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One central hypothesis of molecular biology is that a protein sequence can be deduced from

the DNA sequence. However, diverse processes at the DNA, mRNA, and even protein level

can lead to protein sequences that differ from the deduced sequence. One such process is co-

or post-transcriptional RNA editing. RNA editing is found in all domains of life and in diverse

RNA species from bacteria and archaea as well as plastids, mitochondria, and nuclei of eukary-

otes [1,2,3,4]. This review will give an overview of different types of mRNA editing and then

focus on fungal mRNA editing, which was described only recently.

Q1: What is mRNA editing?

mRNA editing is the occurrence of base substitutions and short insertions or deletions (indels)

in an mRNA that could alternatively be directly encoded by the genomic DNA [2]. Typical

mRNA editing events are uridine (U) indels as well as cytosine (C)-to-U deamination, reverse

U-to-C editing, and adenosine (A) to inosine (I) deamination (Fig 1). Effectively, A-to-I edit-

ing generates A-to-guanosine (G) substitutions in coding RNA, because the ribosome inter-

prets I as G during translation.

Many land plant lineages show extensive C-to-U editing and sometimes U-to-C editing in

mitochondrial and plastid mRNA, a process that seems to be independent of transcription

[5,6,7]. Similar editing events as well as mechanistically distinct U indels and C insertions

occur in mitochondria of some metazoan species, trypanosomes, and myxomycetes, among

others [2,8]. A-to-I editing of nuclear protein-coding transcripts has been described for some

metazoa and filamentous fungi [2,9]. Editing of organellar and nuclear mRNA have opposing

effects on proteins. In general, editing of organellar transcripts is restorative, whereas editing

of nuclear transcripts leads to proteome diversification [8,10; Fig 1]. The following sections

will focus on A-to-I editing of nuclear mRNA.

Q2: Is mRNA editing common in fungi?

The occurrence of mRNA editing in fungi was revealed only recently for the basidiomycetes

Ganoderma lucidum and Pleurotus ostreatus as well as for the filamentous ascomycetes F. gra-
minearum, F. verticillioides, Neurospora crassa, N. tetrasperma, Pyronema confluens, and Sor-
daria macrospora [11,12,13,14,15]. In the basidiomycete G. lucidum, editing shows neither a

base change nor a tissue preference [14]. However, editing in ascomycetes shows a preference

for A-to-I RNA editing specifically during fruiting body formation [11,12,13]. In F. grami-
nearum and N. crassa, editing was detected only in datasets from sexually developing samples,

not from asexual spores or vegetative mycelia [11,13]. Interestingly, the ascomycetous yeast

Schizosaccharomyces pombe does not show evidence of mRNA editing during meiosis [12].
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Thus, RNA editing seems to be restricted to multicellular fungi—specifically A-to-I RNA edit-

ing to filamentous ascomycetes that generate fruiting bodies.

Q3: How is RNA editing catalyzed?

Metazoan A-to-I RNA editing of nuclear transcripts is catalyzed by adenosine deaminases act-

ing on RNA (ADARs) [16]. These enzymes deaminate the adenine base to hypoxanthine,

resulting in an I instead of an A nucleotide. ADARs contain a deaminase domain and dsRNA-

binding domains that bind to double-stranded RNA regions in which the editing sites are

located [17]. Besides RNA secondary structure, the base opposite to the target A (preferentially

a C) and the flanking nucleotides affect editing efficiency. The human genome encodes five

ADARs, two of which show editing activity.

Fungi, like plants, do not encode ADAR homologs, and it remains unknown how fungi cat-

alyze A-to-I RNA editing [9,17]. Fungal editing, in contrast to metazoan editing, preferentially

targets As in hairpin loops, and loop stability affects editing efficiency [11]. Furthermore, the

sequence context of the editing site differs from that described for human ADARs. Liu and col-

leagues [11] suggested that adenosine deaminases acting on tRNA (ADATs) may mediate

mRNA editing in fungi, possibly together with specific cofactors. Indeed, ADATs were

recently shown to catalyze the deamination of adenosines in both tRNA and mRNA in bacteria

[18]. However, deletion of the F. graminearum ADAT-encoding gene FgTAD1 had no effect

on editing, and deletion of FgTAD2 and FgTAD3 may be lethal [11]. Thus, the enzymatic activ-

ity determining fungal A-to-I RNA editing remains obscure.

Q4: What are the consequences of RNA editing?

As mentioned above, A-to-I editing of nuclear transcripts leads to proteome diversification.

A-to-I editing in humans occurs in a tissue-specific fashion and targets mostly noncoding

regions. The few targeted protein-coding transcripts are related to neurological functions [19].

Fig 1. Types of mRNA editing and possible relation to fungal pathogenesis. Editing of nuclear mRNA leads to diversification of the

proteome, whereas editing of plastid, mitochondrial, and kinetoplast mRNA is mostly restorative. Distinct editing events (marked by blue

asterisks) occur in organellar as well as nuclear transcripts. Undulated lines indicate transcripts. In the human parasite Trypanosoma brucei,
transcripts derived from maxicircle DNA (black in kDNA) are edited using guide RNA (red) derived from minicircle DNA (red in kDNA). The

plant pathogenic fungus Fusarium graminearum shows A-to-I editing of nuclear transcripts during the late sexual phase. Editing leads to diverse

changes at the protein level as shown in the blue-outlined box. Editing of distinct transcripts may affect the maturation of fruiting bodies and

the formation and discharge of ascospores (blue arrows), which are the primary inoculum of this fungus. A, adenosine; I, inosine, kDNA,

kinetoplastid DNA.

https://doi.org/10.1371/journal.ppat.1007231.g001
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A-to-I editing in filamentous ascomycetes is similarly restricted to a specific stage in the

fungal life cycle (see Q2). However, in contrast to metazoan editing sites, most fungal A-to-I

editing sites are located in coding regions [11,12,13]. Editing thus can result in synonymous

and nonsynonymous codon changes, stop codon loss, and premature stop codon correction

in pseudogenes [11,12,13; Fig 1]. In the latter case, editing affects stop codons in in silico

wrongly annotated introns that were automatically annotated to avoid the stop codon(s) and

keep conserved downstream sequences in the gene model. Thus, editing leads to synthesis of a

full-length protein, as described for the F. graminearum PUK1 kinase [11].

The question whether editing is adaptive or nonadaptive is still under debate. RNA editing

allows the generation of divers proteins from one gene, and it has thus been hypothesized that

it may facilitate adaptive evolution [20]. In cephalopods, behavioral complexity has been corre-

lated with extensive editing of neuronal transcripts, which is under positive selection [21].

Editing sites introducing nonsynonymous codon changes were found to be highly adaptive

and under positive selection in N. crassa [13]. However, in humans, only a few codon-changing

editing events have been associated with altered protein functions, and it has been proposed

that most recoding editing events occur as a result of promiscuous editing by ADARs [22]. A

neutral evolution model as proposed by, e.g., Gray [23], might also explain the little conserva-

tion of individual editing sites, whereas over 20,000 editing sites were found in each F. grami-
nearum, N. crassa, and N. tetrasperma—only 454 are conserved between all three species [13].

Q5: How does RNA editing relate to fungal pathogenesis?

A correlation of RNA editing and pathogenesis has long been known from trypanosomes, e.g.,

vertebrate parasites like T. brucei and T. cruzi, causing sleeping sickness and Chagas disease in

humans, respectively [24]. The first editing event was detected because the trypanosomal mito-

chondrial coxII gene does contain frame-shifts, implying a faulty gene sequence that needs to

be corrected for proper biological function of the encoded protein [25]. The single mitochon-

drion of T. brucei displays an adaptation to the parasite lifestyle; the procyclic form in the tsetse

fly has a standard mitochondrion, whereas the slender bloodstream form (BF) has a tubular

mitochondrion with a nonfunctional respiratory chain [26]. Editing activity per se is essential

for both the procyclic and the BF type of T. brucei [27]. However, editing of distinct transcripts

may be essential just in the BF form [26,28,29].

Recently, mRNA editing by ADAT activity was shown to occur in Escherichia coli. There,

editing targets evolutionary conserved toxin—antitoxin pairs. Editing of the hokB toxin tran-

script increased toxicity and was conserved in the pathogenic bacteria Klebsiella pneumoniae
and Yersinia enterocolitica [18], revealing another correlation of editing and pathogenicity.

Fungal nuclear genes whose transcripts are affected by editing tend to have a role in late

sexual development, i.e., meiotic spore (ascospore) formation and/or ascospore discharge

[11,15,30; Fig 1]. This observation is of interest because ascospores are the primary inoculum

of several phytopathogenic ascomycetes, including the wheat and barley pathogen F. grami-
nearum, Sclerotinia sclerotiorum, causing stem rot, or Blumeria graminis f. sp. tritici, causing

wheat powdery mildew [31,32,33; Fig 1]. Whether A-to-I mRNA editing is essential for asco-

spore generation remains to be determined, like the enzymatic activity underlying fungal edit-

ing. Ultimately, however, one may envision a fungal-specific editing factor as a drug target to

control those phytopathogenic fungi that use ascospores as primary infecting agents.
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