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Abstract

Cutaneous beta human papillomavirus (HPV) types are suspected to be involved, together
with ultraviolet (UV) radiation, in the development of non-melanoma skin cancer (NMSC).
Studies in in vitro and in vivo experimental models have highlighted the transforming proper-
ties of beta HPV E6 and E7 oncoproteins. However, epidemiological findings indicate that
beta HPV types may be required only at an initial stage of carcinogenesis, and may become
dispensable after full establishment of NMSC. Here, we further investigate the potential

role of beta HPVs in NMSC using a Cre-loxP-based transgenic (Tg) mouse model that
expresses beta HPV38 E6 and E7 oncogenes in the basal layer of the skin epidermis and is
highly susceptible to UV-induced carcinogenesis. Using whole-exome sequencing, we
show that, in contrast to WT animals, when exposed to chronic UV irradiation K14 HPV38
E6/E7 Tg mice accumulate a large number of UV-induced DNA mutations, which increase
proportionally with the severity of the skin lesions. The mutation pattern detected in the Tg
skin lesions closely resembles that detected in human NMSC, with the highest mutation rate
in p53 and Notch genes. Using the Cre-lox recombination system, we observed that deletion
of the viral oncogenes after development of UV-induced skin lesions did not affect the
tumour growth. Together, these findings support the concept that beta HPV types act only at
an initial stage of carcinogenesis, by potentiating the deleterious effects of UV radiation.

Author summary

Many epidemiological and biological findings support the hypothesis that beta HPV types
cooperate with UV radiation in the induction of NMSC, the most common form of
human cancer. We have previously shown that K14 HPV38 E6/E7 Tg mice, when exposed
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to long-term UV radiation, developed NMSC, whereas WT animals subjected to identical
treatments did not develop any type of skin lesions. Here, we show that the high skin can-
cer susceptibility of these Tg animals tightly correlates with their tendency to accumulate
UV-induced mutations in genes that are frequently mutated in human NMSC. Impor-
tantly, deletion of the HPV38 E6 and E7 genes in existing skin lesions did not affect the
further growth of the cancer cells. Together, these findings support the model that beta
HPYV infection is a co-factor in skin carcinogenesis, facilitating the accumulation of the
UV-induced DNA mutations.

Introduction

Non-melanoma skin cancer (NMSC) is the most common cancer in adult Caucasian popula-
tions [1]. The cutaneous human papillomavirus (HPV) types belonging to genus beta are sus-
pected, together with ultraviolet (UV) radiation, to be involved in NMSC [2,3]. The first two
beta HPV types, 5 and 8, were isolated from skin lesions of patients with a disorder called epi-
dermodysplasia verruciformis (EV). EV patients are highly susceptible to beta HPV infection
in the skin and develop cutaneous squamous cell carcinoma (cSCC) at anatomical sites
exposed to sunlight [4]. The fact that organ transplant recipients, due to their immunosup-
pressed status, have an elevated risk of beta HPV infection and development of ¢SSC provided
evidence for the role of beta HPV types in skin carcinogenesis also in non-EV individuals
[5,6]. Finally, many epidemiological studies support the link between these viruses and ¢SCC
in the general population [2,3,7]. These studies showed that, compared with the general popu-
lation, patients with a history of cSCC are more frequently positive for viral DNA in the skin
and/or for antibodies against the major capsid protein L1.

Molecular analysis showed that not all cancer cells contain a copy of the beta HPV genome
and that the copy number of the beta HPV genome is higher in pre-malignant actinic keratosis
(AK), a precursor lesion of SCC, than in SCC [8]. Thus, these data suggest that beta HPV types
may act at an initial stage of skin carcinogenesis and that after full transformation of the
infected cells, viral DNA can be lost. This model is consistent with the fact that additional
carcinogens are involved in skin carcinogenesis. Considering that UV radiation is the key risk
factor for cSSC development [9-11], the most plausible hypothesis is that beta HPV types exac-
erbate the accumulation of a large number of UV-induced somatic mutations, facilitating
cellular transformation. Subsequently, the expression of the viral oncogenes may become irrel-
evant for the maintenance of the malignant phenotype.

Several studies in human keratinocytes, the natural host of beta HPV types, showed that E6
and E7 from some beta HPV types target key pathways linked to DNA repair, apoptosis, and
cellular transformation [3]. Several transgenic (Tg) models for beta HPV have been generated
[12-16], some of which have highlighted the synergism between viral oncogene expression in
the skin epithelium and UV radiation in promoting ¢SCC [3]. Tg mice expressing beta HPV38
E6 and E7 in the basal layer of the epidermis under the control of the cytokeratin K14 pro-
moter (K14) did not spontaneously develop any lesions during their life span. Upon long-term
exposure to UV radiation (30 weeks), they developed first skin lesions closely resembling
human AK and subsequently ¢SCCs. In contrast, wild-type (WT) mice developed neither pre-
malignant lesions nor cSCCs when exposed to the same dose of UV radiation [15]. However, it
is still unknown whether the high susceptibility of the K14 HPV38 E6/E7 Tg animals to UV-
induced skin carcinogenesis is linked to the accumulation of mutations facilitated by the viral
oncoproteins, which may become dispensable after cSCC development. In this study, we
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addressed this open question on the synergism between UV radiation and beta HPV38 E6 and
E7 oncoproteins using the Tg mouse model. We showed that viral oncoproteins act at an initial
stage of UV-induced skin carcinogenesis, facilitating the accumulation of a large number of
somatic mutations in crucial genes that are associated with cSCC development in humans. In
addition, silencing of the expression of the viral genes in established skin lesions does not affect
further tumour growth.

Results

Expression of HPV38 E6 and E7 in mouse skin facilitates the
accumulation of UV-induced DNA mutations

We have previously shown that HPV38 E6/E7 expression in mouse skin strongly increases sus-
ceptibility to UV-induced carcinogenesis [15]. To evaluate whether the development of skin
lesions present in K14 HPV38 E6/E7 Tg mice of chronic UV irradiation correlated with the
number of accumulated DNA mutations, we used whole-exome sequencing of WT and Tg
samples.

For this analysis, we selected normal skin from WT mice not exposed or exposed to UV
radiation for 30 weeks (n = 2) and histologically confirmed skin specimens from three inde-
pendent K14 HPV38 E6/E7 Tg mice UV-irradiated for 30 weeks, i.e., (i) normal skin, (ii) pre-
malignant skin lesions and (iii) cSCC. For the pre-malignant lesions, the histological analyses
revealed that they have the classic features observed in humans of the precancerous condition
of AK, including slight atypia, parakeratosis, and acanthosis (S1 Fig) [15]. Exome sequencing
(Ilumina Hi-Seq) of collected samples generated an average coverage of 141.71x + 11.9
(mean * standard deviation).

The genomic sequence of the WT mouse not exposed to UV radiation was used as a control
sample in paired analysis. Only 10 mutations were detected in the skin of the UV-irradiated
WT mouse. Similarly, less than 10 mutations were detected in the Tg mouse not exposed to
UV irradiation. In both cases, all the mutations were in genes not directly linked to carcino-
genesis (S1 Table).

In UV-irradiated Tg animals, the mutational load varied across our cohort of well-differen-
tiated cSCC exomes, averaging 3541 somatic variants (range, 3261-4027) or 68.58 + 7.64 vari-
ants per Mb. The exome of the pre-malignant samples had substantially fewer variants, with
an average of 1337 somatic variants (range, 937-2026) or 23.14 + 14.70 variants per Mb. The
exome of the chronically UV-exposed normal skin of Tg mice harboured an average of 15
somatic variants (range, 11-20) or 0.29 + 0.08 variants per Mb (S2 Table). Thus, the number of
somatic mutations was proportional to the severity of the skin lesion; the average number in
SCCs was approximately double that in the pre-malignant lesions (Fig 1A).

The vast majority of the somatic mutations detected in SCCs were C:G > T:A mutations,
mutations that are also prevalent in the UV-induced mutational signature (Fig 1B and 1C). We
applied the non-negative matrix factorization (NMF) method to extract the mutational signa-
tures composed of 96 single base substitution (SBS) types considering the sequence context (one
base upstream and one base downstream) (S2 Fig). The extracted signature was compared with
known mutational signatures by the cosine similarity method [17,18]. The value of the similarity
obtained for the new B signature is 0.86 for COSMIC signature 27 (UV signature) (S2 Fig), indi-
cating the clear prevalence of the impact of UV radiation on the etiology of these cSCCs.

To assess the biological significance of the somatic mutations detected in the skin lesions
of the K14 HPV38 E6/E7 Tg mice, we determined whether they were detected in the previously
compiled lists of epi-driver and epi-modifier genes [19-23], as well as genes identified in
the Cancer Gene Census [24]. As shown in Fig 2, three classes of genes were found to be
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Fig 1. HPV38 E6 and E7 induce an increased steady-state level of UV-induced mutations in mouse skin keratinocytes. (A) UV-induced cSCCs in
K14 HPV38 E6/E7 Tg mice have a vast number of somatic mutations. SCCs display a very high mutational load, with each Tg animal (Tg1-3) harbouring
almost 3 times the number of variants compared with pre-malignant lesions (Pre-m). All differences in number of DNA mutations among the tree types of
specimens were statistically significant: * <0.05; ** <0.01; **** <0.0001. (B) cSCCs of K14 HPV38 E6/E7 Tg mice display the classic UV-induced
mutation signature with a very high number of C:G > T:A mutations. This type of mutation represents the majority of the SNV type in SCC samples of the
three Tg animals. (C) Mutation spectrum of pooled SCC samples from the three mice. This spectrum displays the high prevalence of C:G > T:A mutations,
especially in the 5’-T_N-3 and 5’-C_N-3' context. The y axis represents the percentage of mutations, and the x axis the trinucleotide sequence context.

https://doi.org/10.1371/journal.ppat.1006783.g001

recurrently mutated in pre-malignant and malignant skin lesions of K14 HPV38 E6/E7 Tg ani-
mals, suggesting a selective process for the enrichment of mutations in these groups of genes.

Pathway analyses confirmed that the mutations detected in mouse cSCC affect key path-
ways intimately linked to cellular transformation (S3 Table).

A comparison of somatic mutations detected in our experimental Tg mouse model and in
human ¢SCC [25] revealed that a large number of epi-driver, epi-modifier, and Cancer Gene
Census genes were recurrently mutated in murine and human cSCC (Fig 3A).

A recent study identified the top human genes mutated in cSCC [26]. Interestingly, most of
these genes are also found to be mutated in the UV-induced skin lesions of the K14 HPV38
E6/E7 Tg animals (Fig 3B). In agreement with previous findings on human ¢SCC [25], Trp53
showed up as the most mutated gene in the murine Tg-derived cSCC (Figs 2A and 3B). Here,
P53 mutations appear to be an early event in skin carcinogenesis, because they were detected
in one sample of normal skin as well as in all pre-malignant lesions and ¢SCCs. In agreement
with our data, it was reported that p53 mutations can be detected in keratinocytes of UV-
exposed normal skin [27,28]. However, all mutations were identified in the p53 DNA-binding
domain (54 Table), supporting their key role in the process of carcinogenesis. Consistent with
the fact that in keratinocytes the Notch signalling pathway promotes cell-cycle exit and differ-
entiation [29,30], NOTCHI1 and NOTCH2 have been found to be mutated in human ¢SCC
[25]. In our Tg mouse model, mutated NOTCH]I and/or NOTCH2 were also detected in all
three cSCCs, but never in pre-malignant lesions (Fig 3B).
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Fig 2. Cancer-related genes recurrently mutated in cSCCs of K14 HPV38 E6/E7 Tg mice. (A) Circos
presentation of mutations occurring in the same genes between the different mice. From the centre to the

outside, the skin samples (white), the lesion samples (yellow), and the SCC samples (grey) are displayed for

n= 3 mice each. Each track (three per colour) corresponds to one animal. Red dots represent C:G > T:A

mutations, and black dots represent the other types of mutations. For Circos A, only the mutations that occur
in genes present in the Cancer Gene Census list from the COSMIC database are displayed, with the number
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of recurrent mutations in these genes in parentheses. (B) For the epigenetic drivers/modifiers, only the
mutations that occur in the epi-driver or the epi-modifier gene lists are displayed. Blue gene names
correspond to genes that are only involved in epigenetic processes, and purple gene names correspond to
genes that are involved in epigenetic processes and that are present in the Cancer Gene Census list. The
total number of recurrent mutations occurring in each of these genes is also displayed in parentheses.

https://doi.org/10.1371/journal.ppat.1006783.9002
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Fig 3. Several genes mutated in human skin lesions are also mutated in the UV-induced skin lesions of cSCCs of K14 HPV38 E6/E7
Tg mice. (A) Heatmap of significantly mutated genes, corresponding to genes recurrently mutated in at least two mouse SCC samples and
reported in the Cancer Gene Census list from the COSMIC database (left panel) or having an impact on epigenetic regulation processes (right
panel). The types of mutation represented by colours are chosen according to the most prevalent mutation type in each sample. The data for
the human samples displayed in the first column are derived from a previous publication on cutaneous SCC. (B) Heatmap of mutations in
genes in normal skin, pre-malignant lesions, and cSCC from different mice (M1-3) reported as significantly mutated in human cSCC.

https://doi.org/10.1371/journal.ppat.1006783.9g003
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Fig 4. ANp73a mRNA levels are high in the skin of HPV38 E6/E7 Tg mice, but are decreased in the UV-
induced skin lesions harbouring p53 mutations. Total RNA was extracted from the skin of WT (n=4) or
K14 HPV38 E6/E7 Tg animals (n= 5) as well as histologically confirmed pre-malignant (pre-m) and SCC from
three independent mice and harbouring mutated p53. AN73a levels were measured by quantitative RT-PCR.
The data shown are the mean of two independent experiments. The differences in AN73a mRNA levels
between WT and K14 HPV38 E6/E7 Tg animals were statistically significant: * <0.05.

https://doi.org/10.1371/journal.ppat.1006783.9004

Our previous data showed that HPV 38 E6 and E7 expression in human keratinocytes
resulted in accumulation of TAp53, which is recruited to the internal promoter located in
intron 3 of p53 gene, with resulting transcriptional activation of ANp73a. [31,32]. Fig 4 shows
that also in the mouse skin, expression of the viral genes leads to increased ANp73a. transcrip-
tion. In contrast, in histologically confirmed pre-malignant and SCC lesions, p53 mutation
correlates with a strong decrease in ANp730. mRNA levels (Fig 4).

In conclusion, our findings show that the expression of HPV38 E6 and E7 oncogenes in
mouse skin increases susceptibility to UV-induced ¢SCC by facilitating the accumulation of
somatic mutations that have been clearly associated with skin cancer development in humans.

HPV38 E6 and E7 play a role at initial stages of UV-induced skin
carcinogenesis but are not required for cancer maintenance

Many studies support the role of beta HPV types, together with UV radiation, in the develop-
ment of skin SCC [2,3]. However, in contrast to the mucosal high-risk HPV types such HPV16
that are required in all steps of cervical carcinogenesis, beta HPV types appear to have a role in
the initial steps of carcinogenesis. To test this hypothesis, we constructed our K14 HPV38 E6/
E7 Tg mice as a conditional expression model with two loxP elements, located immediately
upstream and downstream of the viral genes [15]. Originally, we crossed the K14 HPV38 E6/
E7 Tg mice with K14 Cre-ERT2 Tg animals overexpressing the Cre recombinase gene fused to
a triple-mutant form of the human estrogen receptor that gains access to the nuclear compart-
ment only after exposure to 4-hydroxytamoxifen (TMX) but not to the natural ligand 17p-
estradiol, in order to silence E6/E7 expression by Cre-mediated deletion of the floxed viral
genes at different times of the chronic UV irradiation, i.e., different stages of SCC develop-
ment. Although the expression of the viral genes could be efficiently silenced upon administra-
tion of TMX to 5-week-old K14 Cre-ERT2 HPV38 E6/E7 compound mice, in the compound
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vector (Luc) as well as in lesions electroporated with the plasmid coding for the Cre recombinase and luciferase genes (CRE-Luc). Mice and tumour
growth are closely monitored at regular intervals.

https://doi.org/10.1371/journal.ppat.1006783.9005

mice a strong decrease in viral gene expression was observed during the 30 weeks of UV irradi-
ation in the absence of TXM treatment (S3 Fig). The loss of HPV38 E6 and E7 genes in long-
term experiments was most likely due to a basal, non-specific Cre recombinase activity in the
nucleus of mouse skin keratinocytes. None of the K14 Cre-ERT2 HPV38 E6/E7 Tg compound
lines developed c¢SCC after 30 weeks of UV irradiation, further highlighting the importance of
the viral proteins in UV-induced carcinogenesis.

Therefore, we developed a different strategy to evaluate the requirement of HPV38 E6 and
E7 genes for cancer maintenance (Fig 5A). K14 HPV38 E6/E7 Tg mice were exposed to long-
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term UV irradiation, and after the appearance of well-defined skin lesions, after about 22-25
weeks of irradiation, two different DNA vectors were delivered by electroporation into the
abnormal tissues. Because of the small size of the electroporated skin lesions, we could not per-
form any biopsy; therefore, we did not have any histological information about whether they
correspond to pre-malignant or malignant lesions. Results obtained in several independent
experiments showed that the lesions that occurred after 22-25 weeks of UV irradiation corre-
spond to pre-malignant lesions or an early stage of cSCC [15,16]. Both vectors contain a scaf-
fold/matrix attachment region (S/MAR) that keeps the plasmid in an episomal state, avoiding
any integration-mediated toxicity, and ensures robust and persistent gene expression [33]. The
vector codes for luciferase and Cre recombinase genes (Cre-Luc) separated by the P2A cleav-
age site, whereas the control vector expresses only a luciferase gene (Luc). Luciferase was used
to monitor the efficiency of transfection by non-invasive in vivo imaging, and Cre was used to
induce the excision of the viral genes. A total of 23 lesions on 14 mice were transfected either
with the Luc vector (n = 9) or with the Cre-Luc vector (n = 14). When possible, the same
mouse was injected with both vectors, each on a different lesion. Three representative mice are
shown in Fig 5B. Luciferase activity was detected in the animals’ skin in each of the electropo-
rated areas independently of the vector type.

After electroporation, the animals were irradiated until the end of the 30-week UV irradia-
tion protocol and closely monitored for several weeks to evaluate the progression of the skin
lesions. No significant difference in tumour growth was observed in animals transfected with
the Luc or Cre-Luc vectors (Fig 6A). Histological analyses confirmed that 100% percent of the
Luc-injected lesions and 93% of the Cre-Luc injected lesions (13 out of 14) evolved into inva-
sive cSCC; a morphological examination revealed no major differences between the two
groups of tumours (Fig 6B). Detection of the viral RNA transcripts by RNA-RNA in situ
hybridization confirmed that electroporation of skin lesions with the Cre-Luc vector, but not
with the Luc vector, resulted in the loss of E6/E7 expression in large islands of cancer tissue
(Fig 6B).

In conclusion, our findings show that after the accumulation of UV-induced DNA muta-
tions and the development of skin lesions, the expression of the HPV38 E6/E7 genes is dis-
pensable for the maintenance of the malignant phenotype of skin cancer cells.

Discussion

Although the HPV family includes more than 200 types, to date only the mucosal high-risk
(HR) HPV types have been clearly associated with human carcinogenesis. These viruses are
the etiological agents of cervical cancers as well as a subset of other genital and oropharyngeal
cancers [34]. Beta HPV types have been proposed to be associated with cSCC. They were ini-
tially linked to cSCC in EV patients, but now many epidemiological and biological studies sup-
port the role of beta HPV types in skin carcinogenesis also in non-EV individuals [3].

We have previously shown in a Tg mouse model that expression of beta HPV38 E6 and E7
in the skin strongly increases the risk of cSCC development upon UV irradiation [15]. Here,
we showed that the higher susceptibility of K14 HPV38 E6/E7 Tg mice to UV-induced skin
carcinogenesis tightly correlates with the accumulation of a high number of mutations in the
keratinocyte genome. Remarkably, exposure of WT animals to the same doses of UV radiation
did not lead to accumulation of DNA mutations and development of cSCC. These data suggest
that the HPV38 oncoproteins can negatively affect the DNA repair machinery and/or immune
pathways that lead to the elimination of damaged cells. We have recently shown that K14
HPV38 E6/E7 Tg mice are hampered in the production of interleukin 18 (IL-18) during their
exposure to UV radiation [16]. Upon UV irradiation and activation of the inflammasome,
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Fig 6. HPV38 E6 and E7 expression is not required for the viability of cancer cells in K14 HPV38 E6/E7
Tg mice. (A) Electroporated lesions were kept under control and the diameter was recorded weekly. On the day
of injection, the lesion diameter varied between 1.2 mm and 2.5 mm for the lesions injected with the Luc
plasmid, and between 1.3 mm and 2.6 mm for the lesions injected with the Cre-Luc plasmid. To standardize the
measurement, each lesion diameter was set to an arbitrary value of 1 on the day of injection, and the following
measurements were adjusted accordingly. The difference in tumour growth between the lesions injected with
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the Luc plasmid and the lesions injected with the Cre-Luc plasmid was not significant according to an unpaired
two-sample Student’s t-test (p=0.3108, t= 1.052; df = 14). The test was run on data from the fourth week,
because afterwards the number of living animals was substantially reduced. (B) Representative images of SCC
sections from two different HPV38 E6/E7 Tg mice. Sections were taken from tumours initially electroporated
with pS/MARt-Luc plasmid (Luc) or with pS/MARt-Luc-P2A-Cre plasmid (Cre-Luc). The morphological analysis
revealed no substantial differences between the specimens; the tumours were all classified as invasive cSCC,
with deep penetration into the dermis or into the muscular fibres, and clear and diffuse atypia. The loss of the
viral mRNA in the tumours injected with the Cre-Luc plasmid was confirmed by in situ RNA hybridization using a
complementary (antisense) riboprobe, while the staining with a sense probe confirmed the specificity of the
signal.

https://doi.org/10.1371/journal.ppat.1006783.9006

keratinocytes secrete high levels of cytokines from the IL-1 family, including IL-18, thus induc-
ing a broad spectrum of processes, such as infiltration and activation of inflammatory leuko-
cytes, immunosuppression, DNA repair, and apoptosis [35-38]. Thus, it is likely that the high
susceptibility to UV-induced DNA mutations and skin carcinogenesis of K14 HPV38 E6/E7
Tg mice may be linked to the negative impact of HPV38 on IL-18 production.

Analysis of the mutational profile revealed that a large number of genes encoding for epi-
drivers or epi-modifiers and proteins known to be associated with carcinogenesis (Cancer
Gene Census) harbour missense or nonsense mutations. Most importantly, the gene mutation
profile found in murine ¢SCC shows remarkable similarities to the mutational profile found in
human ¢SCC. In particular, mutations in p53 appear to be an early event in murine and
human skin carcinogenesis. We have previously shown that beta HPV38 E7 alters the p53/73
network by inducing accumulation of p53/p73 antagonist ANp73a. [31,32]. In human kerati-
nocytes expressing beta HPV38 E6 and E7, ANp73a. forms a transcriptional inhibitory com-
plex, which binds a subset of p53-regulated promoters, preventing their activation in the
presence of cellular stress [39]. Because the major role of p53 is to safeguard genome integrity,
the high cancer susceptibility of K14 HPV38 E6/E7 Tg mice along with the high numbers of
accumulated UV-induced DNA mutations can be explained, at least in part, by the properties
of the beta HPV oncoproteins. However, once p53, and likely other cellular genes, are irrevers-
ibly inactivated by DNA mutations induced by UV radiation, the progression and mainte-
nance of the skin carcinogenic process could become independent of the expression of viral
genes. In agreement with this view, ANp730. mRNA levels decrease strongly in UV-induced
skin lesions of K14 HPV38 E6/E7 Tg animals after accumulation of p53 mutations. In addi-
tion, we observed that the deletion of the HPV38 E6 and E7 genes does not affect further
growth of the tumour. In contrast, in K14 Cre-ERT2 HPV38 E6/E7 Tg the loss of the viral
genes at early stages of the irradiation protocol prevents the development of UV-induced skin
lesions, underlining the key function of HPV38 E6 and E7 in UV-mediated carcinogenesis.

These findings in the K14 HPV38 E6/E7 Tg mouse model are in agreement with the studies
on human skin lesions, supporting an early role of beta HPV types in skin carcinogenesis.
Indeed, the copy numbers of the beta HPV genome appear to be higher in the pre-malignant
lesion, AK, than in ¢SCC [8]. In addition, not all cancer cells contain a copy of a beta HPV
genome [8]. Thus, the mechanisms of carcinogenesis induced by beta HPV types appear to be
substantially different from those of the mucosal HR HPV types. In the case of the mucosal
HR HPV types, the viral oncoproteins are the major drivers of cancer development (e.g. in the
cervix) that, in addition, are required throughout the entire carcinogenic process (Fig 7). In
contrast, UV-induced damage is the main carcinogen of cSCC. Here, however, beta HPV
oncoproteins can facilitate the accumulation of UV-induced DNA damage but they are dis-
pensable after full development of a malignant lesion (Fig 7).

Why do different HPV types display different biological properties? Cutaneous and muco-
sal HPV types infect cells at distinct anatomical sites exposed to different environmental
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Fig 7. Schematic representation of well-known and hypothetical models of virus-associated carcinogenesis.
https://doi.org/10.1371/journal.ppat.1006783.9007

stresses. Thus, it is not surprising that they have evolved with divergent biological properties.
Al HPV types rely on the DNA replication machinery of the host cell. Therefore, they must
have developed several mechanisms to maintain the infected cell in a proliferative state to
guarantee efficient viral genome replication. Exposure of skin keratinocytes to UV radiation
leads to accumulation of DNA damage, which in turn induces cell-cycle arrest or apoptosis to
allow repair or elimination, respectively, of the damaged cell. The cutaneous HPV types appear
to be able to circumvent this adverse effect of UV radiation on keratinocyte proliferation, pro-
moting the accumulation of damaged cells in the skin and, consequently, carcinogenesis.

Our previous findings showed that different HPV38 E6/E7 expression levels in independent
Tg lines influence the rate of SCC development [15]. Thus, it plausible to hypothesize that also
in humans, the viral gene expression levels may have an impact on UV-induced skin carcino-
genesis. Limited data are available on beta E6 and E7 gene expression in normal skin and pre-
malignant and malignant skin lesions (reviewed in [2,3]). There is no information on the dif-
ferent spliced forms of beta HPV genes and how they could determine a different efficiency in
protein synthesis. Thus, additional studies are required in humans to corroborate the findings
obtained in the Tg mouse model on the hit-and-run mechanism of HPV38 in UV-induced
carcinogenesis.

In conclusion, our findings in a Tg mouse model highlight a novel mechanism of infection-
associated carcinogenesis, in which the virus is not the driving force but synergizes with UV
radiation in promoting ¢SCC.

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006783 January 11,2018 12/20


https://doi.org/10.1371/journal.ppat.1006783.g007
https://doi.org/10.1371/journal.ppat.1006783

@'PLOS | PATHOGENS

Hit-and-run mechanism of HPV38 in UV-induced skin carcinogenesis

Methods
Tg mice
The transgenic animal model FVB/NTgN(38E6E7)187DKFZ (https://mito.dkfz.de/mito/

Animal%20line/10954) has been previously described [15]. UVB irradiation was performed
under sevoflurane anaesthesia, and every effort was made to minimize suffering.

Ethics statement

The animal facility of the German Cancer Research Center has been officially approved by
responsible authority (Regional Council of Karlsruhe, Schlossplatz 4-6, 76131 Karlsruhe, Ger-
many), official approval file number 35-9185.64. Housing conditions are thus in accordance
with the German Animal Welfare Act (TierSchG) and EU Directive 425 2010/63/EU. Regular
inspections of the facility are conducted by the Veterinary Authority of Heidelberg (Berghei-
mer Str. 69, 69115 Heidelberg, Germany). All experiments were in accordance with the institu-
tional guidelines (designated veterinarian according to article 25 of Directive 2010/63/EU and
Animal-Welfare Body according to article 27 of Directive 2010/63/EU) and were officially
approved by Regional Council of Karlsruhe (File No 35-9185.81/G-64/13 and 35-9185.81/G-
200/15).

Plasmid construction

To generate the Luc and the Luc-Cre vectors, the pS/MARt-GFP DNA vector was first digested
with the restriction enzymes Nhel and BglII to linearize the vector and eliminate the transgene
GFP. The InFusion system provided by Clonetech was used to introduce the luciferase gene
alone or in combination with the Cre recombinase gene to generate the vector pS/MARt-Luc
or the vector pS/MARt-Luc-P2A-Cre, respectively.

UVB treatments

UVB irradiation was performed with a Bio-Spectra system (Vilber Lourmat, Marne La Vallee,
France) at a wavelength of 312 nm as previously described [15]. Briefly, animals were anesthe-
tized with 3% Sevorane (Abbott, Wiesbaden, Germany) in an inhalation anesthetizer (Provet,
Lyssach, Switzerland) and placed in a covered compartment with an upper square opening
(3%2 cm) at a distance of 40 cm from the UVB lamp.

To study UV-induced carcinogenesis, 7-week-old female FVB/N WT or K14 HPV38 E6/
E7 Tg animals were shaved on the dorsal skin with electric clippers and irradiated 3 times a
week for 10 weeks with increasing doses of UVB, starting from 120 mJ/cm” to a final dose of
450 mJ/cm?, with a constant weekly increase to allow skin thickening. For the following 20
weeks, mice were irradiated 3 times a week with 450 mJ/cm?. The UV irradiation protocol
was based on the data described in [40] and to mimic the situation in humans. For instance,
the maximum dose of the UV irradiation protocol, 450 mJ/cm?, corresponds to 50 minutes
of solar exposure in July in Paris. The tumour incidence (tumour bearers/group) was
recorded weekly. Tumours were identified first macroscopically and by histological diagno-
sis. After 30 weeks, or earlier if the tumour reached the ethically allowed maximal size, the
animals were sacrificed and H&E-stained sections of dorsal skin were used for histological
diagnosis.

Excision of floxed viral transgenes

To study the effect of the loss of the viral genes on skin cancer development, 7-week-old K14
HPV38 E6/E7 Tg mice (n = 14) were shaved on the dorsal skin and treated for 30 weeks with
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increasing doses of UVB as previously described [15]. As soon as skin lesions (maximum
diameter 2.6 mm) became evident, 46 pug of pS/MARt-Luc or 50 pg of pS/MARt-Luc-P2A-Cre
dissolved in isotonic saline solution was injected directly into the lesions. To facilitate the
uptake of the injected DNA, an electric field was applied to the area of the injection site using a
Tweezertrodes connected to a BTX ECM 630 generator (Harvard Apparatus, Holliston, MA,
USA). A first high-voltage electric pulse (1400 V/cm, 100 ps, 2 times), to induce temporary
gaps in the keratinocytes cell membrane, was followed by a low-voltage electric field (140
V/cm, 400 ms, 2 times), to facilitate the migration of the DNA into the cells. At 72 h after the
DNA injection, the mice were injected intraperitoneally with 150 mg/kg of luciferin in

sterile water, and the luciferase activity was then assessed using an IVIS Lumina III imaging
system (Perkin Elmer, Rodgau, Germany). When possible, a single mouse received both
plasmids at the same time, each on a different lesion. The UV irradiation continued until
week 30, according to the protocol [15]. The lesions were then closely monitored and the ani-
mals were sacrificed in accordance with an ethical protocol to avoid animal suffering. Skin
lesions were collected for histological examination and detection for HPV38 E6/E7 RNA by
in situ hybridization.

Total RNA isolation and reverse transcription PCR analyses

Total RNA was isolated from dorsal skin of WT (n = 4) or K14 HPV38 E6/E7 Tg animals

(n = 5) as well as histologically confirmed pre-malignant (pre-m) and SCC from three inde-
pendent mice. cDNA was synthesized from 1 pg of total RNA using M-MLV reverse transcrip-
tase (Invitrogen, Darmstadt, Germany), and a mix of random hexamers were used as primers.
Quantitative reverse transcription PCR (RT-qPCR) was performed in a 20 pl mixture contain-
ing 1 ul of 1:10 diluted cDNA and Mesa green quantitative PCR (qQPCR) Master Mix (Eurogen-
tec, Angers, France) with specific mouse ANp73a primers (5'-GCCAAAAGGGTCATCATC-
3’ and 5'-TGCCAGTGAGCTTCCCGTTC-3') or mouse GAPDH primers to amplify a house-
keeping gene as internal control (5'-GTGACCCCATGAGACACCTC-3" and 5'-GTATGTC
CAGGTGGCCGAC-3'), using an Applied Biosystems 7300 machine (Applied Biosystems,
Darmstadt, Germany). The fluorescence threshold value was calculated using the SDS analysis
software from Applied Biosystems.

In situ hybridization

Once the tumours reached the maximum ethically allowed size, the mice were killed and the
lesions isolated. Half of the lesion was embedded in OCT medium and slowly cooled down
to —80°C. Sense and antisense riboprobes were generated from linearized plasmid DNA
containing full-length HPV38E6E7 cDNA using the Digoxigenin RNA labelling Mix from
Roche. RNA-RNA in situ hybridization was performed as previously described[41]. In brief,
serial 5 um cryo-sections were mounted on Superfrost Plus slides (Thermo Scientific), fixed
in 4% paraformaldehyde in 2x SSPE, digested with proteinase K (0.5 pg/ml), and pre-hybrid-
ized at 42°C for 2-4 h. Hybridization was performed overnight at 42°C in 50% formamide,
2x SSPE, 10% dextran sulfate, 10 mM Tris-HCI pH 7.5, 1x Denhardt’s solution, 500 pg/ml
tRNA, 100 ug/ml herring sperm DNA, 0.1% SDS, and 10 ug/ml DIG-labelled riboprobe.
After hybridization, slides were washed once in 50% formamide, 2x SSPE; 0.1% SDS for 30
min at 50°C, treated with RNaseA (50 pg/ml in 2x SSC, 0.1% SDS), and washed again in 50%
formamide, 0.5x SSPE, 0.1% SDS for 30 min at 37°C. Hybridization signals were visualized
using Biotin Tyramide (TSA Biotin System, PerkinElmer) according to the manufacturer’s
protocol.
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Statistical analysis

Tumour growth values of lesions injected with the pS/MARt-Luc or pS/MARt-Luc-P2A-Cre
vector were compared with the two-sample ¢-test. The statistical analysis was performed with
GraphPad Prism (version 6, GraphPad Software Inc., La Jolla, CA, USA).

Exome analysis

The quality of the raw reads was estimated with FastQC software (version 0.11.5, http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were mapped to the GRCm38
Mouse reference genome (ftp://hgdownload.cse.ucsc.edu/goldenPath/mm10/) using Bur-
rows-Wheeler Aligner (BWA, http://bio-bwa.sourceforge.net/) version 0.7.15 and producing
a BAM file. The following GATK Best Practice Recommendations were applied to the BAM
files to improve variant detection quality. Picard (version 2.4.1, https://broadinstitute.github.
io/picard/) SortSAM was used to sort and index BAM files, and the AddOrReplaceR-
eadGroups tool was used to replace all read groups with a single new read group. The dupli-
cate reads were marked with the MarkDuplicates tool from Picard, and the newly produced
BAM file was indexed with the BuildBamIndex tool. GATK (version 3.6.0, https://software.
broadinstitute.org/gatk/download/) RealignerTargetCreator was used to determine the posi-
tion concerned by local realignment, and IndelRealigner was used to perform local realign-
ment around these sites. The GATK BaseRecalibrator tool was used to detect systematic
errors in base quality scores. Dbsnp and dbindel (version 142) for the mm10 reference
genome was downloaded from the Sanger website (ftp://ftp-mouse.sanger.ac.uk/REL-
1505-SNPs_Indels/) and considered as input. Lastly, the index of the output BAM file was
created with Picard BuildBamIndex, and GATK PrintReads was used to write out sequence
read data.

The quality of the alignment was estimated with Qualimap (version 2.0.2, http://qualimap.
bioinfo.cipf.es/). Then the variant calling was done with Mutect (version 1.1.7, http://archive.
broadinstitute.org/cancer/cga/mutect), by using a skin sample from a WT mouse not exposed
to UV as the “normal sample” for paired analysis. Only somatic mutations passing Mutect
internal filters were considered for the analysis. The VCF files are annotated with Annovar by
using the MutSpec Annot Tool in Galaxy [42]. Variants were then filtered based on SegDup
databases from UCSC (version from 4 May 2014, http://hgdownload.cse.ucsc.edu/goldenPath/
mm10/database/genomicSuperDups.txt.gz), as well as Tandem Repeat and Repeat Masker
(version from 9 February 2012, http://hgdownload.soe.ucsc.edu/goldenPath/mm10/bigZips/).
House-made scripts were then used to keep only SNPs that have a functional impact and fall in
exonic or splicing regions. Non-negative matrix factorization mutational signatures were
inferred with MutSpec-NMF tools, as previously reported.

The pathway analysis was performed using the EnrichR web application (http://amp.
pharm.mssm.edu/Enrichr/; citations*2). The input gene list was made by merging the
mutations detected in the pre-malignant lesions (n = 3) or cSCCs (n = 3) of the K14 HPV38
E6/E7 Tg animals. The analysis included only genes harbouring mutations that are likely
to alter the biological properties of the encoded products, i.e., 3111 genes in the pre-malig-
nant lesions and 6372 genes in the cSCCs. The gene lists were then loaded into the EnrichR
software, and the result from the KEGG database (version 2016) was considered. Only path-
ways with a significant adjusted p-value are shown in S1 Table. The list of pathways is
ranked by combined score (combined score is computed by taking the log of the p-value
from the Fisher exact test and multiplying it by the z-score of the deviation from the
expected rank).
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Comparison with epigenetic driver/modifier genes and Cancer Gene
Census list

The list of epigenetic driver and modifier genes was constructed on the basis of genes reported
in different publications [19-23]. The Cancer Gene Census list was downloaded from the
COSMIC website (12 November 2016, http://cancer.sanger.ac.uk/census) and is based on a
previous publication [24].

The comparison of the mouse data with the human data [25,26] was done with Bioconduc-
tor (release 3.4, https://www.bioconductor.org/) in R (version 3.3.2, “Sincere Pumpkin
Patch”). The module BioMart[43,44], version 2.3 enables the conversion of nearly 87.86% of
human gene names from the Chitsazzadeh et al. publication [26] to their corresponding
mouse gene names.

Supporting information

S1 Fig. Representative images of H&E-stained sections from WT or Tg mice from which
the genomic DNA was extracted for exome sequencing. (A, B) Normal skin from WT (A)
and K14 HPV38 E6/E7 Tg (B) mice UV-irradiated for 30 and 28 weeks, respectively. Both
specimens show a clearly intact epithelium composed of a few layers of keratinocytes. (C, D)
Pre-cancerous lesions from K14 HPV38 E6/E7 Tg mice UV-irradiated for 26 (C) and 28 (D)
weeks, respectively. In both lesions, the keratinocytes present acanthosis, diffused intraepithe-
lial atypia, and a high number of mitosis; an intact basal membrane is evident. Enlargements
of the most affected areas are displayed. (E, F). Cancerous lesions (SCC) from K14 HPV38 E6/
E7 Tg mice UV-irradiated for 26 (E) and 28 (F) weeks, respectively. Both sections are charac-
terized by the presence of polymorphic tumour cells with big nuclei, diffused presence of horn
pearls, and hyperkeratinization. The enlargements show tumour invasion of the subcutaneous
fat (E) or of muscle fibres (F). The stained sections were first scanned with no enlargement
and then zoomed in via software analysis.

(TIF)

$2 Fig. Mutational signature detected in skin keratinocytes of UV-irradiated K14 HPV38
E6/E7 Tg mice. (A) Mutational signature obtained after applying the NMF method to all 9
samples (3 normal skin, 3 pre-malignant lesions, and 3 SCCs). (B) The B signature shows a
strong identity with the UV signature (cosine similarity of 0.86). (C) The SCC and pre-malig-
nant samples of the different mice are the main contributors to inference of the B signature.
(TIF)

$3 Fig. Modulation of HPV38 E6 and E7 expression in skin keratinocytes of K14 Cre-ERT2
HPV38 E6/E7 Tg mice. Total RNA was extracted from dorsal skin keratinocytes from K14
HPV38 E6/E7 Tg mice (10-week-old, n = 3; 30-week-old, n = 3), and from Cre-ERT2 HPV38
E6/E7 Tg mice, treated (10-week-old, n = 9; 30-week-old, n = 4) or not (10-week-old, n = 7;
30-week-old, n = 4)) with 4-hydroxytamoxifen (TMX). HPV38 E6 mRNA quantification was
performed by quantitative RT-PCR. The relative quantification + SD is shown. The following
differences are statistically significant according to ¢-test analysis: 10-week-old K14 HPV38
E6/E7 Tg vs 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p < 0.05; 10-week-old K14 HPV38
E6/E7 Tg vs 30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p < 0.0001; 10-week-old K14
HPV38 E6/E7 Tg vs 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg + TMX, p < 0.0001;
10-week-old K14 HPV38 E6/E7 Tg vs 30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg + TMX,
p < 0.0001; 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg vs 10-week-old K14 Cre-ERT2
HPV38 E6/E7 Tg + TMX, p < 0.0001; 10-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg vs
30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p < 0.01; 30-week-old K14 HPV38 E6/E7 Tg vs
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30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg, p < 0.05; 30-week-old K14 Cre-ERT2 HPV38
E6/E7 Tg vs 30-week-old K14 Cre-ERT2 HPV38 E6/E7 Tg + TMX, p < 0.01.
(TIF)

S1 Table. Mutated genes in animals without skin lesions. Cellular pathways were linked to
the different gene products using the information at http://www.genecards.org.
(DOCX)

S2 Table. Global view of the somatic mutations and coverage of the sequencing of skin
samples from different mice (M1-3).
(DOCX)

§3 Table. Pathway analyses. The pathway deregulated in the pre-malignant lesions (A) or
¢SCC (B). The gene list used as input is the consensus of the genes mutated in the different
pre-malignant samples. Only the significant pathways (adjusted p-value > 0.05) are shown.
(DOCX)

S4 Table. Trp53 nonsynonymous mutations in the DNA-binding domain detected in nor-
mal skin, pre-malignant lesions, and cSCCs.
(DOCX)
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