
RESEARCH ARTICLE

Mutational pathway maps and founder

effects define the within-host spectrum of

hepatitis C virus mutants resistant to drugs

Rubesh Raja1, Aditya Pareek1, Kapil NewarID
1, Narendra M. DixitID

1,2*

1 Department of Chemical Engineering, Indian Institute of Science, Bangalore, India, 2 Centre for

Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India

* narendra@iisc.ac.in

Abstract

Knowledge of the within-host frequencies of resistance-associated amino acid variants

(RAVs) is important to the identification of optimal drug combinations for the treatment of

hepatitis C virus (HCV) infection. Multiple RAVs may exist in infected individuals, often

below detection limits, at any resistance locus, defining the diversity of accessible resistance

pathways. We developed a multiscale mathematical model to estimate the pre-treatment

frequencies of the entire spectrum of mutants at chosen loci. Using a codon-level descrip-

tion of amino acids, we performed stochastic simulations of intracellular dynamics with

every possible nucleotide variant as the infecting strain and estimated the relative infectivity

of each variant and the resulting distribution of variants produced. We employed these

quantities in a deterministic multi-strain model of extracellular dynamics and estimated

mutant frequencies. Our predictions captured database frequencies of the RAV R155K,

resistant to NS3/4A protease inhibitors, presenting a successful test of our formalism. We

found that mutational pathway maps, interconnecting all viable mutants, and strong founder

effects determined the mutant spectrum. The spectra were vastly different for HCV geno-

types 1a and 1b, underlying their differential responses to drugs. Using a fitness landscape

determined recently, we estimated that 13 amino acid variants, encoded by 44 codons, exist

at the residue 93 of the NS5A protein, illustrating the massive diversity of accessible resis-

tance pathways at specific loci. Accounting for this diversity, which our model enables,

would help optimize drug combinations. Our model may be applied to describe the within-

host evolution of other flaviviruses and inform vaccine design strategies.

Author summary

The spectrum of viral mutants that exists in infected individuals defines the diversity of

drug resistance pathways accessible to any virus. Drug combinations that block these

pathways the most effectively are likely to elicit the best responses. The mutants may lie

below detection, rendering treatment optimization difficult. We constructed a multiscale

mathematical model to estimate the pre-treatment frequencies of the entire spectrum of
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hepatitis C virus mutants at specific resistance loci. We described intracellular evolution

stochastically and extracellular dynamics deterministically, gaining accuracy without esca-

lating computational costs. Model predictions quantitatively captured experimental obser-

vations, explained confounding inter-subtype differences, and unraveled the massive

diversity of accessible resistance pathways. Our study would help describe viral evolution

more accurately, optimize drug treatments and design vaccines.

Introduction

Direct acting antiviral agents (DAAs) have revolutionized the treatment of chronic hepatitis C

virus (HCV) infection, eliciting nearly 100% cure rates in clinical trials with oral treatments

often lasting as short as 8 weeks [1]. Efforts are now focused on identifying DAA combinations

that prevent the development of drug resistance more effectively and can reduce treatment

durations further [2–8]. Mutations that confer resistance to individual DAAs, termed resis-

tance-associated amino acid variants (RAVs), have been identified [9]. The frequencies with

which RAVs are likely to exist in individuals before treatment are important to the identifica-

tion of optimal DAA combinations; DAAs must effectively block the growth of these pre-exist-

ing drug resistant strains during treatment [10–12]. Triple-DAA combinations were found

recently to lower the likelihood of the development of resistance significantly compared to

double-DAA combinations [5]. Current assays are inadequately equipped to estimate the fre-

quencies of minority strains. The assays can detect mutants with frequencies up to ~0.1% [13,

14]. With typical baseline viral loads of 106 copies/ml in chronic infection [15], a mutant fre-

quency of 0.01% would imply ~100 mutant copies/ml, which would go undetected but can be

sufficient to cause treatment failure. Indeed, a recent study has argued, using phylogenetic

analysis, that resistance to a new DAA observed in a longitudinal study was due to undetected

pre-existing RAVs [16]. Mathematical modelling may provide an alternative route to estimat-

ing the frequencies of such minority variants and aid the identification of optimal DAA

combinations.

Mathematical models have played a crucial role in describing hepatitis C viral kinetics and

drug action and have guided treatments [17]. Following the advent of DAAs, the models have

been extended to describe the development of drug resistance and to define optimal drug com-

binations [5, 18–20]. The models, however, are adaptations of models of HIV dynamics [21,

22] and therefore present approximate descriptions of HCV evolution and DAA treatments.

Two key challenges must be overcome to develop an accurate model of within-host HCV evo-

lution and estimate the pre-existing frequencies of RAVs.

First, HCV evolution is a multiscale phenomenon, with selection both at the intracellular

and extracellular levels. This represents a departure from HIV evolution: An HIV infected cell

typically carries a single integrated provirus and produces identical virions [23]. Selection

therefore occurs largely at the extracellular level. In contrast, HCV undergoes continuous rep-

lication, mutation, and selection within each infected cell [24–26], resulting in potentially

diverse progeny virions from each infected cell. Further, each infected cell carries a few hun-

dred HCV RNA copies [27], which makes this evolutionary process strongly stochastic.

Finally, infected cells have short lifespans (a few days [28]), which may not allow intracellular

evolution to achieve a steady state. Mutation-selection balance, which underlies most current

models [18, 21], where the frequency of resistant strains is determined by the balance between

mutation of the wild-type yielding the mutant and selection against the wild-type eliminating

it, is thus unlikely to hold and founder effects may dominate. Extracellular dynamics, however,
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is expected to be like HIV, captured by current HCV kinetics models [18, 29–31]. Accurate

integration of intracellular and extracellular evolution has been an outstanding challenge [16,

25].

Second, although the positions where mutations confer resistance to DAAs are well defined,

the mutations at those positions are not unique [9, 12]. For instance, at the position 155 on the

NS3 gene, any of the mutations R155K/I/G/M/T/Q/C/W/N could confer resistance to several

NS3/4A protease inhibitors, namely, boceprevir, telaprevir, simeprevir, asunaprevir, paritapre-

vir, grazoprevir, glecaprevir, and voxilaprevir [9, 32]. An entire spectrum of mutations at the

R155 position, thus, can lead to treatment failure, with each mutation representing a poten-

tially independent resistance pathway. Similarly, the mutations Y93H/C/N/R/W/S/T all lead to

resistance to the NS5A inhibitors daclatasvir, ledipasvir, ombitasvir, elbasvir, velpatasvir, and

pibrentasvir [9, 32]. While R155K is often detected pre-treatment, the other RAVs at this posi-

tion are not [33]. Accurate estimation of the likelihood of the development of resistance to dif-

ferent DAAs would require quantification of the frequencies of the entire spectrum of RAVs

that may exist in a chronically infected individual. Current models have not been designed for

this; they are restricted to either the most prominent or the fittest few RAVs or lump all the

RAVs into a combined mutant species [18–20].

Here, we constructed a model that overcame both these challenges. Our model could thus

estimate the frequencies of the entire spectrum of variants at chosen loci, defining accessible

resistance pathways and presenting a framework for the comparative evaluation of DAA

combinations.

Results

Multiscale semi-stochastic model of within-host HCV evolution

We constructed a multiscale model of HCV kinetics with stochastic intracellular viral replica-

tion and evolution coupled with deterministic extracellular population dynamics (Fig 1A). We

represented the viral genome as a string of nucleotides (Fig 1B). We restricted the string to loci

where mutations can give rise to resistance to a DAA. We considered genomes carrying all

possible mutations at these loci. For instance, for a hypothetical string of two loci, 6 genomes

carrying single mutations and 9 carrying double mutations were possible (Fig 1B), all of which

were considered in our model. When a single codon associated with resistance to a DAA was

considered, a total of 43−1 = 63 different genomes carrying different single, double, and triple

mutations became possible. Virions carrying each of these genomes could exist in the viral

population in an infected individual. The distribution of these genomes in the population

would define the spectrum of mutations at the locus. We quantified this spectrum as follows

(see Methods for details). We first performed stochastic simulations of intracellular evolution

with each one of the possible genomes as the infecting strain and estimated the probability that

the strain established productive infection and, when it did, the distribution of different

genomes in progeny virions. Performing a million realizations with every infecting strain, we

estimated the mean relative infectivity, λj, of each strain j and the specific release rate, pij, of

virions containing genomes i from cells infected with strain j for all combinations of i and j.
The simulations involved replication of positive- to negative-strand RNA and vice versa, muta-

tions, distinguished into transitions and transversions, fitness selection, and progeny virion

production. The quantities λj and pij provided inputs to our deterministic model of extracellu-

lar dynamics. These quantities modified the standard model of viral kinetics by accounting for

the effects of mutations on viral infectivity and the distribution of genomes in progeny virions.

Solving the resulting equations, using parameters representative of HCV infection in vivo
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(Table 1), we obtained the within-host frequencies of all variants, quantifying the spectrum of

mutants at any chosen loci.

Fig 1. Schematic of the model. (A) The overall model architecture demonstrating the infection of target cells by

virions to yield infected cells, within which viral replication results in the production of wild-type (blue) and mutant

(red) genomes, leading in turn to the production of virions carrying these genomes. The separation into intracellular

and extracellular evolutionary and dynamical scales is highlighted. (B) Representation of genomes as strings of

nucleotides. A hypothetical substring of two nucleotides of interest yields 6 different single mutants and 9 double

mutants. (C) Schematic of the intracellular model. A virion carrying a genome of type i infects the cell, triggering the

replication of genomes from positive-strand (RNAi) to negative-strand (RCi) and vice versa. Mutation can give rise to

altered genomes, RNAj and RCj, resulting in the production of virions Vj in addition to Vi. The events are summarized

along with their rates in Table 2. (D) Schematic of the extracellular model. Target cells, T, are produced, die,

proliferate, and get infected by virions Vj to yield infected cells Ij, which also proliferate, produce progeny virions, and

die. The probability of infection and the type of virions produced are determined from the stochastic intracellular

model. The parameters used are in Table 1.

https://doi.org/10.1371/journal.ppat.1007701.g001
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Intracellular dynamics and patterns of evolution

We first considered the position 155 in the NS3 protease of HCV, where mutations yield resis-

tance to NS3/4A protease inhibitors, such as telaprevir [9, 12]. The wild-type HCV genotype

1a contains the amino acid arginine (R) represented by the codon AGG at this position [12].

We performed stochastic simulations of intracellular evolution with the infecting strain con-

taining the codon AGG. Mutations could yield different amino acids, such as lysine (K) and

threonine (T). The relative fitness of the RAVs at this position has been estimated previously;

only the RAVs K, T, and methionine (M) had non-zero fitness [19]. We employed these fitness

values in our simulations. (These fitness values were found to correlate well with estimates

from in vitro studies [19, 34]. Using the latter in vitro values, which were available for a wider

set of RAVs, made the computations more complex because of the presence of the additional

mutational pathways, but did not change our estimates significantly (S1 Fig).) We examined

individual realizations and found that in most realizations the population of the infecting

genome rose from one to nearly the carrying capacity of the cell, where it stabilized (Fig 2A).

Other genomes were rarely present. The time when the population began to rise, indicating

the onset of viral replication, varied significantly across cells, with some cells seeing the rise

soon after infection whereas others seeing it as late as 40 h after infection. The initiation of

Table 1. Model parameters and their values.

Symbol Description Value Source

Intracellular model k+ Replication rate of RNA to RC 0.1 h-1 S1 Text

k− Replication rate of RC to RNA 3.0 h-1 S1 Text

K Carrying capacity of a cell for RNAs and RCs 270 S1 Text

fj Fitness landscape Fig 2B inset; S5 Fig [19, 38]

dRNA Degradation rate of RNA 0.046 h-1 [25]

dRC Degradation rate of RCs 0.058 h-1 [25]

μts Transition rate 2.7×10−5 per site per replication [38]

μtv Transversion rate 1.5×10−6 per site per replication [38]

ρ Rate of release of virions from an infected cell 0.01 virions h-1 [25]

Extracellular model sgen Generation rate of target cells dTKcell [28]

β Infection rate constant 10−7 ml day-1 virion-1 [18]

dT Death rate of target cells 0.004 (0.001–0.014) day-1 [28]

kprt Proliferation rate of target cells 1.25 (1–3) day-1 [28]

kpri Proliferation rate of infected cells 0.125 day-1 [28]

Kcell Carrying capacity of the liver for cells 1.3×107 cells ml-1 [18]

N Number of non-target cells Kcell/2 [18]

δ Death rate of infected cells 0.33 (dT−0.5) day-1 [28]

c Clearance rate of free virions 4.2 (0.8–22) day-1 [28]

https://doi.org/10.1371/journal.ppat.1007701.t001

Table 2. Events in the intracellular model along with their rates. The symbols and their meanings are described in

the text. Parameter values are in Table 1.

Description Event Rate

Replication of RNA to RC RNAj!RCi kþ 1 �
TRNAþTRC

K

� �
HijfjRNAj

RNA degradation RNAj!ϕ dRNARNAj

RNA assembly and release RNAj!Vj ρRNAj

Replication of RC to RNA RCj!RNAi+RCj k� 1 �
TRNAþTRC

K

� �
HijfjRCj

RC degradation RCj!ϕ dRCRCj

https://doi.org/10.1371/journal.ppat.1007701.t002
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replication was thus subject to strong stochastic fluctuations. If the infecting genome were to

be degraded before the initiation of replication, the cell would cease to be productively infected

(see below).

In some realizations, where the infecting genome experienced a mutation early on, the pop-

ulation came to be dominated by the mutant, which reached the carrying capacity and stabi-

lized. In a small minority of realizations, where the mutant population was on the rise, a

reverse mutation leading to the infecting genome occurred. The infecting genome then grew

at the expense of the mutant because of its higher relative fitness. Eventually, the infecting

genome came to dominate the population and the mutant died down, a pattern akin to the

replacement of a less fit strain following superinfection with a fitter strain [35].

Thus, three patterns of intracellular evolution were evident (Fig 2A). The first, which

occurred in a vast majority of the realizations, was where the infecting genome dominated the

population; the second, which occurred in a minority, was where the mutant dominated; and

the third, which occurred in a smaller minority, was where the mutant dominated initially but

was eventually outcompeted by the infecting genome.

Founder effects

We examined next the average evolution across a large number (106) of realizations. We found

that the intracellular population was dominated by the infecting strain, which existed at levels close

to the carrying capacity of ~200 genomes per cell (Fig 2B). The mutants were present in a small

minority, ranging on average from 10−1 to 10−4 genomes per cell; i.e., one mutant-dominated cell

Fig 2. Intracellular dynamics and evolution. (A) Time-evolution of the populations of wild-type (black) and single

mutant (pink) RNA genomes in infected cells. Infection is initiated by the wild-type. Each trajectory is a realization.

The three patterns where the wild-type dominates, the mutant dominates, and where the mutant rises initially but is

eventually outcompeted are illustrated. (B) The averaged evolution of the populations of genomes carrying different

codons following infection with AGG. The relative fitness of the genomes, determined independently [19], is in the

inset and is color coded. (C), (D) The corresponding populations of replication complexes and virions released.

https://doi.org/10.1371/journal.ppat.1007701.g002
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in 10 to 10000 infected cells. The types of mutants present and their frequencies again indicated

strong founder effects. All the mutants present were single mutants; double and triple mutants

were hardly observed. Further, even the mutations that were synonymous, such as AGA, which

did not lead to a fitness penalty, were present in extremely small numbers. This implied that muta-

tions occurred rarely, as expected [25], and cells predominantly carried viral genomes of the type

that infected them. Simulations with a two-locus/two-allele model, which were simpler but easier

to visualize, corroborated these results (S2 Fig).

Transition-transversion bias

For the infecting strain AGG, five single mutants with non-zero fitness were possible: CGG,

AGA, AAG, ACG, and ATG. Of these, CGG and AGA were synonymous–encoding R–and so

introduced no fitness penalty. Yet, they were present at different frequencies, with CGG several

orders of magnitude lower than AGA (Fig 2B). This was because CGG required a transversion

from AGG, whereas AGA could be produced by a transition. The higher probability with

which the latter could be produced thus resulted in the different frequencies. The other three

single mutants encoded the amino acids K, T, and M, respectively, which had fitness decreas-

ing in that order (Fig 2B inset). Further AAG required a transition, whereas ACG and ATG

required transversions. Thus, AAG was present in higher frequencies than the other two. It

was also present at a higher frequency than CGG, which had a higher fitness but required a

transversion. CGG, however, was present at a frequency higher than ACG and ATG, the latter

present at similarly low frequencies, dictated by their low fitness and the low transversion rate.

The distribution of replication complexes too followed the same trends, with the wild-type

dominant and single mutants alone present in small minorities with the ordering of the

mutant frequencies defined by the relative fitness and whether a transition or transversion to

the infecting strain was required (Fig 2C). Accordingly, the progeny virions released were also

predominantly of the type that contained the wild-type genomes (Fig 2D). This transition-

transversion bias is consistent with previous studies [36].

Together, these findings implied that strong stochastic and founder effects resulted in the

dominance of the infecting strain within cells. The mutation-selection balance, often invoked

to describe the frequencies of mutant strains [18, 21], did not hold. Had the mutation-selection

balance been achieved, the population would have been dominated by the fittest strain, the

wild-type, regardless of the infecting strain. The small intracellular carrying capacity, the low

mutation rate, and the short lifespan of infected cells together precluded the mutation-selec-

tion balance from being established.

Relative infectivity and specific release rate

We repeated the simulations above with every strain, 13 in all, that had a non-zero relative fit-

ness as the infecting strain and estimated the relative infectivity, λj, and the specific release

rate, pij, which provided the necessary inputs to the extracellular model. We found that λj was

dependent on the amino acid of the infecting strain and not the codon and decreased as the fit-

ness of the infecting strain decreased (Fig 3A).

When productive infection did occur, pij increased overall with the fitness of the infecting

strain (Fig 3B; S3 Fig; S1 Table). Thus, more virions were produced from an infected cell on

average when the infecting strain was AGG than ATG. The virions produced, however, were

predominantly of the type that contained the infecting genome regardless of fitness (Fig 3B); i.
e., for any infecting strain j, pjj>pij. For instance, even with ATG as the infecting genome,

which had the least relative fitness (Fig 2B inset), the dominant progeny virion type was the

one containing ATG (Fig 3B). Further, pij dropped to zero for all i removed from j by more
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than one mutation; i.e., no genomes containing more than one mutation in the infecting

strain were produced. Finally, pij was lower for values of j that required a transversion from

Fig 3. Relative infectivity and specific release rate. (A) Relative infectivity of strains carrying different codons

obtained from stochastic simulations. The codons are color coded by the amino acids they encode (see inset of Fig 2B).

(B) The average rate at which virions carrying different codons are released following infection with a virion carrying

particular codons mentioned in the panels. Estimates for the remaining infecting strains are in S3 Fig (C) A heat map

displaying the specific release rate estimated in (B) and S3 Fig compactly. The actual values are in S1 Table.

https://doi.org/10.1371/journal.ppat.1007701.g003
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i compared to those that required a transition, reiterating the transition-transversion bias. pij
(Fig 3B and S3 Fig) are collated in a heat map (Fig 3C).

Using λj and pij estimated thus, we solved our model of extracellular dynamics.

Short-term extracellular dynamics and evolution

We let infection begin with a founder virion containing the wild-type genome with the codon

AGG. The viral population quickly rose and, in a few weeks, reached a set point of approximately

1011 virions in the infected individual (Fig 4A), consistent with observed viral loads in chronically

infected individuals [15]. The population consisted predominantly of virions containing AGG. 12

different mutants, corresponding to amino acids with non-zero fitness, were also present but in

much lower numbers. The mutant numbers ranged from ~103 to ~109 virions in the individual,

yielding frequencies of approximately 10−8–10−2, during the first few months of the infection.

Mutational pathway map

To understand this wide distribution of mutant frequencies, we constructed a map of muta-

tional pathways (Fig 4B). The map grouped codons separated by the same number of muta-

tions from the wild-type into distinct layers, indicated with increasingly lighter shades of gray.

Thus, the single mutants, CGG, AGA, AAG, ACG, and ATG, formed the first layer next to the

wild-type. These were all the mutant codons that could be produced from a cell infected with

the wild-type. The codons are colored based on the amino acids they encode. They are con-

nected to the wild-type by solid or dashed lines depending on whether the mutation involved

is a transition or transversion. Accordingly, codons connected with solid lines were more likely

to be produced than those with dashed lines. In the same way, we connected codons in the sec-

ond layer, the double mutants, with those in the first layer. Codons within a layer were also

connected when they were removed from each other by a single mutation. The resulting map

provided a complete set of accessible mutational pathways at the locus in consideration. Using

the map, we understood the distribution of mutants predicted by our model as follows.

The mutant spectrum

Strong founder effects at the intracellular level implied that most infected cells would carry

and produce virions containing the wild-type. A small fraction of the virions produced would

be single mutants, determined by the specific release rate estimated above (Fig 3C). These

mutants would in turn infect other cells with probabilities determined by their relative infec-

tivity (Fig 3A). The latter cells would produce virions predominantly containing the respective

single mutants. A small percentage of the progeny would yield double mutants, which would

in turn infect cells and expand their population. Among the single mutants, the easiest to pro-

duce were the ones that required transitions, viz., AGA and AAG. Of these, AGA encodes R–it

has a synonymous mutation–and therefore was as fit as the wild-type, whereas AAG encodes

K and was less fit. Among the mutants, we thus found AGA present in the highest numbers.

Next in numbers were CGG and AAG. CGG involved a transversion and was therefore harder

to produce than AAG, but was synonymous and therefore fitter than AAG. Well below these

numbers were the other single mutants, ACG and ATG, which required transversions and

were much less fit.

The ordering of the double mutants can again be understood following the above argu-

ments. CGA had the highest fitness (R). It was also produced by a transition and a transversion

from the single mutants CGG and AGA, respectively, which had the highest numbers among sin-

gle mutants. CGA therefore occurred in the highest numbers among the double mutants. The

other double mutants with the highest fitness (encoding R), CGC and CGT, both required
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transversions from their single mutant parent CGG, and were therefore much less repre-

sented than CGA. Much higher than them was the double mutant AAA, which could be

produced by transitions from two single mutants, AGA and AAG, the former present in

high numbers. Yet, it was less prevalent than CGA because it encoded K and was thus less

fit. Of the three other double mutants possible, ACA, ACT and ACC, only the former was

observed, in low numbers, because it was produced by a transition from its parent single

mutant ACG, which in turn was present in small numbers because of its low fitness. The lat-

ter two double mutants, although they were as fit as ACA, were not observed at all (their

numbers were below one) because they had to be produced by transversions from ACG,

which given the strong founder effects was not realized.

Thus, the spectrum of mutants was determined not by the fitness of the mutants alone, but

also by founder effects and the mutational pathways involved. Mutants that could be produced

by transitions via multiple pathways involving well represented ancestral mutants were present

in significant numbers even if their fitness was low.

Fig 4. Extracellular dynamics, the mutational pathway map, and the mutant spectrum. (A) The time evolution of

virions containing the infecting strain (AGG) and each of the possible mutant codons, color coded by the amino acids

they encode. (B) A map of mutational pathways leading from one codon to another. Transitions are in solid lines and

transversions in dashed lines. The lines connect codons separated by a single mutation. The shades of grey indicate the

number of mutations from the infecting strain, AGG. (C) The time evolution of the populations of virions grouped by

the amino acid variants they contain. (D) Frequencies of the different mutants at steady state. Shown for comparison is

the database value of the mutant R155K for HCV genotype 1a (orange dot) [33].

https://doi.org/10.1371/journal.ppat.1007701.g004
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Long-term extracellular dynamics

The long-term dynamics was dictated by fitness effects. Gradually, all the mutants encoding

the same amino acid converged to the same frequency. The frequencies were then ordered

according to the fitness of the amino acids. This long-term evolution, however, was slow and

required many tens of years because of the absence of a fitness difference between the codons

encoding the same amino acids (Fig 4A).

Comparison with experiment

We applied our model to estimate the frequency of the R155K mutant and compared it with

experimental observations. No experiments have thus far measured the entire spectrum of

mutants at any locus in vivo. Measurements in infected individuals sample a few genomes

(e.g., [16]), which may leave estimates of frequencies subject to uncertainties. Besides, the fre-

quencies are typically below current assay detection limits. We therefore considered the fre-

quency of mutants in public HCV sequence databases, which we expected to be representative

of the frequency in typical HCV infected individuals. From 3328 sequences of HCV genotype

1a in public databases, the position 155 was found to have the wild-type amino acid R in

99.82% of the sequences and the mutant K in 0.03% of the sequences [33]. The study was pub-

lished in 2008, before the advent of DAAs, so that transmitted drug resistance may be ignored.

To compare with these findings, we grouped our codon distributions into their respective

amino acid populations and computed the frequencies. We found that although the popula-

tions of genomes carrying different codons encoding the same amino acid were gradually

varying (Fig 4A), their total populations had nearly reached steady levels (Fig 4C). We found

from these steady populations that the frequency of the R155K mutant was 0.03% (Fig 4D), in

excellent agreement with the frequency in the public databases [33], giving us confidence in

our model predictions. The other mutants, R155T/M, were present at far lower frequencies of

~0.0001%. Previous models underpredict mutant frequencies (S4 Fig), highlighting the

improved accuracy of our model.

We applied our model next to two clinically relevant questions, which also highlighted the

novelty, scalability, and the wider applicability of our approach.

Difference between HCV genotypes 1a and 1b

An intriguing clinical observation has been the significantly lower detection rate of the R155K

RAV in HCV genotype 1b infected individuals compared to genotype 1a infected individuals

and therefore better responses to NS3/4A inhibitors in the former [10, 12]. To understand this

difference, we performed calculations that mimic infection with HCV genotype 1b. The calcu-

lations above mimicked genotype 1a infection. We could use the intracellular results above

(Fig 3) because the same codons were involved in genotype 1b infection. We assumed that the

relative fitness was the same as genotype 1a. The extracellular dynamics had to be recomputed

using the appropriate founder strain. The wild-type codon for R in genotype 1b at the position

155 is CGG [12]. The mutational pathway map with this wild-type indicated that no viable sin-

gle mutants were non-synonymous (Fig 5B). The mutant AAG, which encodes K, required

two mutations to CGG. Further, the first of these mutations was a transversion to AGG, which

was followed by a transition to AAG. Accordingly, the viral population was not only domi-

nated by the wild-type, the mutant spectrum was dominated by the single mutants which were

all synonymous (Fig 5A). The resistant mutant AAG was present in very low numbers,

~104−105 virions, in contrast to the ~108 virions in HCV genotype 1a infection (Figs 4A and

5A). Aggregating the codons into their respective amino acids (Fig 5C), we found that the fre-

quency of the R155K mutant was ~0.0001%, nearly 100-fold lower than the corresponding
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frequency in the case of genotype 1a (Fig 5D). The other mutants (R155T/M) were present at

far lower frequencies. This significantly lower presence of the RAVs in HCV genotype 1b com-

pared to 1a presents a plausible explanation of the less frequent detection of RAVs in individu-

als infected with the former and may contribute to their better response to NS3/4A inhibitors.

Multiple pathways of resistance to NS5A inhibitors

To demonstrate the scalability and wider applicability of our model, we considered another

class of DAAs, NS5A inhibitors. Unlike NS3/4A inhibitors, which fail predominantly due to

the RAV R155K, the NS5A inhibitor daclatasvir has been observed to fail due to the growth of

different RAVs in different individuals [37]. The RAVs Y93H/C/F/N have all been associated

with daclatasvir resistance [9, 37]. Further, the RAVs are rarely detected pre-treatment but

grow rapidly during treatment, indicating that they are present pre-treatment below detection

limits [37]. To understand these observations, we applied our model to define the spectrum of

mutants at the position 93 in the NS5A region of HCV.

Fig 5. The mutant spectrum for HCV genotype 1b. (A) The time-evolution of population of virions carrying

different codons, color coded by the amino acids they encode. (B) The mutational pathway map with CGG, the wild-

type codon for HCV genotype 1b at position 155 of the NS3 protein, as the founder. Transitions are in solid lines and

transversions in dashed lines. The lines connect codons separated by a single mutation. The shades of grey indicate the

number of mutations from the infecting strain, CGG. (C) The time-evolution of variants grouped by amino acids. (D)

The corresponding frequencies of the different variants.

https://doi.org/10.1371/journal.ppat.1007701.g005
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In a comprehensive study recently, the fitness of all single mutants, carrying every one of

the 20 amino acids at every position of the NS5A protein, have been estimated experimentally

[38]. We employed the fitness data pertaining to position 93 (S5 Fig). Based on amino acids

with non-zero fitness, we found that 44 different codons could potentially exist at this locus in

an infected individual. The problem is thus of a much larger scale than the R155 case above,

where only 13 codons existed. To estimate the mutant frequencies, we first performed our sto-

chastic intracellular simulations with each of the 44 codons as the infecting strain (S6 Fig) and

estimated the relative infectivity (A) and the specific release rates (Fig 6B and S7 Fig). With

these values, we solved our extracellular model and estimated the populations and frequencies

of each of the variants at steady state. We constructed the mutational pathway map, involving

6 single mutants, 18 double mutants, and 19 triple mutants, connected via transitions and

transversions (Fig 7A). The pathways explained the frequencies of the mutants we observed

(Fig 7B).

Of the 6 single mutants, one was synonymous and thus contributed to the frequency of the

wild-type amino acid, Y. Of the remaining 5 single mutants, 2, encoding the amino acids H

and C, were produced by transitions of the wild-type codon, whereas the other three, encoding

the amino acids F, N, and S, were produced by transversions. Indeed, H and C were the vari-

ants with the highest frequencies, ~0.01%. The next highest were F, N, and S, with frequencies

of ~0.001%. The rest of the variants, involving 7 different amino acids, were present at lower

frequencies ranging from 10−8–10−12. (One of the mutants, M, had a frequency far below

10−12, resulting in a mean virion number much less than 1 in a typical individual; the mutant

is thus expected to occur rarely.) This distribution of frequencies thus defined the spectrum of

mutants at the position 93 of NS5A within an HCV infected individual. It indicated that the

Y93H and Y93C were most likely to be detected pre-treatment because of their high pre-treat-

ment frequencies. The frequencies, however, were below detection limits of current assays,

explaining why they are not typically detected. Similarly, RAVs containing each of the 13

amino acids are expected to exist in an infected individual below detection limits. The RAV

that would lead to viral breakthrough during treatment would depend on the fitness of the

RAVs in the presence of the drug, defined by the extent of resistance or increase in IC50 values

relative to the wild-type [38]. The RAV with the most increase in IC50 may drive treatment fail-

ure. Thus, the wide spectrum of mutants renders a variety of resistance pathways accessible to

the virus in vivo.

Discussion

Treatment options for chronic hepatitis C are increasing rapidly as many new DAAs have

been approved for clinical use recently and many are in advanced stages of development [11].

At the same time, the demand for DAAs is set to rise sharply with growing evidence of their

success in the real world [39] and with >98% of the ~150 million chronic hepatitis C patients

worldwide yet to receive DAA-based treatments [40, 41]. Efforts are therefore underway to

develop rational strategies to identify the best combinations of the available DAAs, which

would ensure cure while minimizing the treatment duration, cost, and side effects [2–7, 42,

43]. Our study informs these timely efforts. The success of DAAs relies on their ability to pre-

vent the growth of resistance associated viral variants in patients [9]. In this study, we devel-

oped a multiscale mathematical model that quantifies the spectrum of such variants that may

exist in chronically infected individuals, often below detection limits, before treatment initia-

tion, and thus defines the possible pathways of the growth of drug resistance due to pre-exist-

ing variants. DAA combinations that most effectively preclude the realization of these

pathways in vivo are likely to elicit the best responses.
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Describing within-host HCV evolution has been an outstanding challenge, with many

recent studies constructing multiscale models to integrate intracellular and extracellular

dynamics [19, 20, 25, 31, 36, 44–46]. The complexity increases manifold because the evolution

is strongly stochastic, given the mutation rate of approximately 10−5 per site per replication

[25] and the small number of viral RNA, typically a few hundred, that an infected cell carries

[27]. Stochastic models of HCV evolution have been constructed [25, 36]. The computational

cost of such models increases prohibitively as the genome size or the viral and cell populations

considered increases. Concepts such as the effective population size [47, 48] are then invoked

to keep the simulations tractable, but this restricts the applicability of the models [48, 49]. Our

study presents a novel strategy to overcome this limitation. We performed intracellular simula-

tions fully stochastically and comprehensively, considering every possible genomic variant as

Fig 6. The relative infectivity and specific release rate of mutants at position 93 of the NS5A protein. (A) The

probability of infection of virions carrying different codons, color coded by the amino acids they encode. (B) The

specific release rate matrix summarized as a heat map from the data in S5 Fig.

https://doi.org/10.1371/journal.ppat.1007701.g006
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the infecting strain. We thus obtained all possible expected “input-output relationships” for

individual cells in an infected individual. These input-output relationships for all cells in the

individual were coupled by the exchange of free virions through the plasma. Given that the

population of free virions in a chronic hepatitis C patient is estimated to be over 1010 [18], the

resulting extracellular dynamics could be solved deterministically. Our model thus gains accu-

racy over current models without a prohibitive escalation of computational cost.

The complexity in our model, resulting from the consideration of all possible genomic vari-

ants, is in keeping with recent advances in high throughput and single molecule experimenta-

tion. For the first time, a sizeable portion of the fitness landscape of HCV has recently been

determined: In a tour de force, the fitness of every mutant of HCV in the NS5A region,

obtained by replacing the amino acid at every residue in the protein with every one of the

remaining 19 amino acids, one at a time, was estimated experimentally [38]. Further, advances

Fig 7. The mutant spectrum at position 93 of the NS5A protein. (A) The map of mutational pathways depicted

circularly for compactness. Transitions are in solid lines and transversions in dashed lines. Annuli of increasingly

lighter shades of grey represent increasing numbers of mutations from the founder strain, TAC, defining the amino

acid Y at position 93 of the NS5A protein of HCV. (B) The frequencies of different variants at this position.

https://doi.org/10.1371/journal.ppat.1007701.g007
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in amplification, detection and sequencing technologies are allowing the identification of

every genomic variant produced from an infected cell [50]. Our model is designed to efficiently

exploit such data. Using a codon level description of amino acids, combinations of transitions

and transversions that lead from any amino acid to each of the other 19 alternatives, a corre-

sponding fitness landscape, and the input-output relationships above, we could predict the fre-

quencies of all possible mutants at given loci, presenting a measure of the scale of the diversity

of accessible mutational pathways. Thus, we estimated that 13 different amino acid variants

encoded by 44 different codons would exist in the viral quasispecies in an infected individual

at the residue 93 of the NS5A protein, presenting 44 different potential routes to NS5A inhibi-

tor resistance. Our model estimated the frequencies of each of these variants and found them

all to be below detection limits, highlighting the limitation of current assays and the impor-

tance of mathematical models in providing realistic estimates of RAV frequencies. Indeed, in a

recent study using ultradeep sequencing, at the residue 31 of the NS5A protein, which is

another locus of NS5A inhibitor resistance, although no resistance was detectable pre-treat-

ment in one individual, 3 different RAVs, L31V, L31I and L31M, were detectable in the indi-

vidual within a week of starting therapy that included the NS5A inhibitor daclatasvir [37].

We compared our estimate of the frequency of the RAV R155K, resistant to NS3/4A prote-

ase inhibitors, with corresponding database frequencies [33] and found good agreement, giv-

ing us further confidence in our formalism. We recognize that database frequencies are

representative of sequences prevalent across patients and may be subject to selection pressures

at the population level including transmission bottlenecks. Because we have considered data-

bases collected before DAA treatments commenced, we expect transmitted drug resistance not

to be a confounding factor. Further, transmission bottlenecks are expected to influence the

viral envelope proteins much more strongly than nonstructural proteins. The database fre-

quencies, which are estimated by sampling a large number of sequences across patients (here

~3000), are thus expected to broadly mimic the pre-treatment mutant frequencies at corre-

sponding loci on nonstructural proteins in a typical patient. Future studies that may employ

deeper sequencing techniques than currently available may provide a more direct test of our

formalism.

Interestingly, we found that the rank ordering of the frequencies of the various mutants was

not dictated by fitness effects alone, in contrast to the classical mutation-selection balance [21].

Strong founder effects offset the influence of fitness in our simulations. Combining the

founder effects and the fitness landscape, we could create a map of mutational pathways acces-

sible to any founder strain. Importantly, the maps were different for different founder strains

containing the same amino acid but represented by different codons. Thus, HCV genotypes 1a

and 1b both contain the amino acid R at the position 155 of the NS3 protein but have different

mutational pathway maps because they are encoded by different codons. NS3/4A inhibitor

resistance was thus predicted to be far more prevalent with genotype 1a than 1b, which is con-

sistent with the rare detection of RAVs and the better response of the latter to NS3/4A inhibi-

tor treatments [12, 51]. That the difference arises because genotype 1a requires a single

transition whereas genotype 1b requires a transversion followed by a transition for the R155K

mutation has been recognized earlier [36, 51]. Our model makes quantitative predictions of

the frequencies of the mutant in the two cases, which is consistent with observations [33], facil-

itating more accurate tailoring of treatments for the two cases. Such tailoring may have to

account also for the genetic backgrounds in which the RAVs arise, which may be different

across the two genotypes, as has been recognized, for instance, with NS5A inhibitor resistance

[8, 52, 53].

Currently, systematic resistance testing is not recommended before the start of DAA treat-

ments, due possibly to the ability of DAAs to cure patients regardless of pre-existing RAVs
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[54]. Only RAVs with frequencies above ~10–15%, which are detectable using population

sequencing techniques, have been found to influence treatment outcomes [55]. Our interest in

estimating minority RAV frequencies is in optimizing treatments without compromising out-

comes. We expect that dosages and/or treatment durations may be reduced beyond current

guidelines if RAVs can be ensured to remain responsive with the altered protocols. Indeed,

current guidelines do recommend resistance testing, where such testing is reliable and accessi-

ble, before the use of NS5A inhibitors [54]. Interestingly, a comprehensive analysis extending

over 50 clinical trials showed recently that DAA treatments elicited better responses in treat-

ment naïve individuals than in previous null responders to the combination of interferon and

ribavirin [20]. A model based on the premise that greater responsiveness to interferon sup-

pressed the replication space available to HCV and therefore prevented the growth of RAVs

was able to quantitatively describe the clinical observations [20], reiterating the importance of

RAVs in treatment optimization. By accurately estimating RAV frequencies, our model aids

such optimization.

Many recent studies have detected RAVs in a significant fraction of patients pre-treatment

[55–57]. This is not in conflict with our predictions of minority RAVs typically lying below

detection limits. Where the fitness penalties associated with specific RAVs are not significant,

it is possible that they exist well above detection limits. Thus, for instance, while RAVs were

detected at the position Q30, no RAVs were detectable at the positions Y93 or L31, all associ-

ated with NS5A inhibitor resistance, in 41 HCV genotype 1a infected individuals or 77 HCV

genotype 1a infected individuals coinfected with HIV [57]. RAV frequencies may increase in

treatment experienced patients, given the weaker interferon responses expected in such indi-

viduals [20]. Further, transmitted resistance may also contribute to the observed pre-existence,

especially with RAVs to NS5A inhibitors, which are known to last years in patients even in the

absence of treatment [55].

We recognize that the identification of optimal DAA combinations requires additional

inputs. In particular, the dynamics of the growth of RAVs during treatment must be accounted

for. Remarkably, the extent of resistance, in terms of the fold change in IC50 relative to the

wild-type, for every single amino acid variant in the NS5A region has been experimentally

identified [38]. Extending our model by incorporating the latter data would present an under-

standing of the most likely pathways of the growth of pre-existing RAVs. A combination of

high pre-existing frequency and high level of resistance would decide the most likely pathways.

Drug combinations would then be designed to prevent those pathways. Such extensions of our

model would also require knowledge of epistatic effects that define the fitness of viral genomes

with multiple mutations, which is currently lacking for HCV. Techniques from statistical phys-

ics are being applied to develop more comprehensive fitness landscapes [58]. Further, resis-

tance may often arise from new mutations that occur during treatment and not from the

growth of pre-existing strains, in which case, either fully stochastic models [25] or models that

estimate the waiting times for the emergence of such mutants [59] may have to be developed.

The dynamics during and post-treatment can be complex. In a recent study, the rate of viral

load decline during treatment with a second-generation protease inhibitor, MK-5172, and the

turnover of drug resistant variants post-treatment were found to be far more rapid than previ-

ously expected [16]. The study attributed the rapid decline to the cure of infected cells by the

DAA. The rapid turnover of mutants post-treatment was argued to be due to cellular superin-

fection and the ensuing replacement of less fit strains by more fit ones within superinfected

cells. This allowed a new, more fit strain to become dominant swiftly even when a less fit strain

had established infection with maximal viremia leaving little “replication space” for the new

mutant. HCV is thought to induce a superinfection block [60, 61], which renders such super-

infection rare, although strains that exhibit enhanced ability to superinfect can be selected in
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vitro [35]. The mechanism of the replacement of the less fit strain by a more fit strain is less

well understood [35]. Previous studies have speculated that the replacement may occur during

cell division, when new replication space is created, and the more fit strain has an advantage in

terms of establishing infection in the daughter cells [35, 62]. Models considering the partition-

ing of viral variants into daughter cells are yet to be constructed. Other immune mechanisms

may also influence the dynamics during and post-treatment. For instance, the reduction in

viral load due to treatment may reverse immune exhaustion and rejuvenate CD8+ T cell

responses [43, 63–65]. This has been argued to contribute to the post-treatment cure of HCV

infection in some patients despite detectable viremia at the end of treatment [43]. Whether

this leads to responses against temporally dominant viral variants and contributes to the

observed rapid turnover of variants remains to be examined. Further, cells that are cured by

the treatment are likely to be exposed to interferon secreted when they were infected [66, 67].

Cells exposed to interferon may enter an antiviral state that renders their productive infection

less likely [66–68]. HCV subverts this interferon response by introducing a block in translation

[68]; the block is released when HCV is cleared and the cell cured [31, 68]. It is conceivable

that fitter viral strains are more likely to overcome the interferon response in such cells and

reestablish infection [31], which again may contribute to the rapid turnover of viral variants

observed. Our study has focused on the frequencies of mutants before the onset of treatment,

which are less likely to be influenced by these latter mechanisms.

We envision broader implications of our study. The prevalent paradigm for describing

within-host viral evolution is the molecular quasispecies theory [69, 70]. The theory, built orig-

inally to describe the origin of life, has shaped the modern view of viral evolution by describing

the error-prone self-replication of molecules such as RNA, which constitute viral genomes.

The theory, however, assumes a well-mixed milieu of such genomes subjected to common

selection forces, which ceases to hold for viruses such as HCV where intracellular and extracel-

lular selection are segregated. Our model thus goes beyond models based on the molecular

quasispecies theory [19, 20, 45] by accurately describing and integrating intracellular and

extracellular evolution. The resulting formalism may be useful in describing the within-host

evolution of other important human viruses, such as dengue, West Nile and Zika, which have

a lifecycle similar to HCV. A second implication of our formalism is in vaccine design.

Although we have focused here on loci leading to drug resistance, our model can be readily

applied to sites of immune escape, allowing estimation of the genetic diversity that vaccine

candidates must target [58].

In summary, our study presents a novel approach to estimating the entire spectrum of

mutants present in infected individuals, explains several clinical observations associated with

chronic hepatitis C, and presents a framework that would aid the rational optimization of

modern DAA-based treatments.

Methods

Mathematical model

We present details here of our multiscale model of within-host HCV dynamics and evolution

(Fig 1).

Intracellular dynamics. A schematic of the intracellular model is in Fig 1C. We first con-

sidered a cell infected with a virion carrying a genome of type j, where j was either the wild-

type, denoted j = 0, or one of the 4L-1 mutants, when L sites constituted the resistance locus.

When we considered the 3 positions of a codon at a particular residue, i.e., L = 3, it followed

that j2{0,1,2,. . .,63}. The genome was assumed to be released into the cytoplasm, where it

could replicate to a negative strand genome of type i2{0,1,2,. . .,63}, yielding a replication
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complex, which in turn could act as a template for producing more positive strand genomes

from among the 64 possible variants. Specifically, positive strand genomes j replicated at the

per capita rate k+fj constrained by a logistic term that restricted the maximum number of posi-

tive and negative strand genomes to the carrying capacity K. fj was the fitness of genome j rela-

tive to the wild-type. One such replication event yielded the genome i with the probability

Hij ¼ mts
Ntsmtv

Ntvð1 � mts � 2mtvÞ
L� Nts � Ntv , where of the L sites, genomes i and j differed by Nts

transitions and Ntv transversions, which occurred with probabilities μts and μtv per site, respec-

tively. A replication complex i in turn replicated at the rate k_fi and yielded a positive strand

genome k with the probability Hki. The genomes and the replication complexes could degrade

at the per capita rates dRNA and dRC, respectively. The positive strand genomes could also be

packaged and released as progeny virions at the per capita rate ρ. These events and their rates

are summarized in Table 2.

Using a set of parameter values representative of HCV infection (Methods, Table 1), we

simulated these events stochastically using the Gillespie algorithm [71]. We performed simula-

tions for a duration τ = 72 h, representing the mean lifetime of an infected cell, based on the

range (0.014–0.5 d-1) of infected cell loss rates estimated previously [28]. (The mean infected

cell loss rates have been found to vary across studies [72–74]. Using longer infected cell life-

spans, accordingly, did not significantly alter our findings (S8 Fig).) For any genome j as the

infecting strain, we repeated our simulations 106 times. We computed the probability λj with

which the strain j would result in productive infection as the fraction of realizations in which

at least one progeny virion was released relative the corresponding fraction for the wild-type

(or the fittest genome). When productive infection occurred, we also obtained the distribution

of progeny virions released, pij, which we termed the specific release rate, as the number of viri-

ons of type i released on average from cells infected by genome j divided by the lifetime τ. We

repeated the simulations for each of the 64 genomes as the infecting strain and estimated λj
and pij. We employed these quantities to describe the extracellular viral kinetics.

Extracellular dynamics. Modifying the architecture of the basic model of viral kinetics

[17] using the quantities above, we constructed the following equations to describe the extra-

cellular viral kinetics (Fig 1D):

dT
dt
¼ sgen þ kprtT 1 �

T þ
X

i
Ii þ N

Kcell

 !

� dTT �
X

i

bliViT

dIi
dt
¼ bliViT þ kpriIi 1 �

T þ
X

i
Ii þ N

Kcell

 !

� dIi

dVi

dt
¼
X

j

pijIj � cVi

ð1Þ

Here, uninfected hepatocytes that are targets of infection, T, are produced at the rate sgen, are

lost at the per capita rate dT, and proliferate at the per capita rate kprt, the latter restricted by

the logistic term that limits the total hepatocyte population to Kcell. N represents cells that are

not targets of infection, due, for instance, to inadequate expression of entry receptors [75]. The

target cells, T, are infected by virions Vi, carrying genomes i, at the per capita rate βλiVi, where

λi is the probability with which genome i infects a cell relative to the wild-type (or the fittest

genome), identified by the simulations above, and β is the second order rate constant of the

infection of target cells with wild-type virions. Summation over i thus yielded the total rate of

loss of target cells due to infection.
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We defined Ii as the population of cells productively infected with virions Vi. These cells

proliferated at the per capita rate kpri restricted by the logistic term above and were lost at the

per capita rate δ. Cells Ij produced virions Vi at the per cell rate pij, the specific release rate

identified from the intracellular simulations above. Free virions are cleared at the per capita

rate c.
Solving the above equations for steady state yielded the frequencies of all variants, quantify-

ing the spectrum of mutants.

Parameter estimates and solution of model equations

We obtained most parameter values from previous studies (Table 1). We estimated the replica-

tion rates, k+ and k-, and the carrying capacity, K, to ensure consistency with the overall popu-

lation dynamics of viral RNA in cells (S1 Text, S9 Fig). We performed simulations of

intracellular dynamics using the Stochastic Simulation Algorithm (SSA) in the software Stoch-

kit 2 [76]. We ensured that 106 simulations were adequate to obtain reliable predictions (S10

Fig). We solved our equations of extracellular dynamics in MATLAB using initial conditions

where the target cells were in their uninfected steady state, infected cells were absent and a sin-

gle virion of the wild-type existed.

Supporting information

S1 Fig. Mutant spectrum at position 155 of NS3 using in vitro fitness estimates. Frequen-

cies of the different mutants at steady state estimated as in Fig 4 but using the fitness of differ-

ent RAVs estimated in vitro (inset) [34]. Shown for comparison is the database value of the

mutant R155K for HCV genotype 1a (red dot) [33].

(PDF)

S2 Fig. Founder effects in the two-locus/two-allele model. We performed stochastic simula-

tions of intracellular evolution using a two-locus/two-allele model. We thus had 4 genomes:

the wild-type, two single mutants, and the double mutant. For simplicity, we let the single

mutants have the same relative fitness, f = 0.9, and let the double mutant have the fitness, f2,

representing a multiplicative fitness landscape. Using each of these strains as the infecting

strain, we ran simulations for τ = 72 h and estimated the populations of different genomes and

replication complexes as well as the virions released. The populations of wild-type (blue), sin-

gle mutant (red), and double mutant (green) strains are shown when the infecting strain is the

(A-C) wild-type, (D-F) single mutant, and (G-I) double mutant. Solid lines are means and

dashed lines standard deviations. Consistent with our calculations in Fig 2, the infecting strain

dominated the populations and strains removed by more than one mutation from the infecting

strain were hardly produced.

(PDF)

S3 Fig. Specific release rate for NS3 position 155. The average rate at which virions carrying

different codons are released following infection of a cell with a virion carrying the codon

mentioned in the panels. The parameters are those used in Fig 3.

(PDF)

S4 Fig. Comparison with previous models. Previous models (e.g., [18]) (light bars) underpre-

dict mutant frequencies in comparison with the present model (dark bars). We estimated the

mutant frequencies from previous models for (A) NS3 position 155 and (B) NS5A position 93

using the following equations: dTdt ¼ sgen þ kprtT 1 �
Tþ
X

i
IiþN

Kcell

 !

� dTT �
X

i

bViT;
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dIi
dt ¼ bViT þ kpriIi 1 �

Tþ
X

i
IiþN

Kcell

 !

� dIi; and
dVi
dt ¼ p

X

j

HijfjIj � cVi, where the terms have

the same meanings as those in Eq (1) of the main text. The fitness fj and the mutation probabil-

ity Hij are identical to those used in our model (see Methods). Each infected cell is assumed to

produce genomes in proportion to the fitness of the infecting strain. Mutants are produced

from the cell in proportion to the probability that the infecting strain yields the respective

mutants during one round of replication. The previous models thus do not account for sto-

chastic intracellular evolution and the associated founder effects, which leads to the underpre-

diction of mutants.

(PDF)

S5 Fig. Relative fitness of genomes at amino acid position 93 in the NS5A region of HCV.

The fitness values have been extracted from the data reported recently [38].

(PDF)

S6 Fig. Intracellular dynamics and evolution leading to NS5A resistance. The averaged evo-

lution of the populations of genomes carrying different codons following infection with TAC

at the position 93 of the NS5A region of HCV.

(PDF)

S7 Fig. Specific release rate for NS5A position 93. The average rate at which virions carrying

different codons are released following infection of a cell with a virion carrying the codon

mentioned in the panels. The parameters are those used in Fig 6. The figure extends over 3

pages.

(PDF)

S8 Fig. Influence of infected cell lifespan. We extended the simulations in Fig 2D to longer

durations corresponding to the lower infected cell death rates estimated in some studies (0.14

d-1 [72]). The mean viruses released do not change significantly from that at 72 h used in Fig

2D, the two lifespans indicated using dashed lines.

(PDF)

S9 Fig. Estimation of unknown parameters. Stochastic simulations based on the model of S1

Text showing the overall RNA (blue) and RC (red) populations in infected cells with K = 270

(solid lines) and K = 300 (dashed lines). The horizontal dotted lines mark the steady state val-

ues of 200 and 40 for RNA and RCs, respectively. With K = 270, the steady state values are

reached by 48 h (vertical dotted line), as observed experimentally, but not so with other values

of K.

(PDF)

S10 Fig. Effect of the number of realizations. The time-evolution of wild-type (green), single

mutant (red) and double mutant (blue) following infection with the single mutant strain

obtained by averaging 106 (left) and 105 (right) realizations in our two-locus/two-allele model

(S2 Fig). Averages are reliably obtained with 106 realizations. The other parameters are the

same as in S2 Fig.

(PDF)

S1 Table. Specific release rate matrix.

(PDF)

S1 Text. Estimation of unknown parameters.

(PDF)
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