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Bela KövesID
1, Jaroslaw Zdziarski3, Jerome PinknerID

4,5, Scott J. Hultgren4,5,

Ulrich DobrindtID
2,3, Björn Wullt1, Catharina SvanborgID

1*

1 Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund

University, Klinikgatan, Lund, Sweden, 2 Institute of Hygiene, University of Münster, Mendelstr, Münster,

Germany, 3 Institute for Molecular Biology of Infectious Diseases, University of Würzburg, Würzburg,

Germany, 4 Department of Molecular Microbiology, Washington University School of Medicine, St Louis,

Missouri, United States of America, 5 Center for Women’s Infectious Disease Research (CWIDR),

Washington University School of Medicine, St Louis, Missouri, United States of America

* catharina.svanborg@med.lu.se

Abstract

Pathogens rely on a complex virulence gene repertoire to successfully attack their hosts. We

were therefore surprised to find that a single fimbrial gene reconstitution can return the viru-

lence-attenuated commensal strain Escherichia coli 83972 to virulence, defined by a disease

phenotype in human hosts. E. coli 83972pap stably reprogrammed host gene expression, by

activating an acute pyelonephritis-associated, IRF7-dependent gene network. The PapG

protein was internalized by human kidney cells and served as a transcriptional agonist of

IRF-7, IFN-β and MYC, suggesting direct involvement of the fimbrial adhesin in this process.

IRF-7 was further identified as a potent upstream regulator (-log (p-value) = 61), consistent

with the effects in inoculated patients. In contrast, E. coli 83972fim transiently attenuated

overall gene expression in human hosts, enhancing the effects of E. coli 83972. The inhibition

of RNA processing and ribosomal assembly indicated a homeostatic rather than a patho-

genic end-point. In parallel, the expression of specific ion channels and neuropeptide gene

networks was transiently enhanced, in a FimH-dependent manner. The studies were per-

formed to establish protective asymptomatic bacteriuria in human hosts and the reconstituted

E. coli 83972 variants were developed to improve bacterial fitness for the human urinary

tract. Unexpectedly, P fimbriae were able to drive a disease response, suggesting that like

oncogene addiction in cancer, pathogens may be addicted to single super-virulence factors.

Author summary

Urinary tract infections affect millions of individuals annually, and many patients suffer

from recurring infections several times a year. Antibiotic resistance is increasing rapidly

and new strategies are needed to treat even these common bacterial infections. One

approach is to use the protective power of asymptomatic bacterial carriage, which has

been shown to protect the host against symptomatic urinary tract infection. Instilling

“nice” bacteria in the urinary bladder is therefore a promising alternative approach to
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Österlund Foundations, Sharon D Lund foundation,

Swedish Cancer Society, Anna-Lisa and Sven-Erik

Lundgren Foundation, Maggie Stephens

http://orcid.org/0000-0003-1470-671X
http://orcid.org/0000-0002-6717-545X
http://orcid.org/0000-0001-6886-0750
http://orcid.org/0000-0002-7389-7440
http://orcid.org/0000-0001-9949-1898
http://orcid.org/0000-0001-8145-0553
https://doi.org/10.1371/journal.ppat.1007671
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007671&domain=pdf&date_stamp=2019-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007671&domain=pdf&date_stamp=2019-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007671&domain=pdf&date_stamp=2019-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007671&domain=pdf&date_stamp=2019-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007671&domain=pdf&date_stamp=2019-06-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.ppat.1007671&domain=pdf&date_stamp=2019-06-10
https://doi.org/10.1371/journal.ppat.1007671
https://doi.org/10.1371/journal.ppat.1007671
http://creativecommons.org/licenses/by/4.0/


antibiotic therapy. In an effort to increase the therapeutic use of asymptomatic bacteriuria,

we reintroduced bacterial adhesion molecules into the therapeutic Escherichia coli strain

83972 and inoculated patients who are in need of alternative therapy. To our great sur-

prise, the P fimbriated variant caused symptoms, despite lacking other virulence factors

commonly thought to be necessary to cause disease. In contrast, type 1 fimbriae, did not

provoke symptoms but enhanced the beneficial properties of the wild-type strain. This is

explained by a divergent effect of these fimbrial types on host gene expression, where P

fimbriae activate the IRF-7 transcription factor that regulates pathology in infected kid-

neys, suggesting that a single, potent virulence gene may be sufficient to create virulence

in human hosts.

Introduction

Mucosal surfaces provide ideal living conditions for the normal flora but paradoxically, they

also serve as attack sites for numerous bacterial pathogens that cause extensive morbidity and

mortality. Understanding this dichotomy is critical for efforts to selectively target and remove

pathogens without disturbing the commensal flora or its protective effects. The complex

nature of disease predicts that virulence is multifaceted and that pathogens need multiple viru-

lence factors to initiate tissue attack, disrupt immune homeostasis and create symptoms and

pathology [1–8]. It is also well established that commensals fail to cause disease, due to a lack

of critical virulence genes [9, 10]. About 50% of asymptomatic bacteriuria (ABU) isolates have

a smaller genome size than acute pyelonephritis strains due, in part, to inactivating virulence

gene deletions or point mutations [11–13]. These strains continue to accumulate loss of func-

tion mutations in vivo, supporting the notion of a virtually irreversible reductive evolution

process, where spontaneous recovery of a virulent phenotype is not likely to occur.

Surprisingly, these loss-of-function mutations also affect fimbrial subunits and adhesin

genes [13], which are thought to be essential for bacterial persistence at mucosal sites [14–21].

Adhesive ligands arm bacteria with molecular tools to identify preferred tissue sites and attach-

ment plays a decisive role in colonization and long-term adaptation. Certain fimbrial adhesins

are ubiquitously expressed by commensals and pathogens alike, suggesting a homeostatic role.

Others, in contrast, show a strong disease association in epidemiologic studies [14], suggesting

more direct effects on pathobiology [22].

The urinary tract supports ABU; a commensal-like state [23], which has been shown to prevent

super-infection with more virulent strains [24–27]. To reproduce this protective effect, we have

established a protocol to create ABU, by inoculating patients with the ABU strain E. coli 83972

[28, 29]. The therapeutic efficacy and safety of this procedure has been documented in placebo-

controlled studies in patients with incomplete bladder voiding [30]. Genome sequencing of E. coli
83972 has revealed a general “loss of virulence” phenotype, which includes fimbrial genes [13, 31–

33]. E. coli 83972 lacks functional P or type 1 fimbriae, due to attenuating point mutations in the

papG adhesin gene and a large, inactivating deletion in the fim gene cluster [13]. Both fimbrial

types have been proposed to enhance bacterial persistence in the urinary tract.

Results

Reconstitution of the chromosomal pap and fim gene clusters in E. coli
83972

The aim of this study was to increase the efficiency of E. coli 83972 inoculation and extend its

use to include UTI-prone patients with complete bladder voiding. To achieve this goal we
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equipped E. coli 83972 with functional adhesins, previously shown to enhance bacterial persis-

tence in the murine or human urinary tract [34, 35]. This approach also made it possible to

address how fimbriae affect clinical outcome in inoculated human hosts.

The chromosomal pap and fim operons were reconstituted using lambda Red-mediated

recombination (Fig 1A and 1B). Briefly, papGX was deleted (ABU 83972ΔpapGX) and

replaced by functional papGX genes from uropathogenic E. coli (UPEC) strain E. coli CFT073,

via homologous recombination, using pKD3 (E. coli 83972pap, Fig 1A) The fim operon was

reconstituted by replacing an internal 4,253-bp fim deletion, comprising the fimEAIC genes

and truncated fimB and fimD genes, with the entire fim operon from pPKL4 [36] (E. coli
83972fim, Fig 1B).

E. coli 83972pap expressed functional P fimbriae as shown by P blood group specific agglu-

tination of human erythrocytes (S1A Fig) and attachment to human kidney cells (S1B Fig). E.

coli 83972fim expressed functional type 1 fimbriae, as shown by α-D-methyl-mannose revers-

ible agglutination of human and guinea pig erythrocytes and adherence to human kidney cells

(S1A–S1C Fig). The in vitro growth rates of E. coli 83972pap and E. coli 83972fim were

unchanged, compared to E. coli 83972 (S1D Fig).

Clinical response and fimbrial expression in vivo
In this longitudinal study, five patients (P I to P V) were sequentially inoculated; first with the

ABU strain E. coli 83972 and then with the fimbriated variants of this strain (Fig 1C). Each

patient contributed a pre-inoculation sample as well as samples from five time points following

each inoculation, resulting in 18 samples for patients undergoing three- and 12 samples for

patients undergoing two inoculations. As a result of the study design, the response to inocula-

tion was defined relative to the pre-inoculation sample in each patient and inoculation, and

changes over time were evaluated intra-individually. Significant changes were evaluated intra-

individually as well as between patient groups.

E. coli 83972 and the fimbriated strains established significant bacteriuria within 48 hours

of inoculation and persisted for a period of at least 4 weeks or until the patients were treated to

remove the strain (S2 Fig). Patients, who carried E. coli 83972 or E. coli 83972fim remained

asymptomatic and P III and P IV carried E. coli 83972pap asymptomatically during the entire

study period. Two patients, who carried E. coli 83972pap, developed symptoms, however (Fig

1C). In P V, symptoms were recorded 17 days after inoculation (fever, general malaise and

loin pain, S2A Fig). The patient recovered fully after antibiotic treatment, with a drop in C-

reactive protein levels from 245 μg/ml to 3.4 μg/ml after 7 days, normal kidney function on fol-

low up and no evidence of focal tissue damage by intravenous excretory contrast tomography.

P II reported a transient febrile reaction and local symptoms from the urinary tract on day 9

after E. coli 83972pap inoculation. Inoculations with E. coli 83972pap were therefore discontin-

ued and the study outcome is evaluated here for P I–P V.

Bacterial fimA expression increased immediately after inoculation with E. coli 83972fim, fol-

lowed by a rapid decline. PapA expression increased gradually, from 3 hours post inoculation

with E. coli 83972pap until the time of symptoms in P V (Fig 1D, S3 Fig). This difference in

activation kinetics may reflect the location of the fim and pap gene clusters in the bacterial

chromosome, as the fim gene cluster is part of the core chromosome but pap resides in a chro-

mosomal island that also includes other virulence genes, such as hlyA [13]. The urine IL-6 and

IL-8 responses paralleled fimbrial expression, with an earlier peak for E. coli 83972fim and a

later peak for E. coli 83972pap (Fig 1E).

Genome-wide microarray analysis was used to address how the patients respond to bacte-

rial inoculation. RNA was harvested from peripheral blood leucocytes immediately before

Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 3 / 30

https://doi.org/10.1371/journal.ppat.1007671


Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 4 / 30

https://doi.org/10.1371/journal.ppat.1007671


inoculation and at defined times post-inoculation and significantly regulated genes were iden-

tified relative to the pre-inoculation sample in each patient (cutoff FC� 2.0). Fimbriae-related

effects on transcription were further defined by intra-individual analysis, comparing the

response to the E. coli 83972 and E. coli 83972pap or E. coli 83972fim inoculations in each

individual.

Rapid reprograming of host gene expression by E. coli 83972pap
E. coli 83972pap activated a rapid and sustained change in gene expression, which was detected

after 3 hours (S4 Fig) and reached a maximum in P V during the symptomatic episode (1,020

regulated genes, S5 and S6A Figs). A peak response in P II was also observed in connection

with the symptomatic episode (2 weeks, S6B Fig) but not in P III and P IV, who remained

asymptomatic (S6C and S6D Fig). Intra-individual comparisons of E. coli 83972pap and E. coli
83972 inoculations detected little overlap, suggesting that E. coli 83972pap activates a novel,

strain background independent repertoire of host genes (P V, S4 and S5B Figs). A similar dis-

crepancy was observed between E. coli 83972pap in P V and E. coli 83972fim in P I (S4B Fig).

By Gene set enrichment analysis (GSEA) and canonical pathway analysis (Fig 2A, S7 Fig),

type I interferon (IFN) signaling was identified as the top-scoring canonical pathway in P V at

the onset of symptoms (Fig 2A and 2B). Genes in this pathway were activated in at least one

sample from each patient inoculated with E. coli 83972pap (S8A Fig). Significantly regulated

genes included STAT1, IFIT1, IFIT3, MX1 and PSMB8. The IFN pathway genes were not regu-

lated in response to E. coli 83972 or E. coli 83972fim, except in P IV between 3 and 24 hours

(Fig 2C, S8B Fig).

Furthermore, the pattern recognition receptor (PRR) pathway was activated in all patients

inoculated with E. coli 83972pap, including TLRs 2, 4, 5, 7 and 8 (Fig 2D, S8C and S9 Figs)

[7]. In P V, regulated genes also included IRF7, OAS3, 1, 2, complement components, IFIH1
(MDA-5), DDX58 (RIG-1), IL1B, NLRC4 (IPAF), TNF, RIPK2 (RIP2), IL6 and NOD2. The

wild type strain and E. coli 83972fim, in contrast, suppressed the PRR signaling pathway (Fig

2E, S8D Fig). The results suggest that P fimbriae “high-jack” the transcriptional machinery of

the host, creating a fimbriae-specific gene expression profile.

To address to what extent pap reconstitution in an ABU strain creates a disease-like

response [7, 8, 37–39], we compared the repertoire of regulated genes in P V at the time of

symptoms to the in vitro response of human kidney cells to the genetically closely related

Fig 1. Fimbriated E. coli 83972 variants; construction and human inoculation. A. The ABU strain E. coli 83972, does not express functional P or type 1 fimbriae, due

to chromosomal PapG point mutations and a fimB-D deletion. In this study, the pap or fim gene clusters were reconstituted in E. coli 83972pap and E. coli 83972fim,

respectively. To replace the defective papG gene with a functional copy, a papGX deletion mutant (E. coli 83972ΔpapGX) was generated using lambda red homologous

recombination [59]. Briefly, the chloramphenicol acetyltransferase gene (cat) cassette of plasmid pKD3 was amplified with overhangs homologous to the 5´- and 3

´-regions of the E. coli 83972 papGX gene fragment and cured upon transformation with plasmid pCP20 [60]. Meanwhile, the functional papGX genes from UPEC

strain CFT073 was amplified with homologous overhangs to the tnpA and papF regions of E. coli 83972 and used for electroporation into E. coli 83972ΔpapGX cells.

Chromosomal reconstitution of the functional papGX genes in the E. coli 83972 chromosome was achieved via homologous recombination [59]. B. E. coli 83972 carries

an internal 4,253-bp fim deletion, comprising the fimEAIC genes and truncated fimB and fimD genes. To reconstitute the fim operon, truncated genes were replaced via

lambda red-mediated recombination by a cat cassette [59], flanked by two FRT sites and removed by FLP recombinase-mediated recombination [60]. The resulting

83972Δfim strain was transformed with pCP20 and suicide vector pJZ1, carrying the entire fim operon from pPKL4 [36]. Chromosomal integration of the entire suicide

vector including the functional fim operon in E. coli 83972fim resulted in a functional fim copy. C. The human therapeutic inoculation protocol, indicating individual

patients (P I–P V) and strains (E. coli 83972, E. coli 83972fim or E. coli 83972pap). Five patients were inoculated with E. coli 83972, which established ABU for a period of

at least two weeks [28, 30]. After clearance of the strain by a short course of antibiotics, three patients were re-inoculated with E. coli 83972fim, followed after

termination of bacterial carriage by a third inoculation with E. coli 83972pap (P II, P III and P IV). P I received E. coli 83972 followed by E. coli 83972fim but not E. coli
83972pap, and P V received E. coli 83972 followed by E. coli 83972pap but not E. coli 83972fim (S1 Table). D. Kinetics of papA and fimA expression after human

inoculation. Bacterial RNA was isolated directly from urine of each patient at the indicated time points and papA or fimA expression was quantified by qRT-PCR.

Changes in gene expression were defined relative to frr (ribosome-recycling factor) expression. Values for 0h correspond to the bacterial in vitro culture used for

inoculation. E. Kinetics of the urine cytokine response to E. coli 83972fim (P I–P IV, left) P< 0.01 (��) or E. coli 83972pap (P II–P V, right) P< 0.01 (��). Data was

normalized by subtraction of the pre-inoculation values in each patient (0h). Mean ± s.e.m. of 4 samples, 2-way ANOVA.

https://doi.org/10.1371/journal.ppat.1007671.g001
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UPEC strain CFT073 (both phylogroup B2 and same sequence type) [13, 40]. A total of 115

genes were commonly regulated, including IRF7 and genes involved in interferon- and pattern

recognition signaling (S10 Fig), suggesting that E. coli 83972pap activates similar facets of the

innate immune response as a virulent strain.

P fimbriae as IRF7 agonists

IRF-7 controls inflammation and renal tissue damage in the murine acute pyelonephritis

model, through a network of pathology-associated genes [8]. A potent IRF7 response was

detected in P V at the time of symptoms and a more restricted response in P II, five days after

the transient symptoms (Fig 3A and 3B). Furthermore, the IRF7 response was exclusive for

the time of symptoms and was suppressed or not activated in the patients, who did not develop

symptoms (Fig 3C–3E). Downstream of IRF-7, type I interferon genes and RIG-I pathway

genes, cytokines and transcription factors were specifically activated during the symptomatic

episode as well as cell surface receptors involved in innate immunity (Fig 3E and S9 Fig).

Consistent with these effects, E. coli 83972pap infection also stimulated a strong IRF-7

response in human kidney cells. Cytoplasmic and nuclear IRF-7 protein levels were increased

in E. coli 83972pap-infected cells (Fig 4A and 4B) and internalization of the PapG adhesin [41]

was detected, suggesting a P fimbriae-specific effect (Fig 4C). This was confirmed by exposing

the cells to purified PapG II adhesin protein or the PapDG II protein complex (5 and 25 μg/ml,

Fig 4C, S11A and S11B Fig). IRF-7 expression was activated (Fig 4D) as shown by an increase

in IRF-7 protein- and IRF7, IFNB1, MYC and IFIT3 mRNA levels (Fig 4E), suggesting that P

fimbriae may act as IRF7 agonists, in a PapG adhesin dependent manner.

Effects of PapG on the assembly of the IRF7 promoter complex were examined in an elec-

trophoretic mobility shift assay (EMSA), using IRF7 promoter DNA as a probe (1563bp, -1308

to +255, Fig 4F and 4G). Band shifts were detected when the probe was mixed with protein

extracts from uninfected cells (band 1, Fig 4G, S11C Fig) or E. coli 83972pap infected cells

(band 2, Fig 4G). Anti-PapG antibodies created a further super-shift (bands 3 and 4) and

bands 1 and 2 were strongly attenuated by anti-IRF3-, anti-IFNβ and/or anti-MYC antibodies,

consistent with the presence of these proteins in the promoter complex (Fig 4G and 4H). IFN-

β and MYC are known to regulate IRF7 expression by binding to the IRF7 promoter and IRF-

3 forms heterodimers with IRF-7, after activation by phosphorylation [42, 43].

The results suggest that the PapG adhesin affects the assembly of IRF7 promoter complexes

in infected cells, together with IRF-3, IFN-β and/or MYC. Direct binding of purified PapG or

PapDG to promoter DNA was not detected, however, suggesting that the other promoter con-

stituents may be required for PapG to bind to the IRF7 promoter complex.

Effects of type 1 fimbriae on host gene expression resemble E. coli 83972

Type 1 fimbriae are ubiquitously expressed among gram-negative bacteria, suggesting a

homeostatic role. This study provided a unique opportunity to identify such effects, in inocu-

lated human hosts. We found no evidence that type 1 fimbriae create symptoms or pathology,

when expressed in the background of E. coli 83972. Instead a rapid and profound inhibitory

effect was identified in patients inoculated with E. coli 83972fim, by GSEA and analyzed using

Fig 2. Signaling pathways activated by E. coli 83972pap. A. Transcriptomic analysis identifying top regulated canonical pathways in P V at the time of symptoms. B.

Maximum activation of type I IFN signaling pathway genes in P V at the time of symptoms. C. Intra-individual comparison of IFN pathway genes expressed in

response to E. coli 83972pap, E. coli 83972 or E. coli 83972fim (paired t-test for each patient and time point, two-tailed values). D. Pattern Recognition Receptor (PRR)

signaling pathway genes. E. Intra-individual comparison of PRR pathway genes in response to E. coli 83972pap, E. coli 83972 or E. coli 83972fim (paired t-test for each

patient and time point, two-tailed values). Red = FC� 2.0 and blue = FC� -2.0.

https://doi.org/10.1371/journal.ppat.1007671.g002

Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 7 / 30

https://doi.org/10.1371/journal.ppat.1007671.g002
https://doi.org/10.1371/journal.ppat.1007671


Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 8 / 30

https://doi.org/10.1371/journal.ppat.1007671


the gene ontology database (Fig 5A). Genes involved in RNA processing and post-transcrip-

tional regulation were inhibited, suggesting effects on the post-transcriptional environment in

infected host cells, including predicted inhibition of 5’ RNA capping and 3’ poly(A) tail elonga-

tion and translation as well as intron removal, exon splicing and ribosome biogenesis (Fig 5B,

S2 Table). Pro-inflammatory gene sets were not significantly regulated and by Ingenuity path-

way analysis (IPA, S12 Fig), a limited number of weakly regulated pathways were identified,

including Natural Killer (NK) cell signaling, which was inhibited (S12B–S12D Fig) and Integ-

rin signaling, which was moderately activated (S12E–S12G Fig).

In addition, a number of gene sets were moderately activated by E. coli 83972fim in inocu-

lated hosts (P I–P IV, 3 hours, Fig 5C), including ion channels and genes involved neuropep-

tide signaling, sensory perception of pain and other stimuli. Gene network analysis further

revealed strong similarities between E. coli 83972 and E. coli 83972fim (S13 and S14 Figs). By

aligning these responses, we detected a subset of overlapping genes that was inhibited by both

strains, with effects on RNA processing and ribosome biogenesis (S13A–S13C Fig). Kinetic

analysis suggested that the effects of E. coli 83972 were accelerated by E. coli 83972fim, suggest-

ing that type 1 fimbriae act, in part, by enhancing the inhibitory effects of E. coli 83972 (S13B–

S13D Fig). In contrast, the transcriptional response to E. coli 83972fim and E. coli 83972pap
showed no similarity. A few genes were inversely regulated (n = 33); activated by E. coli
83972pap but inhibited by E. coli 83972fim (P I, S14 Fig).

Type 1 fimbriae activate ion channel expression

In depth analysis of the regulated gene sets revealed that potassium channels, ion anti-porters,

voltage gated cation channels and substrate specific ion channels were up-regulated by E. coli
83972fim (Fig 6A). By kinetic analysis of consecutive samples from P I–P IV, we detected an

increase in Ca2+ and K+ channel expression after 3 hours, and K+ channel expression was sus-

tained, with a maximum after 48 hours, especially in P IV (Fig 6B). In addition, a moderate

increase in Na+ and Cl- channel expression was recorded. These gene sets were not unique for

E. coli 83972fim but were regulated also by E. coli 83972 after 24 hours, further suggesting that

type 1 fimbriae enhance the effects of E. coli 83972 (S15 Fig).

The activation of ion channel expression was confirmed in vitro in human bladder epithelial

cells, representing the site of infection in human hosts. E. coli 83972fim and E. coli 83972 infec-

tion generated an increase in K+ channel protein levels, compared to uninfected control cells

(TWIK, TRAAK and KCNJ11), with E. coli 83972fim showing the most pronounced effects

(Fig 6C). In addition, we detected an increase in cation channel protein levels (TRPC1,

TRPV6), exclusively in E. coli 83972fim infected cells (Fig 6D and 6E). The soluble receptor

analogue α-D-methyl-mannopyranoside (α-D-man., 2.5%) effectively blocked the TRPC1 and

TRPV6 response, suggesting that the effects are type 1 fimbriae specific (Fig 6F).

This hypothesis was confirmed by treating human bladder epithelial cells with purified

FimCH protein complexes (1.25–5 μg/ml), [44–47]. A dose-dependent increase in TRPC1

expression was detected (Fig 6G and 6H) and the FimCH complex was shown to activate

rapid Ca2+, K+ and Zn2+ fluxes, which were inhibited by α-D-methyl-mannopyranoside (Fig

6I), suggesting that type 1 fimbriae stimulate ion fluxes, in an adhesin-dependent manner. As

ion fluxes regulate a variety of cellular responses, we suggest that these findings identify a

Fig 3. IRF7 activation by E. coli 83972pap. A. An IRF-7-centric gene network was activated in P V, at the time of symptoms (n = 103). B. A more moderate IRF-7

response was detected in P II, 5 days after transient symptoms (n = 45, 2 weeks). C, D. Patients II and IV, who did not experience symptoms, also did not show

evidence of IRF-7 activation. Instead, IRF7-dependent genes were inhibited in P IV (n = 39, 2 weeks). E. Heatmap of disease associated, IRF-7-driven genes [8] 2

weeks after E. coli 83972pap inoculation (P II–P V). Genes in the network were activated in P V, at the time of symptoms and a partial response was seen in P II, 5

days after transient symptoms. Red = FC� 2.0 and blue = FC� -2.0.

https://doi.org/10.1371/journal.ppat.1007671.g003
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general mechanism by which type 1 fimbriae may affect tissue homeostasis at different muco-

sal sites.

Nerve cell related responses to type 1 fimbriae

Further analysis of patients inoculated with E. coli 83972fim identified 22 significantly acti-

vated gene sets (nominal p-value� 0.01), involved in neuronal sensing, neurotransmitter

receptor activity and nervous system development (Fig 7A and 7B). Genes within these cate-

gories were regulated in all inoculated individuals but the time and amplitude of the maximum

response varied between the patients (Fig 7B).

The response was reproduced in human bladder epithelial cells, where NK1R and SP pro-

tein levels were increased in vitro after E. coli 83972fim infection [48] (Fig 7C). Furthermore,

the purified FimCH complex stimulated NK1R and SP expression in human bladder epithelial

cells (Fig 7D), suggesting that type 1 fimbriae contribute to the activation of neuropeptides

and neuropeptide receptors in an adhesin-dependent manner.

The results identify pronounced early effects of E. coli 83972fim on the host environment,

with inhibition of RNA processing and translation and activation of ion channel- and neuro-

peptide responses. E. coli 83972fim enhanced both the inhibitory and activating effects of E.

coli 83972, in a FimH adhesin-dependent manner, but did not significantly alter the profile of

expressed genes, compared to E. coli 83972. In contrast, E. coli 83972pap activated host gene

expression and changed the gene expression repertoire.

Comparative analysis of upstream regulators in patients inoculated with E.

coli 83972pap or E. coli 83972fim
Last, to provide a molecular context to these divergent effects, we identified upstream regula-

tors of the responses to E. coli 83972pap or E. coli 83972fim, respectively. This analysis predicts

key transcriptional regulators of the response, in this case to E. coli 83972pap or E. coli
83972fim (Fig 8). We selected the time of maximal response of each patient and fimbrial type

and included all regulated genes in the respective data sets.

IRF-7 was identified as a potent upstream regulator of the response to E. coli 83972pap, con-

sistent with the effects in patients and animal models of acute pyelonephritis (-log (p-value) =

61, Fig 8A and 8B). Other identified transcriptional nodes included IRF-3, which has been

shown to balance the IRF-7 response by forming heterodimeric complexes and STAT1, regu-

lating the expression of interferon stimulated genes. E. coli 83972, in contrast, was predicted to

inhibit IRF-7 and E. coli 83972fim had no predicted effect.

A weak, more pleiotropic pattern was detected for E. coli 83972fim, suggesting, that host

gene expression is inhibited more broadly, by mechanisms unrelated to specific transcription

factors. MYC was identified as a transcriptional regulator in P I, after 3 and 24 hours and was

Fig 4. IRF-7 activation by the PapG adhesin. A. Increase in IRF-7 protein levels after infection of human kidney cells with E. coli 83972pap but not E. coli 83972fim
(105 cfu/ml, 4 hours). Western blot analysis. B. Increase in nuclear and total IRF-7 staining, quantified by confocal imaging. Mean + s.e.m. of two experiments, 50

cells/experiment. Two-tailed unpaired t-test compared to PBS. Scale bars = 20 μm. C. PapG internalization after infection or stimulation of cells with purified PapG

protein (5–25 μg/ml), quantified by confocal imaging, using polyclonal anti-PapGII antibodies. Scale bar = 20 μm. D. The purified PapG adhesin or the PapDG

protein complex stimulated an IRF-7 response, in treated cells (5–25 μg/ml). Scale bars = 50 μm. E. Increase in IRF7, IFNB1, MYC and IFIT3 mRNA levels quantified

by qRT-PCR. Cells were infected with E. coli 83972pap or stimulated with the PapG adhesin or the PapDG protein complex (5 or 25 ug/ml). Mean + s.e.m. of two

experiments, multiple unpaired t-test compared to PBS. F. IRF7 gene and promoter map. IRF7 promoter DNA (1563bp, -1308 to +255) was used as a probe, in an

electrophoretic mobility shift assay (EMSA). G. Extracts from uninfected or E. coli 83972pap infected cells were mixed with the indicated IRF7 promoter fragment. By

polyacrylamide gel electrophoresis, one band shift was detected in uninfected cells (band 1) and a second band in E. coli 83972pap infected cells (band 2). Specificity

for PapG was supported by two super-shifted bands (bands 3 and 4), in the presence of anti-PapG antibody. Bands 3 and 4 were inhibited by using anti-IRF3 antibody.

All bands were attenuated by combining anti-IFNβ with anti-IRF-3 or anti-MYC antibodies. H. Model of IRF7 activation by PapG, including IRF-3, IFNβ and MYC.

P< 0.05 (�), P< 0.01 (��), P< 0.001 (���).

https://doi.org/10.1371/journal.ppat.1007671.g004

Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 11 / 30

https://doi.org/10.1371/journal.ppat.1007671.g004
https://doi.org/10.1371/journal.ppat.1007671


Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 12 / 30

https://doi.org/10.1371/journal.ppat.1007671


predicted to be inhibited, consistent with the overall inhibition of gene expression by E. coli
83972fim (-log (p-value) = 6.4 and 8, respectively, Fig 8C–8E). MYC was also predicted to be

inhibited in P I by E. coli 83972 after 24 hours (-log (p-value) = 4) but was not regulated by E.

coli 83972pap.

Discussion

Bacterial pathogens have evolved sophisticated molecular strategies to colonize the appropriate

host niche and adherence is an essential first step to enhance their virulence [39]. Like patho-

gens, commensals have evolved adhesive surface ligands to enhance their fitness, but the out-

come is very different, suggesting that the quality of the adhesive interactions may distinguish

commensals from pathogens (Fig 9). Here, we address this question by comparing P fimbriae,

which are expressed by uropathogenic E. coli strains [49] to type 1 fimbriae, which are

expressed among Gram-negative bacteria, with no apparent disease association. By reconsti-

tuting the pap or fim gene clusters in the non-virulent E. coli strain 83972 and inoculating

human hosts with the fimbriated variants of this strain, we have had the unique opportunity to

study fimbrial function and define molecular effects in human hosts.

We made the unexpected observation that the acquisition of functional P fimbriae made

the ABU strain virulent in two susceptible hosts. This is explained mechanistically by bacterial

reprogramming of host gene expression, including the activation of IRF-7; a transcription fac-

tor that defines tissue pathology in the murine pyelonephritis model [8]. The PapG adhesin is

identified as a transcriptional IRF7 agonist, in the context of IRF-3, IFN-β and MYC. We con-

trast this effect against type 1 fimbriae, which transiently inhibited genes involved in RNA pro-

cessing and activated the expression of ion-channels and neuro-transmitters, with no evidence

of symptoms in the host. Rather than reprogramming host gene expression, type 1 fimbriae

broadly enhanced the inhibitory effects of the non-fimbriated wild type strain, suggesting a

more homeostatic function. This does not exclude, however, a virulence-enhancing effect of

the fimbriae, when expressed in the background of a fully virulent strain [50, 51]. The findings

illustrate the remarkably divergent effects of fimbriae in the infected host.

The rationale for this study was clinical, as protective effects of E. coli 83972 inoculation

have been documented, in placebo-controlled studies [29]. Fimbriae were introduced in an

attempt to increase the fitness of E. coli 83972 for the urinary tract and extend the use of

human inoculation therapy. There was no indication from earlier human studies that P fim-

briae alone would cause a disease-like response in inoculated hosts [49, 52] and unlike fully

virulent strains, E. coli 83972pap did not activate a disease response in the murine UTI model.

UPEC-associated virulence genes are attenuated in E. coli 83972 and even after prolonged car-

riage further attenuation of virulence has been shown to occur, suggesting that the strains

evolve towards commensalism [13]. It is important to emphasize that E. coli 83972pap is sensi-

tive to antibiotics and that antibiotic therapy resulted in rapid resolution of symptoms and

infection, without sequels.

These observations suggest, for the first time, that type 1 fimbriae may have potent inhibi-

tory effects on the post-transcriptional machinery of the host, as E. coli 83972fim inhibited

genes involved in RNA processing and translation. In addition we observed a rapid activation

Fig 5. Functional analysis of the early response to E. coli 83972fim inoculation. A. Volcano plot of gene sets regulated by E. coli
83972fim after 3 hours compared to pre-inoculation samples in P I–P IV (Gene Ontology). Identified gene sets are plotted as the -log (p-

value) against their Normalized Enrichment Score (NES) and functionally annotated (see S2 Table). Most inhibited gene sets were involved

in RNA processing and translation (purple). Activated genes were mainly involved in ion channel (green)- and neuropeptide (red)

regulation as well as immune signaling. B. Top five gene sets identified at the time of maximum response to E. coli 83972fim (3 hours). C.

Top 15 activated gene sets at the time of maximum response to E. coli 83972fim (3 hours).

https://doi.org/10.1371/journal.ppat.1007671.g005
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of K+ channels and solute carriers, as well as neuropeptides and their receptors, providing

novel mechanistic insights into potential homeostatic effects and mechanism to broadly regu-

late cellular functions. Consistent with previous studies, NK cell function and integrin signal-

ing was moderately affected by E. coli 83972fim (Fig 9B). A lack of distinct upstream

transcriptional regulators suggested an entirely different level of control of the host response

compared to P fimbriae, mainly executed at the post-transcriptional level. While type 1 fim-

briae have been shown to increase mucosal inflammation in the murine UTI model and pro-

mote the formation of intracellular communities, type 1 fimbriae alone did not act as virulence

factors in this study, when expressed in the background of a non-virulent strain.

The dual role of P fimbriae as bacterial sensors and transcriptional regulators is fascinating

and challenges the dogma that virulence must rely on a complex set of virulence genes in every

case. The difference between P and type 1 fimbriae further suggests that the repertoire of regu-

lated host genes may distinguish disease-generating adhesins like P fimbriae from adhesive

ligands that are involved in more homeostatic tissue functions. Based on these findings, we

propose that bacteria may suffer from “virulence gene addiction”, in analogy with the “onco-

gene addiction” of cancer cells [53, 54]. While pathogens generally rely on multiple genes to

survive in the host [55] this study suggests that a single, potent virulence determinant may be

sufficient to enhance or attenuate virulence. It follows that a loss of P fimbria would represent

a first step towards virulence attenuation and adaptation to long-term persistence in the uri-

nary tract. This is supported by a high frequency of inactivating papG mutations in ABU iso-

lates [13]. The findings raise the question whether therapeutic efforts should be focused on

“super-virulence” gene attenuation rather than on functions that help the normal flora to

maintain homeostasis in the host.

Materials and methods

Study participants

Five patients with recurrent lower UTI and incomplete bladder emptying were included. The

patients had experienced a minimum of four symptomatic episodes/year prior to enrolment

and conventional treatment, including clean intermittent catheterization (CIC), had been

tried but failed (S1 Table). The patients had anatomically normal urinary tracts as defined by

cystoscopy and CT scanning. Renal function tests were normal. All patients had incomplete

voiding (residual urine between 50–300 ml; if> 100 ml treated with CIC), and had recurrent

UTI. Inoculations were performed during a four-year period (October 2007—June 2011).

Time between inoculations ranged between 4–13 months (median 6 months).

Bacterial strains

E. coli 83972 (OR:K5:H–) [24] is a widely used ABU prototype strain. The genome sequence

was solved in 2010, demonstrating virulence gene attenuation [13]. The fim gene cluster is

Fig 6. E. coli 83972fim and FimH regulate ion channel expression. A. Early activation of potassium channels in patients inoculated with E. coli 83972fim (n = 47).

GSEA, 3-hour samples from P I–P IV. B. Kinetics of ion channel expression in patients inoculated with E. coli 83972fim, showing a rapid Ca2+ and K+ channels

response at 3 hours and a sustained K+ channels response at 24- and 48 hours. C-E. Increased expression of K+ channels (TWIK, TRAAK and KCNJ11 but not

KCNJ2, C) and cation channels (TRPC1 and TRPV6, D and E) in bladder epithelial cells infected with E. coli 83972 or E. coli 83972fim (105 cfu/ml, 4 hours). Confocal

imaging (C,D) and Western blot analysis (E). Scale bars = 20 μm. F. The increase in TRPC1 and TRPV6 expression was effectively blocked by addition of the soluble

FimH antagonist α-D-methyl-mannopyranoside (α-D-man., 2.5%). G,H. Purified FimCH protein (1.25–5 μg/ml, 4 hours) increased TRPC1 expression in a dose

dependent manner. Confocal imaging (G) and Western blot analysis (H). Scale bars = 20 μm. I. Activation of K+, Ca2+ and Zn2+ fluxes by purified FimCH (5 μg/ml)

as determined by fluorescence spectrometry with repeated 20 second-measurements for 16-20 minutes (mean of three experiments). The responses were effectively

blocked by addition of α-D-methyl-mannopyranoside (α-D-man., 2.5%). Mean + s.e.m. of three experiments, 50 cells/experiment. Two-tailed unpaired t-test

compared to PBS. P< 0.05 (�), P< 0.01 (��), P< 0.001 (���).

https://doi.org/10.1371/journal.ppat.1007671.g006
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Fig 7. Neuronal sensing and nervous system development regulated by E. coli 83972fim. A. GSEA analysis identified 22 significantly regulated gene sets, involved

in neuro-transmitter receptor expression and neuropeptide binding (nominal P-value< 0.01). These gene sets were identified compared to the pre-inoculation sample
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dysfunctional due to a deletion of fimB-fimD and the PapG adhesin is inactivated by multiple

point mutations in the papG coding sequence. Fimbrial expression by E. coli 83972 was re-

established by cloning the intact pap and fim gene clusters from E. coli CFT073 (see details in

Supplementary Material and Methods). E. coli 83972 reisolates from urine were identified by

PCR amplification of a DNA fragment covering the deletion in the fim gene cluster and a frag-

ment of the 1,565 bp cryptic plasmid specific for E. coli 83972. Urine samples were stored at

-80˚C. Growth characteristics of the wild type and P- or type 1 fimbriated strains were com-

pared in LB (37˚C) for 8 hours of growth. In regular 30-minute intervals, the optical density at

600 nm wavelength of the bacterial cultures was measured. For in vitro experiments, bacteria

were cultured on tryptic soy agar plates (TSA, 16 h, 37˚C), harvested in phosphate buffered

saline (PBS, pH 7.2) and diluted to appropriate concentration (105 cfu/ml, MOI 0.5–1) for

infection.

Human epithelial cells

The A498 human kidney carcinoma cell line from a female (A498, American Type Culture

Collection #HTB-44) and the 5637 human bladder grade II carcinoma cells (5637, ATCC#

HTB-9) are established models to study UTI pathogenesis [37]. Cells were cultured in RPMI-

1640 supplemented with 1 mM sodium pyruvate, 1 mM non-essential amino acids, and 10%

heat-inactivated fetal bovine serum (FBS) (PAA) at 37˚C, 90% humidity and 5% CO2. For

experiments, epithelial cells were cultured the previous day in six-well plates (4-6x105 cells/

well for Western blots and RNA extraction), or eight-well chamber slides (4-6x104 cells/well

for confocal imaging), (Thermo Fisher Scientific). Cells were washed and exposed to bacteria

in fresh, serum-free supplemented RPMI. Cells were infected with appropriately diluted bacte-

ria in PBS and incubated for 4 hours at 37˚C with 5% CO2. To investigate FimH specificity,

cells were treated with 2.5% α-D-methyl-mannopyranoside for 30 minutes prior to bacterial

infection.

Human therapeutic inoculation

The protocol for therapeutic bladder inoculation with E. coli 83972 has been described [30,

52]. In the present study, the protocol was modified to include only one inoculation, and this

was enough for the patients to establish bacteriuria. Prior to inoculation, patients were treated

with antibiotics to sterilize their urine. E. coli 83972 wild type or the fimbriated derivatives

were cultured overnight (16 h) in lysogeny broth (LB), cells were harvested by centrifugation

(10 min, 4,000 rpm) and re-suspended in PBS to a concentration of 105 cfu/ml. Patients were

inoculated with 30 ml of the solution through a catheter, which was then removed. Each

patient was closely monitored. Blood and urine samples were collected prior to inoculation,

three, 24 and 48 hours and at one, two, four and seven weeks after inoculation. Patients had

access to a direct telephone number to the study physician at all times and were prescribed

antibiotics to be used immediately in case of symptoms and upon instruction by the physician.

After seven weeks the patients received antibiotic treatment, which eradicated bacteriuria in

all cases.

in each patient, as exemplified in P I after 3 hours. NES = normalized enrichment score. B. Significant NES data (P< 0.01) for gene-sets activated at different time

points in patients inoculated with E. coli 83972fim (P I–P IV). Regulated categories included genes involved in neurotransmission, nervous system development and

taste receptors. C. Increased levels of SP (red) and its receptor NK1R (green) in bladder epithelial cells infected with E. coli 83972fim or E. coli 83972 (105 cfu/ml, 4

hours). D. The purified FimCH protein complex (1.25–5 ug/mL) stimulated SP (red) and NK1R (green) responses, as shown by confocal imaging. Mean + s.e.m. of

three experiments, 50 cells/experiment. Two-tailed unpaired t-test compared to PBS. Scale bars = 20 μm. P< 0.05 (�), P< 0.01 (��).

https://doi.org/10.1371/journal.ppat.1007671.g007
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Fig 8. Predicted upstream regulators of transcription. Tentative upstream regulators of the transcriptional response to E. coli 83972pap and E. coli 83972fim were

identified, using the IPA upstream regulator analysis. The -log (p-value) describes the prevalence of regulator-associated genes in data set and a positive z-score

predicts activation while a negative score predicts inhibition. A. Prediction of IRF-7 as a transcriptional regulator of the response to E. coli 83972pap by activated

downstream genes. B. Top predicted transcriptional regulators for the E. coli 83972pap dataset from P V at the time of symptoms red = activated, blue = inhibited). C,

D. Predicted transcriptional regulators for E. coli 83972fim in the dataset from P I, 3 hours (C) or 24 hours (D) after inoculation. E. Prediction of MYC as a

transcriptional regulator of the response to E. coli 83972fim by inhibited downstream genes.

https://doi.org/10.1371/journal.ppat.1007671.g008
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Monitoring of clinical parameters

To examine the effects of fimbriae on the establishment of bacteriuria and on the host

response, intra-individual comparisons were performed. Three patients were first inoculated

with E. coli 83972, subsequently with E. coli 83972fim and finally with E. coli 83972pap (S1

Table). Following inoculation, the establishment of bacteriuria was followed with repeated

urine cultures and the host response was monitored by urine neutrophil counts quantified in

uncentrifuged urine using a hemocytometer chamber. Interleukin-6 (IL-6) and IL-8 concen-

trations were quantified by Immulite (Siemens) in urine and blood. Urine samples obtained

before inoculation and at each subsequent sampling point were diluted in PBS and semi-quan-

titatively cultured on TSA plates overnight (37˚C). Prior to the inoculation the urine was sterile

and neutrophil numbers, IL-6 and IL-8 concentrations were below reference values for

infection.

Fimbrial gene expression in vivo by qRT-PCR

Bacteria were harvested from urine samples immediately after delivery of urine samples by the

patients, briefly centrifuged and resuspended immediately in RNAprotect Bacteria (Qiagen).

Total RNA was extracted using the RNeasy mini kit (Qiagen) and reversely transcribed (Super-

Script III, Invitrogen) in a two-step process with random hexamer primer. Prior to qPCR, the

optimal annealing temperature and primer efficiency were determined. The fimA and papA
transcripts were amplified using primers listed in S3 Table. Gene expression was quantified

relative to frr (ribosome-recycling factor). For details, see Supplementary methods.

Fimbrial function

The expression of P or type 1 fimbriae was quantified by hemagglutination. Briefly, erythro-

cytes were harvested from heparinized human A1P1 blood, resuspended in PBS or 2.5% α-D-

methyl-mannopyranoside in PBS and mixed with bacteria on microscopy slides. Agglutination

was recorded as +++, ++, + or -. Bacterial adherence to the A498 kidney epithelial cell line was

assessed as previously described[9] and evaluated by differential interference contrast (DIC)

microscopy (Carl Zeiss). For details, see Supplementary methods.

Whole genome transcriptomic analysis

RNA was extracted from 1 ml of heparinized peripheral whole blood collected from the partic-

ipants before inoculation and at seven time points after inoculation (3, 24 and 48 hours, and

Fig 9. Bacterial adhesins, cell surface receptors and signaling pathways. A. Innate immune recognition of P-fimbriated E. coli. The PapG adhesin

binds Galα1-4Galβ-oligosaccharide motifs in glycosphingolipid receptors. Release of ceramide, the membrane anchor of the glycolipids, activates TLR4

signaling [37, 61, 62], and phosphorylation of the TLR4 adaptor proteins TRAM (TIR domain-containing adapter molecule 2 or TICAM2) and TRIF

(TIR domain-containing adapter molecule 1 or TICAM1) activates downstream signaling, involving the phosphorylation of mitogen-activated protein

(MAP) kinases, phospholipase C, p38, activating JNK (c-JunN-terminal kinases), CREB (cyclic AMP response element-binding) and FOS-JUN (AP1),

leading to IRF3- and IRF-7-dependent and AP-1 dependent transcription of cytokine- and chemokine genes, as well as type I interferons (IFN)

including IFN-β [7]. Activation results in inflammatory cell recruitment and symptoms depend on the genetic make up of the host. In this study, PapG

is defined as an agonist of IRF-7, in hosts and cells inoculated with E. coli 83972pap. B. Type 1 fimbriae recognize several mannosylated host cell

glycoconjugate receptors. The FimH adhesin binds to uroplakins [63], to integrins throughN-oligosaccharides [64], to the Tamm-Horsfall protein (or

uromodulin) [65] and to immunoglobulins [66] as well as CD48 on mucosal mast cells [67]. Downstream, type 1 fimbriae have been proposed to

stimulate the innate immune response, trigger apoptosis, and stimulate mast cell degranulation as well as promoting actin rearrangement in bladder

epithelial cells [2, 68, 69]. In this study, FimH is defined as a broad, mostly inhibitory regulator of RNA processing and translation and inducer of ion

channel- and solute carrier expression as well as neurokinin ligand-receptor networks. C. ABU strains like E. coli 83972 have developed successful

adaptation strategies, which include the deletion or inactivation of virulence genes, leading to a reduction in genome size [33]. In addition, we have

shown that ABU strains actively create a calm, non-reactive environment in the host by inhibiting gene expression. An intriguing mechanism is the

suppression of by RNA polymerase II (Pol II) phosphorylation, which results in a protected phenotype [23].

https://doi.org/10.1371/journal.ppat.1007671.g009
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one, two, four and seven weeks). After purification with the QIAamp RNA Blood Mini Kit

(Qiagen), 100 ng of RNA was amplified using GeneChip 3´IVT Express Kit, after fragmenta-

tion and labeling, aRNA was hybridized onto Human Genome U219 arrays (all Affymetrix)

for 16 hours at 45˚C, either by Aros Applied Biotechnology or in-house using the GeneAtlas

system (Affymetrix). Transcriptomic data was normalized using Robust Multi Average (RMA)

implemented in the Partek Express software. Fold change was calculated by comparing each

sample to the pre-inoculation samples in each individual. Genes with absolute fold change

>2.0 were considered differentially expressed. Heat-maps were constructed using the Gitools

software. Differentially expressed genes and regulated pathways were analyzed using the Gene

Set Enrichment Analysis (GSEA, Broad Institute) and the Ingenuity Pathway Analysis (IPA,

Qiagen Bioinformatics) softwares. Fimbriae-specific effects on transcription were distin-

guished by comparing the response to E. coli 83972 inoculation at each time point and in each

patient.

Bacterial protein purification

PapDGII complexes [56] and PapGII truncated [57] were purified as previously described

[41]. The PapDG protein complex was dissolved at 0.35 mg/ml in 20 mM Tris pH8.0, 100 mM

NaCl. The PapGII truncate was dissolved at 0.5 mg/ml in PBS. FimCH complexes were puri-

fied as previously described [41, 58] and eluted in 65 mM NaCl. For details, see Supplemen-

tary methods.

Polyclonal antibody pre-absorption

Polyclonal rabbit anti-PapGII antibody was made from native PapGII truncated protein at

Sigma Biogenysis using standard protocol (Rabbit #127). An overnight culture of E. coli 83972

complemented with the plasmid pDD3 containing all pap genes from UPEC J96 except papG
[31] was resuspended in PBS. 2 ml of the bacterial cells was lysed using an ultrasound sonicator

(30 min at 4˚C). After centrifugation, the pellet was resuspended in PBS and mixed with 1:100

of anti-PapG serum. The lysate-antibody mix was incubated for 2 h at room temperature and

centrifuged. The resulting supernatant was used for experiments.

Western blotting

After infection, cells were lysed with NP-40 lysis buffer, supplemented with protease and phos-

phatase inhibitors (both from Roche Diagnostics). Total cellular proteins were run on SDS–

polyacrylamide gel electrophoresis (4 to 12% bis-tris gels; Invitrogen), blotted onto poly-vinyli-

dene difluoride membranes (GE Healthcare), blocked with 5% non-fat dry milk (NFDM), and

incubated with rabbit anti–IRF-7 (1:300, ab62505, Abcam, Cambridge, United Kingdom) rab-

bit anti-TRPC1 (1:500, #ACC-010, Alomone Labs) and rabbit anti-TRPV6 (1:500, #orb158655,

Biorbyt) antibodies. The blots were washed with PBS Tween 0.1% (PBST) and incubated with

HRP-linked secondary antibodies in 5% NFDM (1:4,000, goat anti-rabbit- horseradish peroxi-

dase (HRP), #7074, Cell Signaling). The anti-β-actin (1:4,000 in 5% NFDM, #A1978, Sigma-

Aldrich) followed by rabbit anti-mouse Immunoglobulins HRP-linked (1:4,000 in 5% NFDM,

P0260, Dako) was used as loading control. The blots were washed with PBST and developed

with ECL Plus detection reagent (GE Healthcare). Blots were imaged using the Bio-Rad Che-

miDoc System (Bio-Rad) and quantification of densitometry of bands was done using the Ima-

geJ software (NIH).
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Confocal microscopy

After infection, cells were fixed for 15 min with 3.7% formaldehyde, permeabilized with Triton

X-100 (0.25% in 5% FBS/PBS) for 10 minutes and blocked with 5% FBS/PBS for 1 hour at

room temperature. Primary rabbit antibodies: anti–IRF-7 antibody (1:200, ab62505, Abcam),

anti-PapG pre-absorbed serum (1:1,000), anti-TWIK-1 (1:50 sc-28630, Santa Cruz biotechnol-

ogies), anti-TRAAK (1:50, sc-50413, Santa Cruz biotechnologies), anti-KCNJ2 (1:100, 3305–1,

Epitomics), anti-KCNJ11 (1:100 APC-202, Alomone Labs), anti-TRPC1 (1:100, ACC-010, Alo-

mone Labs), anti-TRPV6 (1:250 orb158655, Biorbyt) and secondary goat anti-rabbit Alexa

Fluor 488–conjugated antibody (1:200, A-11034, Thermo Fisher Scientific) were used. Nuclei

were stained with DRAQ-5 (ab108410, Abcam). Slides were mounted using Fluoromount and

examined in a LSM 510 META laser-scanning confocal microscope (Carl Zeiss). Fluorescence

was quantified using the ImageJ software.

Host gene expression in vitro by qRT-PCR

Total RNA was extracted from cells using the RNeasy Mini Kit (Qiagen). Complementary

DNA was reverse-transcribed using SuperScript III Reverse Transcriptase (Invitrogen) and

oligo(dT)20 primers (Invitrogen). Transcripts were quantified using primer pairs against IRF7,

IRF3, OAS1, IFIT3, MYC, IFNB1 and IFNA1 (all QuantiTect Primer Assay, Qiagen). Samples

were run in technical and biological duplicates and GAPDH was used as housekeeping gene.

For details, see Supplementary methods.

Electrophoretic mobility shift assay

IRF7 promoter fragment [8] was amplified from human genomic DNA (for primers see S3

Table) and used as probe. Each reaction contained 3–5 μL of DNA probe and 2–5 μg of cell

extract from E. coli 83972pap infected or uninfected A498 cells in binding buffer. For the band

shift/competition assay, 1–2 μg of anti–IRF-3, anti–MYC, anti-IFNβ, anti-PapGII or IgG2A

control were used. Binding reactions were incubated at 15˚C for 30 min and loaded onto a 6%

nondenaturing, nonreducing polyacrylamide gel. Alternatively, samples were loaded on a 2%

agarose gel. Gels were imaged using the Bio-Rad ChemiDoc System. For details, see Supple-

mentary methods.

Cellular ion flux assays

Intracellular calcium was measured by Fluo4 NW (Molecular Probes), intracellular potassium

was measured by FluxOR (Molecular Probes) according to manufacturer’s instructions in

human bladder epithelial cells grown in 96-well plates (60,000 cells/well) after exposure to

FimCH (5 μg). Extracellular Zn2+ was measured by FluoZin-3 (Thermo Fischer Scientific) by

addition of 1 μg/ml of indicator salt for 60 minutes prior to FimCH treatment. Fluorescent

intensity was measured by Infinite F200 (Tecan) microplate reader at 20 seconds intervals for

indicated times.

Statistical analysis

Data was examined in Prism version 6.02 (GraphPad). Normalized cytokine concentrations

were compared using two-way ANOVA and Sidak’s multiple comparisons tests. Changes in

pathway gene expression (fold change) after inoculation were compared intra-individually

using paired t-test (two tailed p values). Staining quantifications was analyzed using unpaired

t-test (two tailed p-values) and qRT-PCR data using multiple unpaired two-tailed Student’s t-
test for homoscedastic variances. Results are presented as mean + s.e.m. and are representative
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of at least two independent experiments. Significance was accepted at P< 0.05 (�), P< 0.01

(��) or P< 0.001 (���). The analysis was not blinded to condition.

Ethics statement

The study was approved by the Human Ethics Committee of the Medical Faculty, Lund Uni-

versity, Sweden (Dnr 298/2006; 463/2010) and informed consent forms were signed by all

patients.

Supporting information

S1 Fig. Phenotyping of E. coli 83972fim and E. coli 83972pap. A. Functional type 1- or P fim-

briae are expressed by E. coli 83972fim and E. coli 83972pap but not E. coli 83972. E. coli
83972fim agglutinated Guinea pig erythrocytes. E. coli 83972pap agglutinated human A1P1

erythrocytes. B. Adherence of E. coli 83972pap and E. coli 83972fim to human kidney epithelial

cells (A498), in vitro. Light microscopy imaging, Zeiss, x100 magnification. C. The agglutina-

tion by E. coli 83972fim to human A1P1 erythrocytes was α-D-methyl-mannopyranoside (α-D-

man., 2.5%) reversible. Hemagglutination of human A1P1 erythrocytes by E. coli 83972pap was

insensitive to mannose. E. coli 83972 was hemagglutination negative in the presence or absence

of α-D-methyl-mannopyranoside. D. In vitro growth rates of E. coli 83972, 83972fim and

83972pap strains. No difference was detected.

(TIF)

S2 Fig. Overview of patient variables. Individual patients were inoculated on different occa-

sions with E. coli 83972, E. coli 83972pap (A) or E. coli 83972fim (B, for details on patient char-

acteristics see S1 Table). PBLs and urine samples were collected prior to inoculation and after

3, 24, 48 hours, 1, 2 and 4 weeks. Bacterial numbers (cfu/ml), PMNs (x 104/ml), IL-8 (ng/l), IL-

6 (ng/l) were quantified in urine at each sampling point. Fimbrial expression by reisolates was

quantified by hemagglutination as +++, ++, + or–. Grey arrow = time of inoculation, red open

arrow = minor symptoms, red filled arrow = symptoms requiring antibiotic treatment,

psi = post symptomatic episode.

(PDF)

S3 Fig. PapA and fimA expression in inoculated patients. A. Maps of pap and fim gene clus-

ters defining the primers used to quantify papA or fimA. The fimA transcript was amplified

using: forward primer (5’-taggacaggttcgtaccgcatcg-3’) and reverse primer (5’-tgtccaggatctgca-

caccaacg-3’). For the quantification of the papA transcript, forward primer (5’-tgaaacgcagtctg-

caagacag-3’) and reverse primer (5’-cgccaactgtttgcagcatatc-3’) were used. B. Kinetics of papA
fimbrial expression after human inoculation with E. coli 83972. Bacterial RNA was isolated

directly from urine of each patient at the indicated time points and papA expression was quan-

tified by qRT-PCR. Changes in gene expression were defined relative to frr (ribosome-recy-

cling factor) expression. Value for 0h correspond to relative expression after in vitro growth.

(TIF)

S4 Fig. Reprogramming of host gene expression by E. coli 83972pap. A. Rapid activation of

gene expression, after inoculation with E. coli 83972pap (P V, 3 hours, 61% of regulated genes).

A “mega-network” was generated by merging the five top-scoring expression networks

detected by IPA. Major interaction nodes included MYC, NF-κB, MAPKs, IL-8 and histones.

B. Heatmap illustrating the extent of expression reprogramming by E. coli 83972pap, com-

pared to E. coli 83972 (P V, 3 hours post inoculation with either strain) and to E. coli 83972fim
(P I, 3 hours post inoculation). C. Network of genes regulated 3 hours post inoculation with E.

coli 83972. Significantly regulated genes were all down regulated. D. Heat map comparing the
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regulation of genes in the network at all time points tin all patients inoculated with E. coli
83972pap. Red = FC� 2.0 and blue = FC� -2.0.

(TIF)

S5 Fig. P fimbriae reprogram host gene expression; E. coli 83972pap compared to E. coli
83972. Gene expression in P V, who developed symptoms in response to E. coli 83972pap after

17 days. Peripheral blood leukocytes (PBLs) were harvested before and at defined time points

post inoculation. Changes in gene expression in P V after inoculation with E. coli 83972pap or

E. coli 83972 strains. Heat maps show the patterns of upregulated (red) or downregulated

(blue) genes at each time point, compared to the pre-inoculation sample in each patient (cut

off FC� 2.0). The corresponding Venn diagrams show the number of activated or suppressed

genes in each sample and the number of genes overlapping between fimbriated strains and the

wild type. Inversely regulated genes are in yellow circles. Arrows connect time-points and indi-

cate the number of genes that remain regulated in the same patient. Black = E. coli 83972, Red

= E. coli 83972pap.

(TIF)

S6 Fig. Kinetics of gene expression in all patients after inoculation. A-E. Kinetics of gene

regulation in five patients inoculated with E. coli 83972, E. coli 83972pap or E. coli 83972fim.

Total RNA from peripheral blood leukocytes (PBLs) was used for whole genome transcrip-

tomic analysis. Genes with an absolute Fold Change > 2.0 compared to the preinoculation

sample in each patient were analyzed. Changes in gene expression in response to E. coli
83972pap or E. coli 83972fim, compared to E. coli 83972 are shown in heatmaps from each

time point The corresponding numbers of activated and suppressed genes are shown in the

circles. The arrows indicate the number of genes regulated throughout different time points.

(PDF)

S7 Fig. Gene Set Enrichment Analysis, enrichment of regulated genes 36 hours post symp-

tomatic episode after inoculation with E. coli 83972pap in P V. Immune response to E. coli
83972pap during the symptomatic episode in P V. GSEA analysis of cellular functions modi-

fied by P fimbriae expression. Significantly regulated gene sets are listed (NES = normalized

enrichment score, p-values describe strength of enrichment compared to the pre-inoculation

sample). Selected gene sets included adaptive immune genes and response to viral infection as

well as antigen presentation and complement activation.

(TIF)

S8 Fig. Regulation of interferon and pattern recognition pathways by E. coli 83972pap.

Transcriptomic analysis of the response following E. coli 83972pap inoculation. A. Heatmaps

of IFN pathway genes in P V, P II, P III and P IV, following E. coli 83972pap inoculation (red:

� 1.41 FC, blue:� -1.41 FC). B. Regulation of the interferon signaling pathway, comparing

the pathway p-value of each sample. C. Heatmaps of pattern recognition receptor pathway

genes in P V, P II, P III and P IV (red� 1.41 FC, blue� -1.41 FC). D. Regulation of the pattern

recognition receptor pathway, comparing the pathway p-value of each sample.

(TIF)

S9 Fig. Regulation of the pathogen-specific signaling in P V at the time of symptoms. Regu-

lation by E. coli 83972pap of genes in upstream and downstream of IRF-7 in P V, at the time

of symptoms. Indicated genes were involved in TLR4 signaling, upstream of IRF7 and type 1

IFN responses, downstream of IRF3/IRF7. Color intensity reflects the fold change. of Red =

activated; Blue = inhibited.

(TIF)
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S10 Fig. Similar response to E. coli 83972pap and an acute pyelonephritis strain CFT073.

Gene expression in CFT073-infected human kidney epithelial cells (A498, microarray data

GEO: GSE43790) was compared to the symptomatic episode in PV. A. Heatmap of signifi-

cantly regulated genes in the two data sets. 115 genes were commonly regulated between PV at

the time of symptoms and in vitro CFT073 (FC<2.0). In addition, 882 genes were specifically

regulated in response to E. coli 83972pap and 768 genes were regulated in response to

CFT073. B. The shared genes between the two data sets were used to construct the gene net-

work shown connecting 89 genes. Gene network analysis revealed genes in the IRF7-depen-

dent network, immune response and cytokine genes as well as type I interferon pathway genes.

The most strongly regulated genes included IRF7, transcriptional regulators (IRF1, RELB,

JUN, ATF3), cytokines/chemokines (IL6, CXCL8, TNF, IL1B, CCL5, CXCL1, IL24 and IL15),

acute phase response mediators (CRP), interferon-induced genes (IFIH1, IFIT5, IFI44L,

ISG20, IFIT2, IFIT3) and cell migration and adhesion genes. The results suggest that the tran-

scriptional reprogramming in E. coli 83972pap creates a transcriptional response that resem-

bles the one in epithelial cells infected with fully virulent strains.

(TIF)

S11 Fig. Internalization of PapG protein and Electrophoretic Mobility Shift Assay of IRF7
promoter. A. PapG internalization after stimulation of cells with purified PapG and PapDG

proteins (5 or 25 μg/ml). B. quantification of PapGII staining represented in A. Mean ± s.e.m.

of at least two experiments. One-way ANOVA with Tukey’s correction compared to PBS.

P< 0.05 (�). C. Electrophoretic Mobility Shift Assay (EMSA), using an amplified IRF7 pro-

moter fragment (1563bp, -1308 to +255) mixed with nuclear proteins extract from uninfected

cells and resolved by agarose gel electrophoresis. DNA-protein complex was detected as a sin-

gle band shift in the gel.

(TIF)

S12 Fig. Pathways regulated by E. coli 83972fim. A. Canonical pathway analysis at the time

of maximum response in P I with E. coli 83972fim (3 hours). B. The natural killer- (NK-) cell

signaling was inhibited. C. Heatmaps of regulated NK-cell pathway genes following E. coli
83972fim inoculation in all patients. D. Statistical analysis of NK cell pathway genes, compar-

ing patients carrying E. coli 83972fim to E. coli 83972 or E. coli 83972pap. E. The Integrin sig-

naling pathway was moderately activated. F. Heatmap of Integrin signaling genes, showing

similar expression patterns in the two high responders (P I and P IV). G. Statistical analysis,

comparing patients carrying E. coli 83972fim to E. coli 83972 or E. coli 83972pap. Paired t-test

for each patient and time point, two-tailed values. Red:� 1.41 FC, Blue:� -1.41 FC.

(TIF)

S13 Fig. Inhibition of host gene expression by E. coli 83972fim. A. Rapid inhibition of host

gene expression after inoculation with E. coli 83972fim in P I after 3 hours (61% of regulated

genes). B. Heat map comparing the 3 hours response to E. coli 83972fim in P I to E. coli 83972

from 3h to 1w. Inhibited genes were shared, with more rapid kinetics for E. coli 83972fim than

E. coli 83972. In addition, a set of genes was specific for E. coli 83972fim. C. Biological pro-

cesses regulated by genes in the E. coli 83972fim “mega network”. Top regulated functions

included RNA processing, RNA translation and immune related functions. D. Inhibitory pro-

file especially in P I and P IV, which lasted for at least 48 hours but was lost thereafter.

Red = FC� 2.0 and blue = FC� -2.0.

(TIF)

S14 Fig. Host gene expression response to E. coli 83972 or E. coli 83972pap inoculations. A.

Rapid inhibition of gene expression, after inoculation with E. coli 83972 (P I, 3 hours). A
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“mega-network” was generated by merging the five top-scoring expression networks detected

by IPA. B. Heatmap illustrating the differential effect of E. coli 83972fim and E. coli 83972pap
on host gene expression. The regulation of genes in the P I, 3 hours, E. coli 83972fim network

is shown (see Fig 6A). Red = FC� 2.0 and blue = FC� -2.0.

(TIF)

S15 Fig. Gene Ontology Gene Set Enrichment Analysis (GSEA) of all patients and time

points. Gene Set Enrichment Analysis was performed by analyzing gene expression compared

to pre-inoculation samples of all patients and after inoculation with E. coli 83972 (A-D), E. coli
83972fim (E-H) or E. coli 83972pap (I-L). Enrichment plots of the 12 most strongly regulated

gene sets are shown. Gene sets with False Discovery Rate <25% are considered significantly

enriched.

(PDF)

S1 Table. Patient characteristics and inoculation schedule.

(PDF)

S2 Table. Top 20 up- and down-regulated Gene ontology gene sets regulated by E. coli
83972fim after 3 hours.

(PDF)

S3 Table. Primers used in the study.

(PDF)
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uria Escherichia coli Isolates in Search of Alternative Strains for Efficient Bacterial Interference against

Uropathogens. Frontiers in Microbiology. 2018; 9(214).

41. Slonim LN, Pinkner JS, Branden CI, Hultgren SJ. Interactive surface in the PapD chaperone cleft is con-

served in pilus chaperone superfamily and essential in subunit recognition and assembly. EMBO J.

1992; 11(13): 4747–4756. PMID: 1361168

Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 28 / 30

http://www.ncbi.nlm.nih.gov/pubmed/8993361
https://doi.org/10.1172/JCI66451
https://doi.org/10.1172/JCI66451
http://www.ncbi.nlm.nih.gov/pubmed/23728172
http://www.ncbi.nlm.nih.gov/pubmed/1155060
http://www.ncbi.nlm.nih.gov/pubmed/2497823
http://www.ncbi.nlm.nih.gov/pubmed/8357110
http://www.ncbi.nlm.nih.gov/pubmed/9598517
https://doi.org/10.1016/j.juro.2010.03.024
http://www.ncbi.nlm.nih.gov/pubmed/20483149
https://doi.org/10.1128/IAI.74.1.781-785.2006
http://www.ncbi.nlm.nih.gov/pubmed/16369040
https://doi.org/10.1111/j.1462-5822.2007.00912.x
https://doi.org/10.1111/j.1462-5822.2007.00912.x
http://www.ncbi.nlm.nih.gov/pubmed/17359236
https://doi.org/10.1128/IAI.01215-07
https://doi.org/10.1128/IAI.01215-07
http://www.ncbi.nlm.nih.gov/pubmed/18039831
http://www.ncbi.nlm.nih.gov/pubmed/12135844
http://www.ncbi.nlm.nih.gov/pubmed/7048106
http://www.ncbi.nlm.nih.gov/pubmed/2863734
http://www.ncbi.nlm.nih.gov/pubmed/8642245
https://doi.org/10.1371/journal.pone.0003724
https://doi.org/10.1371/journal.pone.0003724
http://www.ncbi.nlm.nih.gov/pubmed/19009020
https://doi.org/10.1002/eji.200535149
http://www.ncbi.nlm.nih.gov/pubmed/16385628
http://www.ncbi.nlm.nih.gov/pubmed/1361168
https://doi.org/10.1371/journal.ppat.1007671


42. Kim TW, Hong S, Lin Y, Murat E, Joo H, Kim T, et al. Transcriptional Repression of IFN Regulatory Fac-

tor 7 by MYC Is Critical for Type I IFN Production in Human Plasmacytoid Dendritic Cells. J Immunol.

2016; 197(8): 3348–3359. https://doi.org/10.4049/jimmunol.1502385 PMID: 27630164

43. Wathelet MG, Lin CH, Parekh BS, Ronco LV, Howley PM, Maniatis T. Virus infection induces the

assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell.

1998; 1(4): 507–518. PMID: 9660935

44. Brinton CC Jr. The structure, function, synthesis and genetic control of bacterial pili and a molecular

model for DNA and RNA transport in gram negative bacteria. Trans N Y Acad Sci. 1965; 27(8): 1003–

1054. PMID: 5318403

45. Mossman KL, Mian MF, Lauzon NM, Gyles CL, Lichty B, Mackenzie R, et al. Cutting edge: FimH adhe-

sin of type 1 fimbriae is a novel TLR4 ligand. J Immunol. 2008; 181(10): 6702–6706. PMID: 18981086

46. Mian MF, Lauzon NM, Andrews DW, Lichty BD, Ashkar AA. FimH can directly activate human and

murine natural killer cells via TLR4. Mol Ther. 2010; 18(7): 1379–1388. https://doi.org/10.1038/mt.2010.

75 PMID: 20442710

47. Habibi M, Asadi Karam MR, Bouzari S. In silico design of fusion protein of FimH from uropathogenic

Escherichia coli and MrpH from Proteus mirabilis against urinary tract infections. Adv Biomed Res.

2015; 4: 217. https://doi.org/10.4103/2277-9175.166164 PMID: 26605246

48. Butler DSC, Ambite I, Nagy K, Cafaro C, Ahmed A, Nadeem A, et al. Neuroepithelial control of mucosal

inflammation in acute cystitis. Sci Rep. 2018; 8(1): 11015. https://doi.org/10.1038/s41598-018-28634-0

PMID: 30030504

49. Wullt B, Bergsten G, Connell H, Rollano P, Gebretsadik N, Hull R, et al. P fimbriae enhance the early

establishment of Escherichia coli in the human urinary tract. Mol Microbiol. 2000; 38(3): 456–464.

PMID: 11069670

50. Connell H, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. Type 1 fimbrial expression

enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A. 1996; 93(18): 9827–

9832. PMID: 8790416

51. Schwartz DJ, Kalas V, Pinkner JS, Chen SL, Spaulding CN, Dodson KW, et al. Positively selected

FimH residues enhance virulence during urinary tract infection by altering FimH conformation. Proc Natl

Acad Sci U S A. 2013; 110(39): 15530–15537. https://doi.org/10.1073/pnas.1315203110 PMID:

24003161

52. Bergsten G, Samuelsson M, Wullt B, Leijonhufvud I, Fischer H, Svanborg C. PapG-dependent adher-

ence breaks mucosal inertia and triggers the innate host response. J Infect Dis. 2004; 189(9): 1734–

1742. https://doi.org/10.1086/383278 PMID: 15116313

53. Weinstein IB. Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science. 2002; 297(5578):

63–64. https://doi.org/10.1126/science.1073096 PMID: 12098689

54. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000; 100(1): 57–70. PMID: 10647931

55. Schreiber HLt, Conover MS, Chou WC, Hibbing ME, Manson AL, Dodson KW, et al. Bacterial virulence

phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections. Sci

Transl Med. 2017; 9(382).

56. Volkan E, Ford BA, Pinkner JS, Dodson KW, Henderson NS, Thanassi DG, et al. Domain activities of

PapC usher reveal the mechanism of action of an Escherichia coli molecular machine. Proc Natl Acad

Sci U S A. 2012; 109(24): 9563–9568. https://doi.org/10.1073/pnas.1207085109 PMID: 22645361

57. Dodson KW, Pinkner JS, Rose T, Magnusson G, Hultgren SJ, Waksman G. Structural basis of the inter-

action of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell. 2001; 105(6): 733–743.

PMID: 11440716

58. Jones CH, Pinkner JS, Nicholes AV, Slonim LN, Abraham SN, Hultgren SJ. FimC is a periplasmic

PapD-like chaperone that directs assembly of type 1 pili in bacteria. Proc Natl Acad Sci U S A. 1993; 90

(18): 8397–8401. PMID: 8104335

59. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using

PCR products. Proc Natl Acad Sci U S A. 2000; 97(12): 6640–6645. https://doi.org/10.1073/pnas.

120163297 PMID: 10829079

60. Cherepanov PP, Wackernagel W. Gene disruption in Escherichia coli: TcR and KmR cassettes with the

option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene. 1995; 158(1): 9–14.

PMID: 7789817

61. Hedlund M, Nilsson Å, Duan RD, Svanborg C. Sphingomyelin, glycosphingolipids and ceramide signal-

ling in cells exposed to P fimbriated Escherichia coli. Mol Microbiol. 1998; 29: 1297–1306. PMID:

9767596

62. Fischer H, Ellstrom P, Ekstrom K, Gustafsson L, Gustafsson M, Svanborg C. Ceramide as a TLR4 ago-

nist; a putative signalling intermediate between sphingolipid receptors for microbial ligands and TLR4.

Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 29 / 30

https://doi.org/10.4049/jimmunol.1502385
http://www.ncbi.nlm.nih.gov/pubmed/27630164
http://www.ncbi.nlm.nih.gov/pubmed/9660935
http://www.ncbi.nlm.nih.gov/pubmed/5318403
http://www.ncbi.nlm.nih.gov/pubmed/18981086
https://doi.org/10.1038/mt.2010.75
https://doi.org/10.1038/mt.2010.75
http://www.ncbi.nlm.nih.gov/pubmed/20442710
https://doi.org/10.4103/2277-9175.166164
http://www.ncbi.nlm.nih.gov/pubmed/26605246
https://doi.org/10.1038/s41598-018-28634-0
http://www.ncbi.nlm.nih.gov/pubmed/30030504
http://www.ncbi.nlm.nih.gov/pubmed/11069670
http://www.ncbi.nlm.nih.gov/pubmed/8790416
https://doi.org/10.1073/pnas.1315203110
http://www.ncbi.nlm.nih.gov/pubmed/24003161
https://doi.org/10.1086/383278
http://www.ncbi.nlm.nih.gov/pubmed/15116313
https://doi.org/10.1126/science.1073096
http://www.ncbi.nlm.nih.gov/pubmed/12098689
http://www.ncbi.nlm.nih.gov/pubmed/10647931
https://doi.org/10.1073/pnas.1207085109
http://www.ncbi.nlm.nih.gov/pubmed/22645361
http://www.ncbi.nlm.nih.gov/pubmed/11440716
http://www.ncbi.nlm.nih.gov/pubmed/8104335
https://doi.org/10.1073/pnas.120163297
https://doi.org/10.1073/pnas.120163297
http://www.ncbi.nlm.nih.gov/pubmed/10829079
http://www.ncbi.nlm.nih.gov/pubmed/7789817
http://www.ncbi.nlm.nih.gov/pubmed/9767596
https://doi.org/10.1371/journal.ppat.1007671


Cell Microbiol. 2007; 9(5): 1239–1251. https://doi.org/10.1111/j.1462-5822.2006.00867.x PMID:

17223929

63. Xie B, Zhou G, Chan SY, Shapiro E, Kong XP, Wu XR, et al. Distinct glycan structures of uroplakins Ia

and Ib: structural basis for the selective binding of FimH adhesin to uroplakin Ia. The journal of biological

chemistry. 2006; 281(21): 14644–14653. https://doi.org/10.1074/jbc.M600877200 PMID: 16567801

64. Eto DS, Jones TA, Sundsbak JL, Mulvey MA. Integrin-mediated host cell invasion by type 1-piliated uro-

pathogenic Escherichia coli. PLoS pathogens. 2007; 3(7): e100. https://doi.org/10.1371/journal.ppat.

0030100 PMID: 17630833

65. Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia

coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. The journal of biological chemis-

try. 2001; 276(13): 9924–9930. https://doi.org/10.1074/jbc.M008610200 PMID: 11134021

66. Wold A, Mestecky J, Tomana M, Kobata A, Ohbayashi H, Endo T, et al. Secretory immunoglobulin-A

carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect Immun. 1990; 58(9):

3073–3077. PMID: 2201644

67. Malaviya R, Gao Z, Thankavel K, van der Merwe PA, Abraham SN. The mast cell tumor necrosis factor

alpha response to FimH-expressing Escherichia coli is mediated by the glycosylphosphatidylinositol-

anchored molecule CD48. Proc Natl Acad Sci U S A. 1999; 96(14): 8110–8115. PMID: 10393956

68. Malaviya R, Ross E, Jakschik BA, Abraham SN. Mast cell degranulation induced by type 1 fimbriated

Escherichia coli in mice. J Clin Invest. 1994; 93(4): 1645–1653. https://doi.org/10.1172/JCI117146

PMID: 7512987

69. Martinez JJ, Mulvey MA, Schilling JD, Pinkner JS, Hultgren SJ. Type 1 pilus-mediated bacterial invasion

of bladder epithelial cells. The EMBO journal. 2000; 19(12): 2803–2812. https://doi.org/10.1093/emboj/

19.12.2803 PMID: 10856226

Fimbriae reprogram host gene expression – Divergent effects of P and type 1 fimbriae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007671 June 10, 2019 30 / 30

https://doi.org/10.1111/j.1462-5822.2006.00867.x
http://www.ncbi.nlm.nih.gov/pubmed/17223929
https://doi.org/10.1074/jbc.M600877200
http://www.ncbi.nlm.nih.gov/pubmed/16567801
https://doi.org/10.1371/journal.ppat.0030100
https://doi.org/10.1371/journal.ppat.0030100
http://www.ncbi.nlm.nih.gov/pubmed/17630833
https://doi.org/10.1074/jbc.M008610200
http://www.ncbi.nlm.nih.gov/pubmed/11134021
http://www.ncbi.nlm.nih.gov/pubmed/2201644
http://www.ncbi.nlm.nih.gov/pubmed/10393956
https://doi.org/10.1172/JCI117146
http://www.ncbi.nlm.nih.gov/pubmed/7512987
https://doi.org/10.1093/emboj/19.12.2803
https://doi.org/10.1093/emboj/19.12.2803
http://www.ncbi.nlm.nih.gov/pubmed/10856226
https://doi.org/10.1371/journal.ppat.1007671

