotides used in this study.

(DOCX)
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Resources: Jean-Marie Herry, Andrea M. Hounslow, Pascale Serror.

Supervision: Mike P. Williamson, Pascale Serror, Stéphane Mesnage.
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