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Abstract

MicroRNAs (miRNAs) are small RNAs that regulate diverse biological processes including

multiple aspects of the host-pathogen interface. Consequently, miRNAs are commonly

encoded by viruses that undergo long-term persistent infection. Papillomaviruses (PVs) are

capable of undergoing persistent infection, but as yet, no widely-accepted PV-encoded miR-

NAs have been described. The incomplete understanding of PV-encoded miRNAs is due in

part to lack of tractable laboratory models for most PV types. To overcome this, we have

developed miRNA Discovery by forced Genome Expression (miDGE), a new wet bench

approach to miRNA identification that screens numerous pathogen genomes in parallel.

Using miDGE, we screened over 73 different PV genomes for the ability to code for miRNAs.

Our results show that most PVs are unlikely to code for miRNAs and we conclusively dem-

onstrate a lack of PV miRNA expression in cancers associated with infections of several

high risk HPVs. However, we identified five different high-confidence or highly probable

miRNAs encoded by four different PVs (Human PVs 17, 37, 41 and a Fringilla coelebs PV

(FcPV1)). Extensive in vitro assays confirm the validity of these miRNAs in cell culture and

two FcPV1 miRNAs are further confirmed to be expressed in vivo in a natural host. We

show that miRNAs from two PVs (HPV41 & FcPV1) are able to regulate viral transcripts cor-

responding to the early region of the PV genome. Combined, these findings identify the first

canonical PV miRNAs and support that miRNAs of either host or viral origin are important

regulators of the PV life cycle.

Author summary

Papillomaviruses (PVs) are causative agents of cancer. Currently, there is an incomplete

understanding as to why only some infections lead to cancer. Developing a better compar-

ative evolutionary understanding of PV gene products and their regulation is key to com-

prehending the life cycle of these pathogens. An emerging concept of viral gene regulation
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is that many persistent viruses will utilize small regulatory RNAs called miRNAs to opti-

mize host and viral gene expression. Yet despite obvious interest, there have been no cred-

ible reports identifying canonical PV-encoded miRNAs. Here we develop new broadly

applicable methodology to identify miRNAs from organisms lacking a laboratory culture

system. We identify the first examples of bona fide canonical PV miRNAs and provide

evidence supporting both host and viral miRNA-mediated regulation as relevant to con-

trol of PV gene expression. These findings resolve the issue of PV miRNAs and further

the notion of miRNA importance to persistent virus infection.

Introduction

Papillomaviruses (PVs) comprise a large family of circular double-stranded DNA viruses.

Numerous PV genomes have been described including over 200 human PV (HPV) types. A

minority of these are known as carcinogenic agents [1–3], however only a small fraction of

hosts infected with these high risk types will go on to develop high grade lesions. It remains

incompletely understood what factors dictate whether or not HPV infection will develop into

malignant cancer [1,3]. Further, it is unclear why HPVs that share a high level of sequence sim-

ilarity can have stark differences in tropism and infect different regions of the body. Develop-

ing a better understanding of PV gene products and their regulation throughout diverse PV

lineages provides an evolutionary foundation for deciphering the mechanisms resulting in dif-

ferential outcomes of infection.

MicroRNAs (miRNAs) are small regulatory RNAs that are an emerging class of viral gene

products found in select virus families [4–7]. miRNAs are approximately 22 nucleotides long

and function by docking to specific target mRNAs to repress translation [8,9]. miRNAs derive

from primary transcripts containing a hairpin structure that is processed by a series of endo-

nucleases (Drosha in the nucleus, Dicer in the cytosol) generating the final effector RNA [10–

15]. The miRNA then enters a multi-protein complex called the RNA Induced Silencing Com-

plex (RISC) where it scans mRNAs and docks to regions of partial sequence complementarity

[8]. The so-called seed region of miRNAs, approximately 6 or more nucleotides towards the 5’

end, typically binds transcripts with perfect complementarity and this feature can be used to

help identify mRNA targets [8,16,17]. miRNAs of a particular sequence typically function by

subtly regulating numerous (10 or more) mRNA transcripts involved in a particular biological

outcome. Although individual miRNA regulation of any single transcript can be subtle, the

sum of regulation by multiple miRNA-bound-RISC complexes (miRISC) can add up to signifi-

cant biological activity [8]. miRNAs of host or viral origin have been implicated in various pro-

cesses relevant to virus infection including the control of the immune response, cell death,

transformation and virus gene expression [18–29].

Over 300 viral encoded miRNAs have been described, all from viruses able to undergo long

term persistent infection [4,5,7,30]. Most of these viruses have DNA genomes including the

herpes, polyoma, and anello virus families [5]. However, some retroviruses including the delta

retrovirus bovine leukemia virus (BLV) and foamy retroviruses also encode miRNAs [21,31–

33]. One likely role of viral miRNAs is to foster long-term interactions within the host [30]. In

this regard, at least some members of the PV family would be expected to encode miRNAs.

However, to date, no credible examples of PV canonical miRNAs have been described. Two

studies examining fully infectious experimental systems of the high-risk HPV18 & 31 types

report that these viruses do not encode miRNAs [34,35]. Further, at least two studies examin-

ing transformed cell lines report that HPV16 does not encode miRNAs [36,37]. There have

been reports in transformed cells of small RNAs from high risk PVs such as HPVs 16 & 18,
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however these studies did not demonstrate a connection of PV-derived small RNAs to the

miRNA biogenesis (Dicer/Drosha) or effector (RISC) machinery, nor did they confirm a bio-

logically meaningful abundance [38–40]. Consequently, these RNAs are not widely accepted

as miRNAs and the signal detected likely represents degradation fragments derived from the

turnover of longer transcripts. In contrast, it is well documented that PV infection and individ-

ual PV gene products can alter the host miRNA repertoire, likely contributing to the biology of

cancer [25,35,41–44]. Furthermore, at least one PV, HPV31, utilizes a host miRNA to directly

regulate early viral gene expression [25]. Thus, what emerges is that although host miRNAs are

involved in the PV life cycle and pathogenesis, of the few PV types that have been examined,

no canonical PV miRNAs are yet established.

One barrier to discovery of PV miRNAs is the dearth of facile fully-infectious laboratory

systems. There are experimental systems established for a few PV types (approximately < 5)

[45], but technological barriers have limited any comprehensive large-scale study of viral miR-

NAs in the majority of PV types. Here we describe a new wet bench approach for the discovery

of miRNAs that assays numerous viruses in parallel for the ability to express miRNAs. We

identify bona fide PV miRNAs encoded by divergent PVs, and demonstrate these miRNAs

depend on canonical miRNA biogenesis effector machinery. Our analysis also rules out canon-

ical papillomaviral miRNAs in cancers associated with high-risk PV (HPVs 16, 18, 31, 45, and

58) infection. These results provide further evidence for the relevance of miRNA-mediated

regulation of PV transcripts.

Results

Proof of concept for miDGE on a herpesviral genome

To identify miRNA genes in situations where transcripts are not easily obtainable, we devel-

oped the approach of miRNA Discovery by forced Genomic Expression (miDGE). miDGE

relies on generating a library of numerous overlapping genomic segments of DNA from a par-

ticular organism or locus and subcloning them behind a heterologous RNA polymerase (RNP)

II promoter (Fig 1). The concept relies on the principle that miRNA genes are compact and

should be readily expressed by heterologous upstream RNP II promoters, or in the rare cases

that a primary miRNA transcript is driven by RNP III, that these promoters are small and

proximal to the miRNA gene so as to be included in miDGE library constructs. The miDGE

library is then transfected into mammalian cells and small RNA is harvested and sequenced.

Next, we apply computational methods to identify miRNA candidates whose transcripts dis-

play the hallmarks of processing by the miRNA biogenesis machinery. Finally, candidate miR-

NAs are validated via a series of molecular assays to establish biogenesis via the canonical

miRNA processing machinery and activity within RISC, the miRNA silencing machinery.

To test the effectiveness of the miDGE approach before applying it to PVs, we first focused

on a single larger genome virus, the herpesvirus Japanese Macaque Rhadinovirus (JMRV).

JMRV is a gamma-2 herpesvirus with genomic sequence similar to the highly related Rhesus

Rhadinovirus (RRV). When we initiated these studies, it was not yet known if JMRV encoded

miRNAs, although this would be expected since numerous precursor miRNAs (pre-miRNAs)

had already been identified in RRV, which shares high sequence similarity with JMRV [46].

Indeed, work from Skalsky et al. has now identified 15 novel viral miRNA encoded by JMRV

[46]. Thus, JMRV serves as a proof-of-principle “test genomic space” to evaluate miDGE.

A cosmid with an approximately 36 kilobase (kB) region of the JMRV genome that encom-

passed the region with positional homology to the RRV miRNA cluster was fragmented by

sonication and used to construct a miDGE expression library. DNA-seq analysis confirmed

that the library covered the entire region carried by the original cosmid construct (Fig 2A, top
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panel). We then transfected our library into HEK293T cells and analyzed small RNA (sRNA)

expression by sRNA-seq. In parallel, we also performed small RNA-sequencing from fibro-

blasts that had been infected with JMRV in vitro. As shown in Table 1, approximately 13% of

all reads from infected fibroblasts mapped to viral genomes, consistent with the fact that

JMRV establishes a productive infection and replicates to high titers in such cultures. As

expected, the relative fraction of viral reads was much smaller (< 0.1%) in cultures transfected

with the miDGE library. In both cases, the bulk of host reads originated from bona fide small

RNA species, indicating no or little contamination of our small RNA preparation by degrada-

tion or breakdown products of longer RNA molecules. As shown in Fig 2A and 2B, small

RNA-seq reads mapped across the JMRV genome in patterns that were similar between the

miDGE and infection experiments, with the great majority of reads (96% and 88% of viral

reads, respectively; see Table 1, S1 Table) aligning to the genomic location of the 15 pre-miR-

NAs previously identified by Skalsky and colleagues. Comparison of coverage profiles across

individual pre-miRNAs furthermore suggested that most precursors were processed to pro-

duce ratios of mature 5p- and 3p-species that were likewise similar (S1 Fig) between miDGE

and infection experiments. In addition to miRNA reads, infected cells produced a profile of

low level seemingly randomly scattered reads (see log-scale plots in Fig 2B), likely originating

from breakdown products of viral mRNAs in lytically infected cells. Such background was sub-

stantially lower in our miDGE experiments. The data were next used to perform a de-novo pre-

diction of pre-miRNAs with the miRDeep2 algorithm [47], providing the pipeline only with

Fig 1. Overview of the miDGE (miRNA discovery by forced genomic expression) methodology. (A) Pools of purified viral genomes are subjected to (B)

fragmentation via sonication or limited digest (average target size of fragments approx. 250 bp), followed by (C) cloning of subgenomic fragments to create an

expression library. Thickened regions in A-C symbolize an unidentified pre-miRNA coding region present in one of the viral genomes. (D) After transient transfection,

cloned subgenomic fragments are transcribed in cells, allowing processing of pre-miRNA hairpins to produce mature miRNAs. (E) Small RNAs purified from

transfected cells will contain mature miRNAs as well as random degradation products produced from library transcripts. (F) To identify authentic miRNAs, small RNAs

are sequenced and mapped back to viral genome pools. The majority of degradation products exhibit a random distribution, whereas miRNA products produce distinct

pileups at pre-miRNA loci. Secondary structure prediction can then be used to identify characteristic pre-miRNA hairpin structures (indicated by bracket notation in F)

at such loci. In this study, we used the miRDeep2 package to identify miRNA candidates.

https://doi.org/10.1371/journal.ppat.1007156.g001
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an annotated reference set of known host (i.e., human) miRNAs deposited in miRBase v21,

but not any miRNAs of viral origin. When processed with the sRNA-seq data from the

miDGE library, this analysis readily identified 14 of the 15 known pre-miRNAs in JMRV

(Table 2, S2 and S3 Datasets). Another two predictions mapped to the opposite strand of

Fig 2. Validation of miDGE via confirmation of miRNAs encoded by Japanese Monkey Herpesvirus (JMHV). (A) Top: Coverage plot of DNA-seq of expression

fragment library containing a cosmid with ~40kb of the Japanese Monkey Herpesvirus (JMRV) genome. Center and bottom: small RNA coverage plots mapping of small

RNA-seq reads from HEK293T cells transfected with the expression library (center) or from JMRV-infected rhesus primary fibroblasts (bottom). (B) Small RNA-seq

coverage plot in linear (top panels) or logarithmic (bottom panels) across the miRNA-coding region. The genomic location of the 15 JMRV pre-miRNAs is indicated by

black arrows at the top. (C) Detailed depiction of small RNA-seq coverage across the first three pre-miRNAs of the JMRV miRNA cluster.

https://doi.org/10.1371/journal.ppat.1007156.g002
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miRs-jR1-2 and -8, consistent with the previous observation that some herpesvirus pre-miR-

NAs can produce mature products when transcribed in the antisense orientation [48]. As our

approach is agnostic of transcriptional directionality in the parental viruses, it is plausible that

such miRNAs will register in the analysis.

A single JMRV miRNA, miR-jR1-7, evaded detection by miDGE. Inspection of sequencing

and mapping data revealed that this was not due to the principal absence of miRNA products,

given that 14 reads had been correctly mapped to mature miR-jR1-7 species (see S1 Table and

coverage profiles in Figs 2B, 2C and S1). While this number is relatively low, miRs-jR1-10 and

-11 were accurately identified despite read counts that were in a similar range (see Table 2).

Indeed, miRDeep2 analysis of small RNAs from JMRV-infected cells also failed to identify

miR-jR1-7, even though more than 2000 reads had mapped to mature species from this

miRNA (S1 Table and Figs 2B, 2C and S1). Although we do not know the precise reason for

the pipeline’s inability to predict miR-jR1-7, we suspect that the close proximity of miRs-jR1-7

and -6 may have interfered with delineation of candidate precursor sequences that are sub-

jected to structure prediction. Given the above, we conclude that, at least in the context of a

herpesviral genome and within the detection limits set by the bioinformatic prediction pipe-

line, miDGE can successfully identify bona fide miRNAs at sensitivity levels that are on par

with those observed in an authentic infection system.

Identification of candidate PV miRNAs in non-high risk PVs

Our goal was to screen numerous PV genomes representing diverse clades in the PV family for

viral miRNAs. To accomplish this, we collected 113 cloned PV genomes from both human

Table 1. Small RNA-seq read & mapping statistics.

JMRV PV

infection a miDGE b miDGE c

mapped reads:d 24,971,581 37,708,870 308,253,850

viral reads:e 3,224,344 (12.91%) 14,728 (0.04%) 234,490 (0.08%)

-viral miRNA: f 2,826,087 (87.65%) 14,074 (95.56%) 181,533 (77.42%)

host reads:g 21,747,237 (87.09%) 37,694,142 (99.96%) 308,019,360 (99.92%)

-miRNA 21,147,183 (97.24%) 21,817,569 (57.88%) 261,297,348 (84.83%)

-snoRNA 92,422 (0.42%) 3,249,936 (8.62%) 13,086,009 (4.25%)

-lincRNA 228,928 (1.05%) 4,982,222 (13.22%) 7,198,273 (2.34%)

-retained intron 23,569 (0.11%) 1,132,491 (3%) 5,741,648 (1.86%)

-ns. mediated decay 43,335 (0.2%) 2,279,698 (6.05%) 3,905,681 (1.27%)

rRNA 9,286 (0.04%) 411,783 (1.09%) 3,037,595 (0.99%)

-protein coding 40,240 (0.19%) 821,732 (2.18%) 2,708,946 (0.88%)

-tRNA 3,870 (0.02%) 538,650 (1.43%) 2,587,863 (0.84%)

-misc. RNA 8,335 (0.04%) 289,807 (0.77%) 2,539,257 (0.82%)

-processed transcript 50,601 (0.23%) 282,498 (0.75%) 1,249,588 (0.41%)

-other 94,589 (0.43%) 1,846,576 (4.9%) 4,392,203 (1.43%)

a: reads mapped to viral precursor or mature miRNA regions in JMRV-infected fibroblasts

b,c: reads mapped to viral precursor or mature miRNA regions in 293T cells transfected with the JMRV or miDGE expression libraries, respectively

d: sum of reads mapped to either viral genomes or host transcriptome

e: reads mapped to JMRV or PV genomes present in the miDGE library. Percentages indicates the relative fraction of viral among total reads.

f: reads mapped to viral miRNA regions. Percentages indicates the relative fraction of viral miRNAs among all viral reads.

g: Viral reads mapped to the host transcriptome. Percentages (in bold) indicates the relative fraction of host reads among total reads. Subsequent lines show the number

of reads mapped to different host RNA host species and the fraction relative to all host reads.

https://doi.org/10.1371/journal.ppat.1007156.t001
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and non-human animal sources (S2 Table). Additionally we included two polyomaviruses

(Simian Virus (SV40) and Merkel cell polyomavirus (MCPyV)) known to express viral miR-

NAs [23,49], as positive controls in our PV library. Since the PV/PyV constructs were consid-

erably smaller than our JMRV cosmid and thus potentially less sensitive to mechanical

shearing, we utilized three different 4-base pair cutter restriction enzymes in addition to the

sonication procedure to fractionate the viral DNA (see material and methods for details). High

throughput Illumina DNA sequencing revealed that we had high coverage (S2 Table, S1 Data-

set) of numerous genomes. A total of 73 PV genomes had greater than 95% coverage (see S2

Table). As shown in Fig 3A, this set contained representatives from the majority of known PV

clades. We next conducted high throughput sequencing of small RNAs from cells transfected

with the PV libraries. As expected based on our previous analysis of the JMRV library, we

again observed that only a relatively small fraction (0.08%) of reads mapped to viral genomes

(Table 1, right column). Likewise, the majority of host reads were derived from bona fide small

RNA species, indicating that the RNA preparations were largely free of contaminating RNA

degradation products.

We next applied our computational methods based on miRDeep2 to identify small RNA

reads consistent with bona fide miRNAs. The algorithmic approach prioritizes those small

RNAs of appropriate size (between 17–24 nucleotides) that had a read distribution as being

plausibly derived from a pre-miRNA hairpin. This analysis identifies signatures of bona fide

miRNAs including the presence of a predicted stem loop structure and clearly defined 5’ ends

as processed by Dicer/Drosha. Typical read density coverage plots of such signatures exhibit

two "plateaus", where each plateau represents a miRNA derivative from either the 5’ or 3’ arm

Table 2. JMRV pre-miRNA predictions.

miDGE pre-miRNA predictions

coordinatesa scoreb confidencec readsd matched pre-mire

111946..112004 (-) 4923.3 98+/-4% 9,654 jmrv-miR-jR1-15

111806..111862 (-) 570.9 98+/-4% 1,117 jmrv-miR-jR1-6

113350..113408 (-) 337.8 98+/-4% 660 jmrv-miR-jR1-3

113455..113515 (-) 154.5 98+/-4% 300 jmrv-miR-jR1-12

116039..116097 (-) 75.5 98+/-4% 152 jmrv-miR-jR1-9

116362..116424 (-) 29.7 98+/-4% 55 jmrv-miR-jR1-8

112484..112543 (-) 17.8 98+/-4% 32 jmrv-miR-jR1-13

112884..112956 (-) 16 98+/-4% 28 jmrv-miR-jR1-4

114744..114800 (-) 10.9 98+/-4% 18 jmrv-miR-jR1-11

114562..114625 (-) 6.1 99+/-4% 9 jmrv-miR-jR1-2 (as) f

116365..116426 (-) 5.6 98+/-4% 7 jmrv-miR-jR1-8 (as)

116234..116288 (-) 2.8 95+/-6% 40 jmrv-miR-jR1-1

114560..114602 (-) 2.5 95+/-6% 1,441 jmrv-miR-jR1-2

112296..112359 (-) 2.4 95+/-6% 76 jmrv-miR-jR1-14

112115..112177 (-) 2.3 95+/-6% 492 jmrv-miR-jR1-5

115052..115109 (-) 1.1 94+/-6% 9 jmrv-miR-jR1-10

a: coordinates of pre-miRNA sequence in the JMRV reference genome

b: log-odds score for the prediction representing a true positive

c: confidence value for the prediction representing a true positive

d: reads aligned to the candidate pre-miRNA sequence by the miRDeep2 mapper

e: known JMRV miRNAs that map to the location of miRDeep2 predictions

f: “as” denotes predictions that were made for the antisense strand of known miRNAs

https://doi.org/10.1371/journal.ppat.1007156.t002
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Fig 3. miDGE identifies PV-encoded miRNA candidates. (A) Neighbor-joining tree calculated on alignment of L1 nucleotide sequences of the better-covered

papillomaviruses (n = 73 with>95% DNA coverage) included in miDGE library. Color indicates genus membership, with miRNA-encoding papillomaviruses in bold

and select high risk cancer-associated papillomaviruses in italics. (B) Small RNA coverage distribution of top-scoring miDGE miRNA candidates that were predicted by

MiRDeep2. (C) Structures of PV pre-miRNAs were predicted by minimal free energy folding using the RNAfold algorithm. The positions of mature miRNAs observed

in small RNA-seq libraries are indicated in red. (D) The position of identified viral pre-miRNAs is denoted by the hairpin shape. The identified seed sequence matches

are noted at their respective positions with the sequences of the miRNA and potential targets.

https://doi.org/10.1371/journal.ppat.1007156.g003
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of a pre-miRNA hairpin (5p or 3p miRNA, respectively) (see, for example, Figs 2C and 3B). In

between each plateau is a trough in density coverage where the terminal loop portion of the

pre-miRNA is under-represented in our libraries due to terminal loops of processed pre-miR-

NAs not being stabilized in RISC as miRNA derivatives are. miDGE readily called miRNAs

from the positive control polyomavirus genomes included in the libraries.

The vast majority of the greater than 660,000 combined nucleotide PV genomic space cov-

ered did not produce miRNA candidates, consistent with a low false positive rate for miDGE.

However, miDGE did call five high-scoring miRNA candidates which, like our SV40 and

MCPyV positive controls, were awarded confidence levels of>95% by the miRDeep2 predic-

tion algorithm (Table 3 and Fig 3B–3D). These five high-scoring candidates originated from

four different PV genomes (one each from HPV41, HPV17, HPV37, and two from FcPV1).

MiRDeep2 called an additional 7 candidates with lower scores and/or confidence levels (see S2

and S3 Datasets for all PV predictions made by the pipeline). One of these mapped to the

FcPV1 genome, i.e., the same genome which had also produced two high scoring candidates.

We noted that the read sequences for another three of the lower scoring predictions (HPV

types 5, 49 and 105; marked ‘l.c.’ in S2 Dataset) were of low complexity. Indeed, applying an

entropy-based filter (see Material and Methods) to remove low-complexity reads prior to our

bioinformatic analysis eliminated these predictions (but none of the other candidates). We

thus deem it likely that the predictions made for HPVs 5, 49 and 105 result from cross-map-

ping of reads that may originate from repetitive regions. The predicted hairpin structures (S4

Dataset) of the remaining lower-scoring candidates have features that are unusual for canoni-

cal miRNAs, for example a very short distance (2 to 4 nucleotides) between 5p and 3p reads

(HPV113 and HPV3) or a 5p read that overlaps with much of the predicted terminal loop

structure (PePV). We therefore suspect that these candidates are likewise false positives. How-

ever, as we have not attempted to experimentally verify these three predictions, we cannot

exclude the possibility that one (or more) of them may represent authentic miRNAs.

Our bioinformatic analysis did not predict any candidates for the negative strand of papillo-

maviruses. Likewise, although their genomes were fully covered in our library, no predictions

were made for any of the plus- or minus-strand miRNAs previously suggested for HPV types

6, 16, 18, 38 or 45 [38–40]. While highly unlikely, we nevertheless considered it formally possi-

ble that our bioinformatic prediction pipeline had missed all 9 purported candidates in these

genomes. Therefore, we inspected small RNA read coverage across the respective genomic

regions. As shown in S2 Fig, our high confidence PV candidates and the PyV positive controls

exhibited the typical coverage profiles of bona fide miRNAs. In contrast, only few reads

mapped to the previously suggested papillomavirus pre-miRNA regions in HPV types 6, 16, 38

and 45 (S3A Fig), and these reads furthermore did not match the distribution as expected for

mature miRNAs being derived from the purported hairpin precursors (S3 Fig). While the

absence of read coverage argues against the existence of miRNAs in above HPV species, for

one of the purported miRNAs (HPV18- LCR), we indeed observed a strong signal in our

miDGE analysis (Fig 4A, top panel; see also S3B Fig for a detailed depiction of the covered

region). However, we also noticed that the mature miRNA sequences that supposedly derive

from this region of the viral genome [39] are of very low complexity (trinucleotide

entropy < 63). In agreement with this observation, when we employed the same complexity

filter as used for our miRDeep2-predicted candidates, the peak was completely eliminated (Fig

4A, panel labeled ‘PV filtered’). Given this and the absence of read coverage in adjoining

regions of the viral genome, we suspected that the signal originated from cross-mapping host

RNAs. To investigate this hypothesis, we mapped the small RNA-reads from our JMRV exper-

iment to the PV genomes. Indeed, as shown in the panel labeled ‘JMRV’ of Fig 4A, this dataset

contains a largely identical set of sequences which produced a peak at the exact same location
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of the purported miRNA (see S4 Fig for an enlarged view of the peak), even though the JMRV

miDGE library does not contain any PV sequences. In contrast, reads originating from all of

our high scoring miRNA candidates in FcPV1, HPV17, HPV37 and HPV41 were not elimi-

nated by complexity filters, and were furthermore highly specific for the PV libraries (shown

exemplary for HPV17 in the lower panels of Fig 4A). Together, these results demonstrate the

plausibility of using miDGE to identify miRNAs from complex multi-genome expression

libraries and suggest that while some PVs may encode miRNAs, most PVs, including the high-

risk types 16, 18, and 45, do not encode canonical miRNAs.

High risk PV types do not encode canonical miRNAs

To further evaluate whether high risk HPVs code for miRNAs, we analyzed the large and small

RNA transcriptomes of 303 cervical carcinomas that are part of The Cancer Genome Atlas

(TCGA) [50]. We limited our subsequent analysis to 213 solid tumors that had both large and

small RNA-seq datasets and at least 50% RNA coverage of a particular HPV genome in the

large RNA-seq (Fig 4B). Importantly, we observed 42 samples that had >99% RNA coverage

for one of the following HPVs: 16, 18, 31, 45, or 58. Because these samples displayed essentially

complete RNA coverage throughout the entire relevant HPV genome, it would be expected

that any putative miRNA encoded in these genomes would have the ability to be processed

and detected in these samples. We applied the miRDeep2 pipeline to each small RNA library

to identify putative miRNAs. We observed hundreds of miRBase annotated host miRNAs per

library (255–454), but no HPV derived candidates (Fig 4C and 4D). However, we were able to

identify Epstein-Barr virus (EBV) miRNAs in ~14% of the tumor samples, demonstrating that

we are able to detect viral miRNAs that are present in only trace amounts, likely from EBV-

infected infiltrating lymphocytes (Fig 4C). Thus, despite having transcripts that span the entire

HPV viral genomes, tumors associated with high risk HPV types do not express canonical

HPV-derived miRNAs. Qian et al. previously reported HPV16-derived viral miRNAs present

in small RNA-seq libraries prepared from transformed cell lines as well as cervical tissue and

cancer samples [40]. We re-analyzed their deposited small RNA transcriptomic datasets [40]

for the expression of HPV derived small RNAs. Similar to the HPV-associated tumors in the

TCGA, we observed many miRBase-annotated host miRNAs per library (50–100), but no

HPV-derived candidates (Fig 4E and 4F). Also in contrast to Qian et al., we observe few reads

Table 3. High-scoring PV pre-miRNA predictions.

miDGE pre-miRNA predictions

genome coordinatesa scoreb confidencec readsd pre-miRe

FcPV1 4989..5048 (-) 3,541.5 96+/-8% 6,952 fcpv-miR-F1

FcPV1 7092..7152 (-) 676.9 96+/-8% 1,325 fcpv-miR-F2

HPV37 4558..4620 (-) 106.3 96+/-8% 207 hpv37-miR-H1

HPV41 7110..7171 (-) 50.5 96+/-8% 99 hpv41-miR-H1

HPV17 4560..4622 (-) 22.7 96+/-8% 43 hpv17-miR-H1

SV40 2232..2290 (-) 79,653 96+/-7% 156,242 sv40-mir-S1

MCPyV 3882..3937 (-) 7,811.6 96+/-7% 15,320 mcv-mir-M1

a: coordinates of pre-miRNA sequence in the reference genome

b: log-odds score for the prediction representing a true positive

c: confidence value for the prediction representing a true positive

d: reads aligned to the candidate pre-miRNA sequence by the miRDeep2 mapper

e: designation of novel PV pre-miRNAs (FcPV1, HPV17,HPV41, HPV37), or known PyV pre-miRNAs pre-miRNAs that map to the location of miRDeep2 predictions

https://doi.org/10.1371/journal.ppat.1007156.t003
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Fig 4. High Risk HPVs do not encode canonical microRNAs. (A) Coverage plots of miDGE DNA-seq and small RNA-seq across the genomes of HPV18 and HPV17.

Filled green plots at the top of each panel show DNA-seq coverage, the three plots underneath show mapped small RNA-seq from: PV: HEK293T-cells transfected with

our papillomavirus miDGE library, PV filtered: same reads as in PV, but filtered to eliminate low-complexity reads JMRV: Serving as a negative control, derived from

293T-cells transfected with our JMRV miDGE library. JMRV read counts were normalized to correct for different sequencing depths between PV and JMRV miDGE
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mapping to either HPV16 reference sequence (< 20 total reads per library). Furthermore, we

do not observe any reads for the purported HPV16 mature miRNAs in these datasets (Fig 3F).

Inspection of the alignments presented by Qian et al. [40] suggests that an excessive allowance

for sequencing errors and small nucleotide polymorphisms (SNPs) combined to produce false

read mappings to the purported HPV16 miRNAs. Thus, our re-analysis suggests that the small

RNAs described in their study may be artifacts of the bioinformatics analysis and do not repre-

sent actual small RNAs derived from HPV16. Combining these findings with our miDGE

results (Figs 4A and S3), we conclude that it is highly unlikely that high risk HPVs 16, 18, 31,

45 and 58 express canonical viral-encoded miRNAs.

Validation of PV miRNAs

The burden of proof for establishing bona fide miRNAs includes evidence of specific process-

ing by the miRNA machinery and silencing activity within RISC. To vet the five high-scoring

PV candidate miRNAs, we first conducted northern blot analysis. Northern blot analysis can

provide information about the size and processing of pre-miRNAs and derivative miRNAs.

We cloned the candidate miRNA genes and flanking regions downstream of an RNP II pro-

moter and transfected these plasmids into HEK293T cells. We harvested total RNA and con-

ducted northern blot analysis. For each candidate, bands migrating at positions consistent

with the appropriate size typical of miRNAs were observed. Additionally, on most blots, a

clear band consistent with a pre-miRNA was also observable. We note that due to the high

sequence similarity of the HPV 17 and 37 miRNAs (~91%), even though we confirmed the

blots were completely stripped of specific signal, we consistently observe cross-reacting signal

from both lanes when probed with either probe (Fig 5A & 5B). Overall, this analysis showed

that all five high-scoring candidates gave rise to banding patterns consistent with canonically

processed miRNAs (Fig 5A).

To further validate these candidate miRNAs, we investigated their biogenesis, activity and

expression. To determine if the biogenesis of these candidates required canonical miRNA

machinery, we transfected our candidate miRNA constructs into cells with Drosha levels

knocked down or that had Dicer gene expression knocked out (Fig 5B and 5C). As expected,

this analysis showed that positive control SV40 miRNAs were dependent on both Drosha and

Dicer (Fig 5B and 5C, respectively). All five candidate PV miRNAs showed reduced expression

upon knockdown of Drosha (Fig 5B) and reduced ratios of miRNA:pre-miRNA in the absence

of Dicer (Fig 5C). These results conclusively demonstrate that the five high-scoring candidate

PV miRNAs derive from canonical miRNA biogenesis. We next generated luciferase-based

RISC reporters for each viral miRNA candidate to determine if they are active in RISC. Report-

ers contained two perfectly complementary sequences to respective miRNA candidates in the

3’ untranslated region of Renilla luciferase. Negative control reporters contained the same

sequences, with three nucleotides in the miRNA seed complement site substituted to disrupt

binding. Transfection of these reporters resulted in specific knockdown of luciferase in each of

experiments (see total read counts in Table 1). Asterisk indicates a previously purported miRNA candidate region suggested in the literature [39], which is nonspecific

(detected in the negative control JMRV miDGE analysis, lower plot) and can be eliminated by removing low complexity reads (center plot). (B) RNA-seq coverage for

the most abundantly mapped HPV in 303 tumors in the TCGA CESC project [50]. Each of the 303 libraries are represented on the X-axis (sorted based on Y-axis value).

Y-axis indicates the percentage of the positions in the HPV genome with read mappings. Libraries with> = 50% coverage (213 libraries) were used for subsequent

analysis. (C) Percentages of TCGA cervical squamous cell carcinoma (CESC) libraries with miRDeep2 miRNA identifications for each set of reference sequences.

Number of libraries examined is 213. (D) Number of unique miRDeep2 miRNA identifications across TCGA CESC libraries for each set of reference sequences.

Number of libraries examined is 213. (E) Percentages of Qian et al. [40] libraries with miRDeep2 miRNA identifications for each set of reference sequences. Number of

libraries examined is 12. (F) Number of unique miRDeep2 miRNA identifications across Qian et al. libraries for each set of reference sequences. Number of libraries

examined is 12. (G) Raw read counts of all small RNAs mapping to the indicated reference sequences for each library from Qian et al.

https://doi.org/10.1371/journal.ppat.1007156.g004
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Fig 5. MiRNA candidates identified from miDGE analysis are detected by Northern blot. (A) Northern blot analysis of total RNA from HEK293T cells transfected with

indicated miRNA or putative miRNA expression vectors, with ethidium bromide stained low molecular weight RNA shown as a load control. This figure represents a
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the five reporters when co-transfected with respective miRNA expression vectors, but not in

negative control reporters (Fig 6). These results suggest that each of the identified miRNA/can-

didates undergo canonical processing and are active in RISC.

A final criterion for confirmation of bona fide viral miRNAs includes detectable expression

in infected cells or tissues. To date, we have been unable to obtain published or unpublished

datasets to uncover samples infected with HPVs 17, 37 or 41. It would be informative in future

studies to examine the expression/activity of these miRNAs if relevant human datasets or cell

culture models become available. However, FcPV1 infection is recognized as a cause of macro-

scopic proliferative skin lesions affecting the legs and feet of chaffinches (Fringilla coelebs) with

deeply fissured papillary growths (i.e., papilliferous), subsequently referred to here as ‘leg

lesions’ [51] (Fig 7C inset). Therefore, we investigated the presence of candidate PV miRNAs

in available leg lesion samples from wild chaffinches. We were able to obtain RNA from host

tissue which tested positive for FcPV1 DNA by PCR [52]. We sampled both available leg lesion

and apparently normal pectoral muscle tissue as a negative control from the same birds. We

performed small RNA-seq profiling of the libraries and compared this with the data derived

from our miDGE libraries (Fig 7A and 7B). Similar to our miDGE results, in the library pre-

pared from leg lesions, we observed a pattern of reads mapping to the two confirmed pre-miR-

NAs (Fig 7B and 7C). Further consistent with miDGE, this analysis also identified a lower

abundance, low-scoring third candidate miRNA (provisionally “candidate fcpv1-miR-F3”) in

the L2 genomic region (Fig 7B and 7C). Other small RNAs mapped to the FcPV1 genome but

these did not match a pattern consistent with miRNA biogenesis and likely represent nonspe-

cific degradation of larger FcPV1 transcripts. In contrast, few read mappings were observed in

the library prepared from negative control pectoral muscle (Fig 7D). Combined with the above

biogenesis and activity data, these results demonstrate that FcPV1 infection gives rise to at

least two bona fide PV miRNAs. Additionally, of the remaining PV miRNA candidates (HPVs

17, 37 & 41), we can say with confidence they are highly probable miRNAs, meeting all criteria

of bona fide miRNAs with the exception of detection in infected cells. In keeping with the

miRNA naming convention set forth by miRBase [53], we name these miRNAs/candidate

miRNAs: fcpv1-miR-F1, fcpv1-miR-F2, hpv17-miR-H1, hpv37-miR-H1 and hpv41-miR-H1.

PV miRNAs and select candidates can directly regulate transcripts

corresponding to the early viral genomic region

Previous studies in the small DNA virus polyomavirus (PyV) family demonstrated that PyV

miRNAs directly regulate early viral transcripts [19,54,55]. Further, bandicoot papillomatosis

carcinomatosis viruses (BPCVs), that have hybrid PyV-like early genes and genomic organiza-

tion but PV-like capsid genes, also regulate early viral transcripts via viral miRNAs [56].

single membrane that was probed first for control SV40 miRNA, then stripped and re-probed for each of the indicated miRNAs. Solid and outline arrows on left side

correspond to pre-miRNAs and mature miRNAs, respectively, and approximate sizes are noted on right side. (B) Northern blot analysis of total RNA from HEK293T cells

transfected with anti-Drosha siRNA or negative control (NC) siRNA, then re-transfected after 48 hours with respective siRNAs and indicated putative miRNA expression

vectors. Total RNA was harvested after 48 hours. Ethidium bromide stained low molecular weight RNA shown as a load control. This figure represents a single membrane

that was probed first for control SV40 miRNA, then stripped and re-probed for each of the indicated miRNAs. Membrane was additionally probed for HSUR (Herpesvirus

saimiri U RNA 4) as a transfection control. Normalized to HSUR RNA, all indicated miRNAs are detected at higher intensity in negative-control-treated cells than Drosha

knockdown cells, suggesting canonical dependence on Drosha processing. The numbers below each blot correspond to the ratio of mature miRNA signal in control cells

compared to mature miRNA signal in Drosha-knockdown cells after each signal has been normalized to load control HSUR signal. Note: due to sequence similarity

between putative HPV-derived miRNAs, cross-reactivity is seen in hpv17-miR-H1 lanes and hpv37-miR-H1 lanes. (C) Northern blot analysis of RNA from either

HEK293T or Dicer KO (NoDice [68]) cells transfected with the indicated miRNA expression vectors. Solid and outline arrows on left side correspond to pre-miRNAs and

mature miRNAs, respectively. The numbers below each blot correspond to the ratio of mature miRNA signal to pre-miRNA signal, normalized to the same ratio in

HEK293T cells. This figure represents a single membrane that was probed, then stripped and reprobed with the indicated oligonucleotide probes (SV40, FcPV1 F1 and F2,

HPV41 miRNA probes) and a second membrane for HPV17 and HPV37 miRNAs. Ethidium bromide stained low molecular weight RNA is shown as a load control.

https://doi.org/10.1371/journal.ppat.1007156.g005
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Therefore, we performed bioinformatic analysis to examine the possibility that PV miRNAs

could regulate early viral gene expression. To identify putative viral target transcripts, we iden-

tified seed complementary sites of 7 or more nucleotides for each PV miRNA in its respective

genome. This analysis revealed candidate target sites for derivatives from each of the five high

confidence PV pre-miRNAs (S3 Table). Notably, both FcPV1 and HPV41 had candidate viral

miRNA docking sites within the E1/E2 regions of their genomes, which has previously been

demonstrated to include transcripts regulated by a host miRNA for HPV31 [25] (Fig 3D). We

therefore tested these possible PV mRNA docking sites by engineering chimeric luciferase

reporters containing either the entire E1/E2 region (termed “Early”) or sub-portions of the E1

or E2 genetic region encompassing a single predicted site of each respective genome (Fig 8).

Co-transfection of the “Early” reporter plasmids with individual PV miRNA expression vec-

tors revealed that “Early” reporters for the FCPV1 and HPV41 genomes display significantly

less expression in the presence of their respective viral miRNAs (Fig 8). Co-transfection of

FcPV1 miR-F1 alone reduced expression of the FcPV1 E1/E2 reporter and this regulation was

enhanced by co-transfecting plasmids expressing both FcPV1 miRs-F1 and F2 (Fig 8A). As

expected, co-transfection of the respective viral miRNA with the predicted single site reporters

Fig 6. PV-encoded miRNAs are active in RISC. RISC reporter assays for the PV-encoded miRNAs where HEK293

cells were co-transfected with a firefly luciferase transfection control and Renilla luciferase reporter with either

perfectly complementary sequence matches for each indicated miRNA, or its respective negative control seed

complement mutant. Either of these were co-transfected with control empty miRNA expression vector (blue), the

relevant PV miRNA-expression vector (orange), or negative control irrelevant miRNA expression vector (SV40)

(gray). Average Renilla luciferase activity relative to firefly luciferase normalized to empty miRNA expression vector

control is shown for fcpv1-miR-F1 (N = 3), fcpv1-miR-F2 (N = 5), hpv41-miR-H1 (N = 5), hpv17-miR-H1 (N = 3),

and hpv37-miR-H1 (N = 4). Statistical test performed was a Two-Sample t Test. The average Renilla luciferase activity

normalized to firefly luciferase activity is shown, error bars indicate Standard Error, and asterisks indicate statistical

significance, (�) p�0.05; (��) p�0.01.

https://doi.org/10.1371/journal.ppat.1007156.g006
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demonstrated a significant reduction in luciferase expression. Importantly, negative control

reporters containing nucleotide mutations in the seed complement region of each predicted

PV miRNA docking site alleviated the repression that we observed. When the same experi-

mental setup was performed with the HPV41 miRNA and reporters, we observed similar

results (Fig 8D). Co-transfection of the HPV41 E1/E2 reporter and miRNA expression vectors

demonstrated a significant reduction in luciferase expression. Co-transfection of the HPV41

E1 reporter, but not the E2 reporter, resulted in a similar reduction as the full E1/E2 genomic

region reporter, suggesting the E1 region contains the most relevant miRNA docking site. In

contrast, the negative control HPV41 E1 mutant reporter was not regulated in response to

miRNA expression vector transfection (Fig 8B–8D). These results demonstrate that FcPV1

and HPV41 miRNAs/candidates are able to directly regulate transcripts corresponding to the

PV early genomic region.

Fig 7. FcPV1 miRNAs are detected in vivo during viral infection. (A) DNA-seq coverage for FcPV1 genome in miDGE library is plotted on log10 scale on the y-axis.

The x-axis corresponds to position in the genomic sequence. A schematic of the FcPV1 gene organization taken from NCBI reference sequence NC_004068 is provided

at the top. (B) Small RNA-seq coverage for FcPV1 genome in miDGE library is plotted on log10 scale on the y-axis. Values above the x-axis correspond to the forward

strand and those below correspond to the reverse strand. The x-axis corresponds to position in the genomic sequence. Peaks corresponding to the newly identified

miRNA genes are labeled. (C) Plot of read coverage and start sites for reads mapping to the FcPV1 genome in library prepared with RNA from infected chaffinch leg

lesion samples. On the y-axis, coverage is plotted with gray lines and read start counts are plotted with black impulses. Values above the x-axis represent the forward

strand and those below represent reads mapping to the negative strand. Genomic position is indicated on the X-axis. Peaks corresponding to the newly identified

miRNA genes (fcpv1-miRs-F1 & F2) are labeled as well as the lower expressed candidate miRNA “fcpv1-miR-F3”. The inset photograph is of one of the chaffinches with

characteristic leg lesions used in preparation of the small RNA-seq libraries. (D) Plot of read coverage and start sites for reads mapping to the FcPV1 genome in library

prepared with RNA from chaffinch pectoral muscle samples. On the y-axis, coverage is plotted with gray lines and read start counts are plotted with black impulses.

Values above the x-axis represent the forward strand and those below represent reads mapping to the negative strand. Genomic position is indicated on the X-axis.

Peaks corresponding to the newly identified miRNA genes are labeled.

https://doi.org/10.1371/journal.ppat.1007156.g007
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Fig 8. PV-encoded miRNAs can regulate transcript sequences in early genes. RISC reporter assays for the PV-encoded miRNAs. In all panels, the average

Renilla luciferase activity normalized to firefly luciferase activity is shown, error bars indicate Standard Error, and asterisks indicate statistical significance, (�)

p�0.05; (��) p�0.01. (A) HEK293T cells were co-transfected with either a control empty miRNA expression vector (control) or the indicated PV miRNA

expression vector along with both the normalization control firefly luciferase vector and a Renilla luciferase-based reporter plasmids with vector UTR (Empty

3’UTR) or FcPV1 genomic DNA containing both putative miRNA docking sites (FcPV1 Early), N = 4. Statistical test performed was a One-Sample t Test. (B)

HEK293T cells were co-transfected with either the SV40 miRNA expression vector (Control) or the indicated PV miRNA expression vector and both the

control firefly luciferase vector and the Renilla luciferase-based reporter plasmids with vector UTR (Empty), FcPV1 E1 genomic sequence (E1), or the seed

sequence mutant (E1 mut), N = 4. Statistical test performed was a One-Sample t Test. (C) HEK293T cells were co-transfected with either the SV40 miRNA

expression vector (Control) or the indicated PV miRNA expression vector and both the control firefly luciferase vector and the Renilla luciferase-based

reporter plasmids with vector UTR (Empty), FcPV1 E2 genomic sequence (E2), or the seed sequence mutant (E2 mut), N = 12. Statistical test performed was
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Discussion

Members of diverse virus families express miRNAs [4,5,7,30]. These include the herpesviruses,

polyomaviruses, anelloviruses, and retroviruses [6,21,31,32]. Notably, all of these viruses

undergo persistent infection, have access to the nucleus where key miRNA processing machin-

ery resides and are exclusively DNA viruses or have a DNA component to their lifecycle.

Viruses with a persistent component to their life cycle may especially benefit from the typically

subtle regulation afforded by miRNAs. Based on these characteristics, at least some members

of the PV family would be expected to encode miRNAs. Yet, until now, no widely accepted PV

miRNAs are known. Here we report the first high confidence papillomavirus-encoded miR-

NAs from a minor subset of PVs.

We identify PV miRNAs from chaffinch leg lesions and highly probable miRNAs from the

human PVs 17, 37, and 41. We designate the latter as “highly probable” because although they

passed stringent cell culture-based criteria, due to a lack of relevant samples, we have not yet

verified their existence in vivo. All five display the hallmarks of canonical miRNAs (Fig 5),

including being processed by Dicer and Drosha and being highly active in RISC [8]. These

RNAs derive from three divergent clades of PVs. HPVs 17 and 37 are in the beta clade, some

members of which have been proposed to have a role in skin cancers [2]. The pre-miRNA hair-

pin region of the L2 locus for these viruses appears to have evolved in a common ancestor of

these viruses, and may be shared with closely related HPVs 15 & 80. Sequence-structure align-

ments suggest the existence of a highly conserved hairpin in these viruses. However, since

HPVs 80 and 15 were either not included (HPV80) or only very poorly covered (HPV15) in

our library, additional experiments will be required to determine whether they indeed produce

conserved miRNAs. HPV41 is notable in that it is the sole member of the Nu clade and is one

of the few PVs that have starkly different locations in a PV family phylogenetic tree, depending

if the tree is built upon the late (L1) or early proteins (E1). This implies HPV41 is likely a

hybrid virus that arose from recombination [57] and may help to explain its atypical ability to

encode a miRNA. FcPV1 is only distantly related to human PVs but its association with highly

keratinized hyperplastic lesions allowed us to obtain RNA from PV-associated diseased chaf-

finch tissue. This confirmed that FcPV1 miRNAs are expressed in vivo (Fig 7) and further con-

firmed their status as bona fide viral miRNAs.

The HPV41 miRNA and one of the FcPV1 pre-miRNAs are found in non-protein-coding

genomic locations, a common feature of most miRNAs. Notably, one of the FcPV1 miRNA

loci, fcpv1-miR-F2, and the HPV41 miRNA locus are both found in similar locations down-

stream of the late genes past the likely late polyadenylation signal sequence. In contrast, the

HPV17 and 37 miRNAs, as well as the other abundant FcPV1 miRNA (as well as the low abun-

dance FcPV1 candidate), are found in a similar genomic region overlapping and in the same

transcriptional orientation as the L2 locus (Fig 3D). Although these miRNAs could derive

from an intronic primary transcript, it is nonetheless atypical for a pre-miRNA gene to overlap

a protein-coding gene. Similar genomic arrangements are observed for miR-BHRF1 and the

EBNA-LP gene in Epstein Barr Virus [58] and miR-K12 and the Kaposin gene in KSHV

[48,59]. For KSHV, Drosha can suppress Kaposin expression in latent infection, but its steady

state levels and consequent ability to regulate Kaposin levels decrease during stress and at late

times of lytic infection [60,61]. Therefore, it is conceivable that FcPV1 and HPVs 17 & 37

a One-Sample t Test. (D) HEK293T cells were co-transfected with either the SV40 miRNA expression vector (Control) or the HPV41 miRNA expression

vector and both the control firefly luciferase vector and the Renilla luciferase-based reporter plasmids with vector UTR (Empty), HPV41 genomic DNA

containing both putative miRNA sites (HPV41 Early), the site in E1 (HPV41 E1), the seed sequence mutant (E1 mut) N = 7 or the site in E2 (HPV41 E2),

N = 4. Statistical test performed was a One-Sample t Test.

https://doi.org/10.1371/journal.ppat.1007156.g008
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similarly utilize Drosha to aid in controlling the expression of L2. HPV17 and 37 are the only

PV miRNAs/candidates that share a high degree of sequence identity (91% 3P, 91% 5P), con-

sistent with them being derived from virus types that are closely related. Except for HPVs17

and 37, there is no obvious relationship between the miRNA-positive PVs that might account

for why they would preferentially encode miRNAs.

miDGE covered at least 698,000 nucleotides of sequence space (the sum of viral genome

sequences covered by our JMRV and PV libraries) and called only few candidates other than

the positive controls and the five high-confidence PV miRNAs that we validated. Therefore,

we conclude that miDGE has an intrinsic low false positive rate. These findings are consistent

with the current understanding that pre-miRNA hairpins have specific structural features that

are required for efficient processing [62–64]. It should be noted, though, that since miDGE

forces ectopic expression of genomic sequences, its predictions require independent validation

to ensure that potential candidates are also expressed by authentic viral transcriptional units.

Compared to false positive rates, it is more difficult to estimate the frequency of false nega-

tives in our approach. Generally, our analysis of JMRV suggests that the majority of bona-fide

miRNAs are readily identified by miDGE. The sole JMRV miRNA that was missed by miDGE

also evaded detection when we analyzed material from infected fibroblasts, demonstrating fail-

ure to identify jmrv-miR-jR1-7 was due to limitations of the miRDeep2 analysis pipeline rather

than the miDGE protocol itself. The miRDeep2 algorithm identifies pre-miRNA candidates

based on expected read coverage profiles produced by mature 5p- and 3p-miRNA species.

These profiles are used to “excise” sequences for prediction of potential pre-miRNA hairpin

structures. Based on the inspection of candidate sequences analyzed by the pipeline, we suspect

that the close proximity of clustered miRNAs in the JMRV genome had led to an inaccurate

excision of the jmrv-miR-jR1-7 precursor. As closely clustered miRNAs are a typical feature of

herpesvirus genomes, such limitations should not severely impede our ability to identify PV

miRNAs. Instead, we consider it more likely that some bona fide miRNAs in the 113 PV types

that we strived to analyze may have evaded detection due to incomplete coverage of their

genomes. In fact, only a subset of PV genomes (n = 63) had near-complete (>99%) coverage

in our DNA libraries. Therefore, we can only make negative conclusions on this limited set of

PVs. Our results show that 59/63 PV genomes with near-complete DNA coverage lack the abil-

ity to efficiently give rise to canonical miRNAs. This list includes high-risk HPVs such as

HPV16 which our further transcriptomic analysis demonstrated does not encode miRNAs in

tumors or cancer cell line settings (Fig 4A–4G). Although we acknowledge that our findings

are skewed toward the alpha clade human PVs, we conclude that numerous and diverse PVs

lack the ability to encode their own miRNAs.

What are the functions of the PV miRNAs? Our bioinformatic analysis and reporter assays

(Figs 4A–4G and 8A–8D) suggest that one function of FcPV and HPV41 miRNAs is to regu-

late viral gene expression. This notion is consistent with the known function of other viral

miRNAs, especially those derived from the PyVs and BPCVs [23,56]. Although we did not pre-

dict high confidence docking sites in the E1/E2 region for the HPVs17/37 miRNAs, until

experimentally tested, we cannot rule out regulation of viral gene expression by these miRNAs.

Since our results suggest that many PVs do not encode miRNAs, this raises the question of if/

how such viruses fine-tune their own gene expression. For at least one high risk PV, HPV31,

the answer seems to be by co-opting host miRNAs [25]. Gunasekharan et al. demonstrated

that miR-145 is expressed at higher levels in undifferentiated versus differentiated keratino-

cytes, displaying an inverse pattern to HPV31 replication levels. miR-145 negatively regulates

HPV31 genome replication and gene expression. Interestingly, miR-145 directly docks to and

regulates the E1/E2 transcripts in a genomic region similar to that we have uncovered for

FcPV1 and HPV41 miRNAs. Our bioinformatic analysis of all human miRNAs and fully
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sequenced PV genomes (S9 Dataset), similar to the published work of Gunasekharan et al.,
suggests many other PVs could utilize a similar host miRNA strategy to regulate the E1/E2

transcripts. Further, we observed a near perfect complementary putative target site for Let7

miRNA in the FcPV1 genome in the late 3’ UTR, implying regulation by small interfering

(siRNA)-like RISC-mediated mRNA cleavage (S4 Fig). These results further support the likeli-

hood that diverse PVs utilize host miRNAs to regulate viral gene expression. Combined, these

findings suggest that miRNAs of host and/or viral origin are utilized by PVs to optimize viral

gene expression.

Our results demonstrate that miDGE can be a fruitful approach when applied to numerous

viruses. However, while miDGE allowed us to make reasonable conclusions for ~63 PV

genomes, some genomes that we intended to include in our miDGE procedure were under-

represented in the final libraries. Although we believe one major reason for this discrepancy is

due to incorrect PV genomic plasmids included in our original library pools, library coverage

should be optimized in future applications of miDGE. Since miRNAs are generally stable,

miDGE could be used to identify biomarkers for gene expression of unculturable pathogens.

In addition to pathogen genomes that cannot be grown in culture, miDGE may have utility for

identifying miRNAs expressed in only a few rare cells of an organism. For example, miR-Lys6

is only expressed in fewer than 10 cells in Caenorhabditis elegans and had been missed by most

standard miRNA biochemical identification procedures [65]. It is likely that similar miRNAs

exist in complex multicellular organisms and these could be identified using miDGE.

In summary, we have developed wet bench technology that can identify miRNAs from

genomes for which complete transcriptomes are not readily available, whether viral or other-

wise. This approach opens the possibilities for miRNA discovery to the enormous range of

pathogens for which genomic data is available, but are unculturable in a laboratory setting. In

this initial study, our approach uncovered five new PV highly probable/bona fide miRNAs. As

viral miRNAs often alter host targets conducive to infection, it will be interesting to determine

any relevant host targets of these miRNAs. Moreover, as our work lends additional support to

the role of miRNAs in control of the PV life cycle, it will be important to determine if variabil-

ity in miRNA expression or activity can contribute to the differences in tropism and pathogen-

esis associated with the various PV types.

Materials and methods

miDGE

For the construction of our JMRV miDGE library, a cosmid containing ~38kb of the viral

genome (nts 83,148 to 119,569) was sonicated to produce fragments with an average size of

300-400bp. Sub-genomic fragments in the appropriate size range were purified from agarose

gels, blunted and phosphorylated using the Epicentre End-It End-Repair kit and cloned into

an pDNA3 vector to produce a miDGE expression library. For the PVs, plasmids containing

cloned PV genomes (S2 Table) were collected from various labs. We reasoned that, due to

their substantially lower size, PV genomes might shear less efficiently compared to the JMRV

and therefore utilized restriction enzyme digestion in addition to the sonication protocol to

produce the PV miDGE library. For this purpose, the collection of PV plasmids and the posi-

tive controls SV40 and MCPyV was divided into four sub-groups containing between 27 and

46 genomes, followed by digestion with three different 4-base pair cutter restriction enzymes

(BsrFI, BstyI and EaeI). The resulting fragments were then cloned into compatible sites of the

pcDNA3.1 vector (AgeI, BamHI and NotI, respectively). Coverage of individual genomes in

the JMRV sonication library, or the PV fragment libraries produced by restriction-digestion or

sonication was determined via high-throughput sequencing on Illumina HiSeq 2500 and
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MiSeq systems using the TruSeq DNA Library Prep Kit. Dataset S1 provides coverage profiles

of PV genomes in bedgraph format, the percentage of individual genomes covered in our

miDGE libraries is listed in S2 Table.

We transfected the JMRV and PV expression libraries into HEK293T via lipofection, harvested

total RNA using PIG-B [66], and size fractionated the isolated RNA via excision from a 15% dena-

turing polyacrylamide gel to enrich for RNA in the size class between approximately 10–35 nucle-

otides. This RNA was then used to produce small-RNA libraries for Illumina sequencing. In

parallel, as a positive control we generated small-RNA-seq libraries with RNA from JMRV-

infected fibroblasts, kindly provided by Scott Wong (Vaccine and Gene Therapy Institute, Oregon

Health & Science University, Beaverton, Oregon, USA). Since different library preparation meth-

ods can potentially result in a bias that can result in underrepresentation of individual miRNA

species, we used the TruSeq Small RNA Sample Preparation Kit (Illumina) as well as the NEBNext

Small RNA Library Kit (New England Biolabs) to generate Illumina-compatible sequencing

libraries. The libraries were then sequenced on a HiSeq 2500 System (50 cycles, single end reads)

producing a total of 30 million raw reads for JMRV-infected fibroblast, or 112 and 712 million

reads for HEK293T cells transfected with JMRV or PV miDGE libraries, respectively. After trim-

ming, reads were first mapped with bowtie v1.2.1.1 (options -n 0 -e 80 -l 18 -a -m 5—best—strata)

to viral genomes (see S2 Table for PV accession numbers) to investigate viral read coverage. Non-

aligned reads were subsequently aligned to the human transcriptome (ENSEMBL release-91

GRCh38 cDNA and non-coding RNA sequences) to elucidate mapping to different RNA species

as shown in Table 1. Viral and host reads were then extracted from the bam alignment files,

merged and collapsed using the mapper.pl script of the miRDeep2 v2.0.0.8 package [47]. The col-

lapsed reads were then used to perform a miRDeep2 prediction of novel miRNAs, using default

options and, in addition to the collapsed reads and viral genomes, providing the pipeline with the

set of human precursor and mature miRNA sequences from miRBase v21 [53] as a reference. To

eliminate potential low-complexity reads, prior to prediction of novel miRNAs or mapping to

viral genomes, collapsed FASTA reads were optionally filtered using the prinseq-lite package

v0.20.4 [67], using an entropy cutoff value of 70. Bam files containing all primary reads aligned to

viral genomes or the host transcriptome are available via the European Nucleotide Archive (ENA,

https://www.ebi.ac.uk/ena) under accession number PRJEB25054.

Plasmids and cells

HEK293 or HEK293T cells were originally obtained from ATCC and maintained in DMEM

supplemented with 10% (vol/vol) FBS and Pen/Strep (Cellgro). HEK293T Dicer KO cells were

obtained from Dr. Bryan Cullen, Duke University (NoDice, [68]). All cells were grown at 37C

in the presence of 5% CO2.

Plasmids containing the genomes of the papillomaviruses used in this study were obtained

from labs indicated in S5 Dataset. A cosmid containing nts 83,148 to 119,569 of the JMRV

genome (NC_007016) was kindly provided by Scott Wong (Vaccine and Gene Therapy Insti-

tute, Oregon Health & Science University, Beaverton, Oregon, USA).

The miRNA expression vectors were cloned using PCR amplification of the relevant por-

tions (generally speaking, this contains the putative miRNA site as well as ~100–150 bp flank-

ing said site) of the viral genome (from genomic plasmids), followed by restriction enzyme

digestion and ligation. Specifically, the indicated regions of each viral genome listed in S6

Dataset were inserted into the XhoI/XbaI sites of pcDNA3.1 (Invitrogen). The SV40 miRNA

expression construct is as previously described [32].

Luciferase reporter plasmids were constructed using PCR amplification of the relevant por-

tions of the viral genome (from genomic plasmids), followed by restriction enzyme digestion
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and ligation. In this case, these sequences were cloned into the XhoI/XbaI sites of

pcDNA3.1dsRluc which places the desired sequences into the 3’UTR of the Renilla Luciferase

gene. Seed site mutant constructs were altered via PCR-based site directed mutagenesis at the

indicated positions 2, 3, and 5 of the seed complement site (FcPV1 mutant constructs), or posi-

tions 2, 3 (HPV41 mutant construct) listed in S6 Dataset. To make the perfectly complemen-

tary RISC reporters for each miRNA, sequences with two perfectly complementary binding

sites for each miRNA with a 12 nucleotide spacer region were synthesized (Integrated Data

Technologies) and cloned into the Xho1/Xba1 sites of pcDNA3.1dsRLuc plasmid as listed in

S6 Dataset. Respective mutants were made by mutating three nucleotides in the seed comple-

ment sequence of each binding site, also listed in S6 Dataset.

Phylogenic analysis

Species tree was constructed using the nucleotide sequences of L1 gene region of papillomavi-

rus genomes for all genomes with greater than 95% coverage in miDGE analysis (73 viral

genomes in total). Sequences were aligned using CLUSTALW [69] in Geneious [70]. Initial

tree(s) for the heuristic search were obtained automatically by applying a Neighbor-Joining

algorithm [71] to a matrix of pairwise distances estimated using the Maximum Composite

Likelihood (MCL) approach [72], and then selecting the topology with superior log likelihood

value. The tree with the highest log likelihood is shown.

RISC activity assay

HEK293 or HEK293T cells (as designated in figure legends) were split and plated onto twelve

well dishes so that they were approximately 70% confluent the following day. These plates

were then co-transfected with five ng of the indicated Renilla Luciferase-based reporter con-

structs (pcDNA3.1dsRluc [73]), five ng of Firefly Luciferase reporter (pcDNA3.1dsLuc2CP

[73]) and one ug of either a control miRNA expression construct (the SV40 miRNA expression

construct) or the indicated miRNA expression vector using Lipofectamine 2000 according to

the manufacturer’s instructions. Transfections were carried out in triplicate for each transfec-

tion, which were considered technical replicates. Forty-eight hours later, cells were harvested

with 100 uL of 1X Passive Lysis buffer from the Dual-Glo Luciferase Assay System (Promega).

5 uL of lysate from each well was then analyzed in duplicate for Renilla and Firefly luciferase

activity with a Luminoskan Ascent luminometer (Thermo Electronic). These experiments

were then performed for at least 3 biological replicates (new transfections on separate days),

with the exact number noted in the individual figure legend. Data was analyzed by dividing

the Renilla luciferase activity value by the Firefly luciferase activity value to obtain a Renilla/

Firefly luciferase activity ratio. These ratios were then averaged between the two measures for

each well of the twelve well dish. Then the averaged Renilla/Firefly ratio was averaged for each

of the technical triplicate wells, with the resulting average used to normalize the final values

such that the no miRNA control Renilla/Firefly ratio was set to 1. The one-sided Student’s t-

test was used to assess the statistical significance of observed differences, with a P value

of< 0.05 considered statistically significant. Primary data and analysis are in S7 Dataset.

miRNA detection assay

HEK293T cells were plated into 12-well dishes so that they were approximately 70% confluent

the next day. At that point, they were transfected with 1ug of the indicated miRNA expression

constructs per well of cells with Lipofectamine 2000 (Invitrogen) in accordance with the man-

ufacturer’s instructions. 48 hours post-transfection, total RNA was harvested with PIG-B and

Northern blot analysis was performed as described previously [66]. Briefly, following harvest,
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total RNA was quantitated by NanoDrop. Equal amounts of RNA were then run on a denatur-

ing PAGE gel and transferred to Amersham Hybond–N+ membrane (GE Healthcare). This

membrane was then probed with indicated DNA oligonucleotide probe that was radioactively

labeled with P32 and visualized through exposure to a phosphor screen and images were cap-

tured on the Typhoon (probe sequences indicated S6 Dataset, uncropped scans in S8 Dataset).

The blots were stripped of the DNA probe through incubation with boiling water and SDS,

and reprobed with different DNA oligonucleotide probes.

Drosha dependence assay

HEK293T cells were plated into 6-well dishes so that they were approximately 70% confluent

the next day. At that point, they were transfected with 20 nM Drosha siRNA (Sigma Aldrich)

or negative control siRNA (Sigma Aldrich Mission siRNA SIC001) per well of cells using Lipo-

fectamine RNAiMAX (Invitrogen) according to the manufacturer’s instructions. Forty-eight

hours later these cells were trypsinized and, replated to new wells of a 6 well dish. The follow-

ing day, these cells were approximately 70% confluent, and were transfected with the respective

siRNAs and the indicated miRNA expression constructs or HSUR4 transfection/load control

expression vector [21,74] (2ug/well as in the miRNA Detection assay) with Lipofectamine

2000 (Invitrogen) according to the manufacturer’s instructions. Forty-eight hours later, total

RNA was harvested with PIG-B and Northern blot analysis was performed as previously

described [66] and in miRNA Detection Assay. The membrane for Northern blot analysis was

probed with DNA oligonucleotides as indicated in S6 Dataset. Signal was quantitated using

Image Studio Lite software, and ratios of mature miRNA signal in negative control cells to

Drosha-knockdown cells (relative to transfection/load control HSUR4 signal) were calculated

for each PV miRNA (S7 and S8 Datasets).

Dicer dependence assay

HEK293T and HEK293T Dicer KO cells (NoDice, [75]) were plated into 6 well dishes so that

they were approximately 70% confluent the next day. At that point, they were transfected with

2ug/well of the indicated miRNA expression vectors using Lipofectamine 2000 (Invitrogen) in

accordance with the manufacturer’s instructions. Forty-eight hours post-transfection, total

RNA was harvested with PIG-B and Northern blot analysis was performed as in the miRNA

Detection Assay section. The DNA oligonucleotide probes are listed in S6 Dataset. Signal was

quantitated using Image Studio Lite software, and ratios of mature miRNA signal in negative

control cells to Dicer KO cells (relative to the same ratio in HEK293T cells) were calculated for

each PV miRNA (S7 and S8 Datasets).

Detection of PV miRNA from In Vivo chaffinch leg lesions

Total RNA was extracted from both leg lesions and pectoral muscle (control) tissue from two

chaffinches with proliferative leg skin lesions that were PCR-positive for FcPV1 DNA. The

affected chaffinches were found dead by members of the public and submitted for post-mor-

tem examination to a national scanning surveillance scheme for wild bird disease in Great

Britain (Lawson et al. in prep.). Samples of leg lesions and apparently normal pectoral muscle

were collected at post-mortem examination and archived at -80 oC and -20 oC respectively.

Samples were finely minced using sterile scalpel blades, and then ~20 mg of tissue was mixed

with 350 μl of RTL:β-ME solution (1 ml buffer RTL [Qiagen] with 10 μl β-mercaptoethanol)

and homogenized. The lysate was centrifuged at maximum speed in a microcentrifuge for 3

min and transferred to a fresh microcentrifuge tube. Ethanol (100%) was added to the cleared

lysate to bring the final concentration up to 60% ethanol. Next, the samples were applied to an
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RNeasy (Qiagen) mini-spin column to purify the total RNA according to the manufacturer’s

instructions, except that after the final wash step, the samples were stored at approximately 4˚ C

for several days while still on the column. The final elution steps were conducted with one vol-

ume of nuclease-free water and then repeated with one volume of nuclease-free Tris-EDTA

(TE), pH 7. Pooled small RNA-seq libraries were prepared from RNA harvested from either

foot lesions or pectoral muscle from animals CF180/09 and CF229/12. Equal volumes of total

RNA were combined and ethanol precipitated. Recovered RNA was dissolved in nuclease free

water (Ambion) and quantitated with a NanoDrop spectrophotometer (ThermoFisher). Librar-

ies were prepared using 180 ng of pooled RNA with the NEBNext Multiplex Small RNA Library

Prep Set for Illumina (E7300, New England Biolabs) according to the manufacturer’s instruc-

tions with the addition of an additional round of indexing PCR to compensate for low input

RNA. Libraries were quantitated with the Qubit dsDNA BR assay (ThermoFisher), QC checked

with the Bioanalyzer High Sensitivity assay (Agilent Technologies), combined with other bar-

coded libraries, and sequenced on a single lane of a SR50 run on a HiSeq 4000 (Illumina) by the

Genomic Sequencing and Analysis Facility at UT Austin. 106,251,321 and 122,129,107 reads

were obtained for the foot and pectoral samples respectively (SRA accession: SRP133175). Small

RNA reads were pre-processed by trimming the adaptor sequences and removing trimmed

sequences shorter than 18 nucleotides with Cutadapt (version 1.4.2) [76]. Reads were mapped

with SHRiMP2 (version 2.2.3) [77] to the reference sequences consisting of miRBase release 21

annotated zebra finch miRNAs [53] and FcPV1 reference sequence (NC_004068).

RNA-seq analysis of high risk HPVs in cervical cancer

The Cancer Genome Atlas cervical cancer RNA-seq datasets were retrieved from the NCI

Genomic Data Commons. From the large RNA-seq data sets, sequenced coverage was calcu-

lated for the HPV reference sequence with the greatest number of alignments. Tumors with>

= 50% coverage for an HPV were used for subsequent analysis (213 small RNA data sets).

Aligned BAM files were converted to miRDeep2 format and the miRDeep2 pipeline was run

with default parameters without miRNA annotations. BEDTools was used to assign the de

novo miRDeep2 identified miRNAs to miRBase release 21 annotations.

Re-analysis of small RNA-seq data from Qian et al. [40]

Small RNA data sets associated with NCBI GEO project GSE42380 were retrieved from the

NCBI SRA. The SRA files were converted to colorspace FASTQ format using the SRA Toolkit.

Adapter sequences were trimmed from reads using Cutadapt (version 1.4.2) [76]. The

trimmed libraries were mapped to miRBase release 21 annotated human miRNA sequences

[53] and viral reference sequences using SHRiMP2 (version 2.2.3) [77] (reference sequences

are listed in S7 Dataset). Resulting SAM files were converted to miRDeep2 format and the

miRDeep2 pipeline was run with default parameters without miRNA annotations [47].

Supporting information

S1 Fig. Small RNA-seq read coverage across JMRV miRNAs. Each panel depicts small RNA-

seq coverage in material from JMRV-infected fibroblasts (upper plots) or 293T cells trans-

fected with our miDGE fragment library (lower plot in each panel). Gray bars under the plots

indicate the location of pre-miRNA hairpins. Thicker sections denote the location of previ-

ously annotated mature miRNA sequences. Coverage is shown in a strand-specific manner for

each miRNA and precursor (i.e., only reads matching the proper miRNA sequences are

shown).

(TIF)
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S2 Fig. Small RNA-seq read coverage across PV miRNAs. Plots show small RNA-seq read

coverage from HEK293T cells transfected with PV miDGE libraries for the 5 novel papilloma-

virus miRNAs identified in this study (A) and the two positive control polyomaviruses miR-

NAs (SV40, MCPyV) contained in our library (B). Grey bars underneath the plots indicate the

location of pre-miRNA hairpin sequences, with thicker boxes denoting the location of mature

miRNA products. Coverage is shown in a strand-specific manner for each miRNA and precur-

sor (i.e., only reads matching the proper miRNA sequences are shown).

(TIF)

S3 Fig. Small RNA-seq read coverage across previously purported PV miRNA candidates.

Plots show small RNA-seq read coverage from HEK293T cells transfected with PV miDGE

libraries for 8 previously purported miRNAs in HPV types 6, 16, 38, and 45 (A) or 18 (B).

Panel C shows coverage of the suggest HPV type 18 precursor by reads from our JMRV

miDGE library transfection, demonstrating that coverage of these sequences is nonspecific.

Open bars and boxes underneath the plots in (A) indicate the location of suggested precursor

and mature miRNAs, respectively. Coverage in (A) is shown in a strand-specific manner for

each miRNA and precursor (i.e., only reads matching the proposed miRNA sequence are

shown). For the HPV type 18 candidate shown in (B) and (C), mature miRNAs (indicated by

thick block arrows) were proposed to derive from both strands of the precursor (thinner block

arrow). Therefore, plots in (B) and (C) show coverage across both strands of the viral genome.

(TIF)

S4 Fig. Diagram of putative let-7 microRNA target site. A diagram of the FcPV1 genomic

organization is provided at the top showing the positions of the known open reading frames

(ORFs). Below is a detailed view of the 3’ untranslated region following the L1 ORF and the

predicted base pairing with the let-7a-5p microRNA. Vertical bars "|" indicate predicted base

pairing and ":" indicates predicted wobble pairing. The let-7a sequence is from the closest rela-

tive with available genomic sequence, the zebra finch.

(TIF)

S1 Table. Counts of small RNA-seq reads mapped to JMRV miRNAs. The table shows

counts of small RNA reads from JMRV-infected fibroblasts (“infection”) or HEK293T cells

transfected with our miDGE library (“miDGE”) mapped to the indicated precursor or mature

JMRV miRNA regions.

(DOCX)

S2 Table. PV accession numbers and DNA-seq coverage in miDGE libraries. Column cov-

erage provides the percentage of the viral genome that was covered by our miDGE libraries,

according to high-throughput sequencing of the expression library. The column labeled acro-

nym denotes our internal label for individual genomes (also used as the identifier in all bam

files provided via the ENA archive).

(DOCX)

S3 Table. PV miRNA genomic seed matches. Reference PV genomic sequences were down-

loaded from PAVE [78]. Each sequence was searched for the perfect complement of the indi-

cated microRNA seed sequence (starting at position 2 of the microRNA and extending for the

length of a perfect match). Matches of length 7 or greater are reported. Positions of the E1 and

E2 ORFs are taken from the PAVE reference annotations.

(DOCX)

Large scale parallel identification of pathogen miRNAs

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1007156 July 26, 2018 25 / 31

http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007156.s002
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007156.s003
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007156.s004
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007156.s005
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007156.s006
http://journals.plos.org/plospathogens/article/asset?unique&id=info:doi/10.1371/journal.ppat.1007156.s007
https://doi.org/10.1371/journal.ppat.1007156


S1 Dataset. DNA-seq coverage across PV genomes. This dataset contains DNA-seq coverage

data across viral genomes contained in our miDGE PV libraries in bedgraph format.

(BG)

S2 Dataset. Summary of miRDeep2 predictions made for miDGE libraries. This dataset

shows an overview of all predictions made by miRDeep2 for our JMRV and PV libraries. Col-

umns C to N provide miRDeep2 prediction data in the pipeline’s standard tabular output format.

Columns A and B indicate the miDGE library for which the predictions were made (A) and the

designation of known or experimentally confirmed novel pre-miRNAs matching the miRDeep2

predictions (B). ‘l.c.’ in column B indicates likely false positive predictions which can be elimi-

nated by filtering reads for low complexity filters prior to performing the miRDeep2 analysis.

(XLSX)

S3 Dataset. miRDeep2 predictions made for JMRV. This dataset shows miRDeep2’s primary

output (in PDF format) of read coverage along hairpin structures for all predictions made by

the pipeline for our JMRV miDGE data. Provisional IDs for the individual pre-miRNAs are

given as assigned by the pipeline, see S2 Dataset for matching these IDs to known or novel

pre-miRNAs.

(PDF)

S4 Dataset. miRDeep2 predictions made for PVs. This dataset shows miRDeep2’s primary

output (in PDF format) of read coverage along hairpin structures for all predictions made by

the pipeline for our PV miDGE data (including the two PyV positive controls). Provisional

IDs for the individual pre-miRNAs are given as assigned by the pipeline, see S2 Dataset for

matching these IDs to known or novel pre-miRNAs.

(PDF)

S5 Dataset. PV genome origin list. This dataset contains information on where each PV

genomic plasmid used in this study was obtained.

(XLSX)

S6 Dataset. Reporter sequences and probes. This dataset contains information about the

sequences of reporters and probes used in this study.

(XLSX)

S7 Dataset. Primary data associated with Figs 4–6. This dataset contains primary data used

in re-analysis of Qian et al data (Fig 4B–4G), quantification of northern-blot-based experi-

ments (Fig 5B and 5C), and luciferase-based assays (Figs 6 and 8).

(XLSX)

S8 Dataset. Uncropped images of northern blots. This dataset includes the full uncropped

scans of northern blots used in Fig 5.

(PDF)

S9 Dataset. Positions of miRBase annotated microRNA seeds in papillomavirus genomes.

This dataset includes the coordinates of human miRBase release 21 microRNA seed matches

(positions 2–8 inclusive) in all PAVE annotated papillomavirus genomes.

(XLSX)
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