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Abstract

The establishment of polarity is a critical process in pathogenic fungi, mediating infection-

related morphogenesis and host tissue invasion. Here, we report the identification of TPC1

(Transcription factor for Polarity Control 1), which regulates invasive polarized growth in the

rice blast fungus Magnaporthe oryzae. TPC1 encodes a putative transcription factor of the

fungal Zn(II)2Cys6 family, exclusive to filamentous fungi. Tpc1-deficient mutants show

severe defects in conidiogenesis, infection-associated autophagy, glycogen and lipid

metabolism, and plant tissue colonisation. By tracking actin-binding proteins, septin-5 and

autophagosome components, we show that Tpc1 regulates cytoskeletal dynamics and

infection-associated autophagy during appressorium-mediated plant penetration. We found

that Tpc1 interacts with Mst12 and modulates its DNA-binding activity, while Tpc1 nuclear

localisation also depends on the MAP kinase Pmk1, consistent with the involvement of Tpc1

in this signalling pathway, which is critical for appressorium development. Importantly, Tpc1

directly regulates NOXD expression, the p22phox subunit of the fungal NADPH oxidase com-

plex via an interaction with Mst12. Tpc1 therefore controls spatial and temporal regulation of

cortical F-actin through regulation of the NADPH oxidase complex during appressorium re-

polarisation. Consequently, Tpc1 is a core developmental regulator in filamentous fungi,

linking the regulated synthesis of reactive oxygen species and the Pmk1 pathway, with

polarity control during host invasion.
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Author summary

Cellular polarity is an intrinsic feature of filamentous fungal growth and pathogenesis. In

this study, we identified a gene required for fungal polar growth and virulence in the rice

blast fungus Magnaporthe oryzae. This gene has been named TPC1 (Transcription factor

for Polarity Control 1). The Tpc1 protein belongs to the fungal Zn(II)2Cys6 binuclear clus-

ter family. This DNA-binding motif is present exclusively in the fungal kingdom. We

have characterised defects associated with lack of Tpc1 in M. oryzae. We show that Tpc1 is

involved in polarised growth and virulence. The M. oryzae Δtpc1 mutant shows a delay in

glycogen and lipid metabolism, and infection-associated autophagy–processes that regu-

late appressorium-mediated M. oryzae plant infection. The saprophytic fungus Neuros-
pora crassa contains a Tpc1 homolog (NcTpc1) involved in vegetative growth and

sustained tip elongation, suggesting that Tpc1-like proteins act as core regulators of polar-

ised growth and development in filamentous fungi. A comparative transcriptome analysis

has allowed us to identify genes regulated by Tpc1 in M. oryzae including NoxD, an

important component of the fungal NADPH complex. Significantly, Tpc1 interacts with

Mst12, a component of the Pmk1 signalling pathway essential for appressorium develop-

ment, and modulates Mst12 binding affinity to NOXD promoter region. We conclude

that Tpc1 is a key regulator of polarity in M. oryzae that regulates growth, autophagy and

septin-mediated reorientation of the F-actin cytoskeleton to facilitate plant cell invasion.

Introduction

Rice blast disease is one of the most serious diseases of cultivated rice worldwide and is caused

by the filamentous, ascomycete fungus Magnaporthe oryzae[1,2]. The disease is initiated when

a conidium lands on the rice leaf surface. Here it germinates to produce a single germ tube

that differentiates at its tip to develop a specialised infection structure called an appressorium

[3]. During the initial stages of appressorium formation, a septum defines the developing

appressorium from the rest of the germ tube following a single mitotic division in the germ

tube[4]. When the appressorium matures, the three conidial cells and germ tube collapse due

to infection-associated autophagy and are no longer viable after 24h[4]. Subsequently, a pene-

tration peg emerges from the base of the appressorium and ruptures the leaf cuticle. A toroidal

filamentous actin network forms at the base of the appressorium pore, scaffolded by septin

GTPases[5]. Assembly of the four core septin GTPases is regulated by the Nox2 NADPH oxi-

dase complex, which is required for re-modelling of the F-actin cytoskeleton and assembling

the exocyst at the appressorium pore [6,7,8]. F-actin ring formation is necessary for penetra-

tion peg emergence and re-establishment of polarized growth at the point of plant penetration.

After penetration, the fungal peg grows as a narrow, short primary invasive hypha[9], before

differentiating into bulbous invasive hyphae during colonisation of the first invaded host cell

[10]. Disease symptoms appear between 72h and 96h after initial infection and coalesce into

large spreading necrotic lesions from which the fungus sporulates. M. oryzae has also the

capacity to penetrate roots by means of hyphopodia and can colonize root tissue and spread

systemically throughout the plant under laboratory conditions [11,12].

In this study, we report the identification of a novel Zn(II)2Cys6 transcriptional regulator

involved in the early stages of plant infection by M. oryzae. The Zn(II)2Cys6 binuclear cluster

domain (IPR001138, PF00172) is exclusively found in the fungal kingdom[13,14]. The six cys-

teine residues bind two zinc atoms, which coordinate folding of the domain involved in DNA-

binding. Most Zn(II)2Cys6 proteins have been studied in Saccharomyces cerevisiae and
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Aspergillus species[13,15,16]. Typically, the Zn(II)2Cys6 proteins are pathway-specific activa-

tors under the control of major regulators[15,16,17,18]. The regulator of galactose catabolism

in yeast, Gal4p[19], and the regulators of acetate assimilation FacB[20] and the aflatoxin cluster

AflR[21] in A. nidulans, are among the best studied examples. Several Zn(II)2Cys6 transcrip-

tional regulators have been studied in the rice blast fungus (S1 Table). Of the 175 members of

the Zn(II)2Cys6 binuclear cluster family present in M. oryzae (S2 Table), only nine of them

(MoCod1, MoCod2, Pig1, Tra1, Tdg3, Xlr1, Ara1, Far1 and Far2) have been examined in any

detail[22,23,24,25,26,27] (S1 Table). A high-throughput gene knockout approach of 104 Zn

(II)2Cys6 proteins in M. oryzae revealed large variation in their biological functions, and

reported seven additional Zn(II)2Cys6 proteins to be required for plant infection, including

Gpf1 and Cln2[28]. However, despite this information, the mechanistic insights into how the

Zn(II)2Cys6 proteins govern M. oryzae cellular processes are largely unknown.

In this study, we characterize a novel mutant of M. oryzae that shows defects in pathogenic-

ity and vegetative growth following its selection from a M. oryzae T-DNA insertional library.

The T-DNA insertion is located within a gene (MGG_01285) encoding a Zn(II)2Cys6 binuc-

lear cluster protein, which we name TPC1. This gene was not included in the large-scale gene

knockout analysis of 104 Zn(II)2Cys6 proteins [28], although a global gene expression analysis

of transcription factors revealed that TPC1 is overexpressed during development (conidiation,

germination and appressorium formation), oxidative stress (methyl viologen treatment) and

carbon starvation [29]. Here, we reveal the involvement of this transcriptional regulator in

polarized growth, cell patterning and virulence in M. oryzae. Among the genes regulated by

Tpc1 we found NOXD, an important component of the fungal NADPH complex. Significantly,

Tpc1 interacts with Mst12 and mis-localises in the Δpmk1 background, linking Tpc1 to this

pathogenicity-associated MAPK signalling pathway. We provide mechanistic insight into the

role of Tpc1, a key regulator of polarity in M. oryzae that controls growth, autophagy and sep-

tin-mediated reorientation of the F-actin cytoskeleton to facilitate plant colonisation.

Results

M. oryzae TPC1 mutants show defects in development and

pathogenicity

In order to identify novel infection-related genes we screened a total of 300 T-DNA transfor-

mants for their ability to infect rice roots using a M. oryzae insertional library[30]. The M1422

mutant developed very restricted disease lesions on roots and was selected for further charac-

terization (Fig 1A). On leaves, M1422 produced only a small number of resistant-type lesions

(Fig 1B and S1A Fig). Colonies of M1422 were also compact and reduced in size, when com-

pared with the wild-type (Fig 1C).

The insertion site of the T-DNA within M1422 was located 0.9 kb downstream of the start

codon of locus MGG_01285 in the M. oryzae genome (S1B Fig). This gene encodes a putative

transcription factor that belongs to a Zn(II)2Cys6 binuclear cluster family. We named this gene

Transcription factor for Polarity Control 1 (TPC1). The predicted coding region of TPC1 is ~2.6

kb long and encodes 839 amino acids (http://fungi.ensembl.org/index.html; MG8). The TPC1
predicted amino acid sequence includes a putative nuclear localisation signal (NLS) and one

Zn(II)2Cys6 binuclear cluster DNA binding domain (S1B Fig).

A single T-DNA insertion in M1422 genome was detected by Southern blot hybridisation

using the hygromycin phosphotransferase gene as a probe (S1C Fig). We also generated a sec-

ond mutant in TPC1 by targeted gene replacement (S2A and S2B Fig). We complemented

both M1422 and Δtpc1 with a C-terminal TPC1:GFP gene fusion under control of its native

promoter. The complemented mutants recovered normal mycelial growth, colonial
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morphology and full virulence on rice (S1D, S1E and S2C Figs). We conclude that mutants

M1422 and Δtpc1 are impaired in TPC1 function.

Two striking characteristics of M1422 and Δtpc1 were their impaired hyphal growth and

colony morphology (Fig 1C, S1E and S2C Figs). Vegetative growth of Tpc1-lacking strains was

severely compromised in both complete (CM) and minimal (MM) medium (p< 0.01), and

showed compact colonies and non-invasive colony morphology (S1E, S1F and S2D Figs). In

Fig 1. M1422 mutant shows severe defects in pathogenicity and vegetative growth together with

increase tolerance to nitrogen depletion, calcofluor white (CFW) and hyperosmotic stress. (A) M1422

shows reduced disease symptoms on rice roots. Photographs were taken 15 days after inoculation. Wild-type

(WT) strain Guy11 presents maximum lesion severity (score 3) in 95% of the infected roots compared to the

M1422-infected seedlings that show mild (score 1–2) or null (score 0) necrotic symptoms on roots. Lesions

were scored on a scale 0–3, based on colour intensity and extension of the necrotic lesion[30]. (B) M1422 is

strongly impaired in its ability to infect rice leaves. (C) M1422 displays impaired ability to grow on complete

medium (CM) and minimal medium (MM) depleted of carbon (MM-C) and nitrogen (MM-N). Relative to strain

growth on MM, WT is more affected than M1422 on MM-N. (D) Sustained growth ratio difference in M1422 and

WT strains on CM with 10 μg ml-1 Congo Red (CR) and 10 μg ml-1 CFW. Relative to growth on CM, M1422

shows stronger growth defects on CR compared to WT. (E) Colony images of CM plates with increased

concentrations of sodium chloride (NaCl) (left). Diameter of WT and M1422 colonies measured at 10 dpi

reveals increased tolerance to NaCl (right graph). All error bars represent the standard deviation of at least

three independent biological replicas. All colony images were captured at 10 days post inoculation (dpi).

https://doi.org/10.1371/journal.ppat.1006516.g001
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Neurospora crassa, a class of mutants with polarity defects also exhibited this type of colony

morphology[31].

To analyse integrity of the cell wall, development of M1422 was evaluated in the presence of

the anionic dyes, Congo Red (CR) and Calcofluor White (CFW), which interfere with fungal

cell wall assembly by binding to β-1,4-glucan and chitin, respectively [32]. Additive growth

defects were observed on M1422 development in the presence of CR but not in CFW (Fig 1D).

In addition, mycelial growth was affected by NaCl-induced hyperosmotic stress (Fig 1E). High

concentrations of NaCl (0.6M - 1.0M) changed the growth ratio in colonial size between wild-

type and M1422, leading to an increase in the relative growth rate of M1422 compared to wild-

type. Therefore, the lack of Tpc1 affected plant virulence, vegetative growth, colony morphol-

ogy and hyperosmotic stress adaptation.

M. oryzae TPC1 is required for conidiogenesis and appressorium

development

We observed that M1422 and Δtpc1 mutants sporulated poorly compared to wild-type (Fig

2A and S2E Fig). In addition, M1422 asexual spores showed defects in septation (numbers of

cell per conidium) and conidial morphology (Fig 2B). Wild-type conidia were uniformly

pyriform, three-celled spores. By contrast, in M1422, although the majority of conidia were

three-celled (80%), a significant percentage of two-celled conidia (17%), single-celled (2%)

and four-celled conidia (1%) were observed. Up to 26% of spores showed abnormal mor-

phology in contrast to wild-type where less than 4% were misshapen (n> 300). We also

Fig 2. M. oryzae TPC1 is required for conidiogenesis and infection-related development. (A) M1422 mycelia

produces less conidia per cm2 than mycelia of wild-type (WT) strain on CM (mean±SD, n>300, three independent

experiments). (B) Defects in the number of cells per conidium and conidia morphology of M1422. The M1422 mutant

produces 1-, 2-, 3- (normal and abnormal morphology) and 4-celled conidia (respectively 1c, 2c, 3c and 4c in the panel)

compared to the 3-celled conidia uniformly produced by the WT. Scale bar = 20 μm. (C) M1422 conidia inoculated onto

glass coverslips showed an increased frequency of conidia germination from two cells. Scale bar = 10μm. (D)

Quantification of M1422 defects in germination rate and development of germ tubes per conidia on coverslips. Two germ

tubes germinated frequently from M1422 conidia. (E) Quantification of M1422 defects in the formation of infection-related

structures; germ tubes (gt) and appressoria (app). M1422 conidia form at least one appressorium during infection-related

development on coverslips (mean from >300 conidia; three biological repeats).

https://doi.org/10.1371/journal.ppat.1006516.g002
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found that appressorium development was affected in M1422 (Fig 2C). On hydrophobic cov-

erslips, wild-type conidia germinated to form one germ tube that emerged from the apical

cell and formed an appressorium within 4h-8h (Fig 2C and 2D). In M1422, 40% of conidia

germinated from two cells. This percentage increased to 50%-60% with extended incubation

time (4h-8h). Formation of two appressoria was rarely observed in wild-type conidia (Fig

2E). We conclude that M1422 is impaired in the normal spatial patterning of appressorium

development.

Polarity is coupled to autophagy and glycogen/lipid degradation in M.

oryzae

The impairment of appressorium-mediated plant infection by TPC1 mutants suggested that it

might play a critical role in penetration peg development[33]. Appressorium function is

known to depend on autophagic cell death of conidia, prior to appressorium maturation[4,34].

Therefore, we investigated whether infection-associated autophagy proceeded normally and if

conidia underwent autophagic cell death. A GFP:MoATG8 construct was introduced into

M1422 to determine the spatial and temporal dynamics of autophagy (Fig 3A). MoATG8
encodes an autophagic, ubiquitin-like protein involved in autophagosome function and has

been shown to be a reliable marker for autophagy[4,34]. Compared to the wild-type Guy11

(33.5±4.4), GFP:MoATG8-labeled autophagosomes accumulated in M1422 conidia in signifi-

cantly smaller numbers (21.6±5.5; p<0.01). In both strains, the number of conidial autophago-

somes decreased during germination, appressorium maturation and at the onset of spore cell

death and was significantly lower in M1422 conidia and germ tubes (Fig 3A). However, autop-

hagosome numbers increased significantly during appressorium maturation (8h; 16.1±4.9)

and dropped considerably after conidial death (24h; 5.0±1.8) in wild-type, whereas autophago-

some number remained relatively constant in M1422 during appressorium maturation (8.4

±4.1) and even after conidial cell death (7.5±3.3).

Appressorium development is accompanied by rapid degradation of glycogen from

conidia during germination and from appressoria during turgor generation[35,36]. We

therefore determined glycogen levels during appressorium development using potassium

iodide (KI). Comparative analysis of KI staining between wild-type Guy11 and M1422

showed differences during the onset and later stages of conidial cell death (8h and 24h; Fig

3B). In Guy11 glycogen depletion was observed (no staining) within both conidial cells and

appressoria during development. In the M1422 mutant, conidial cells were also depleted of

glycogen although the appressorium still contained high levels of glycogen (95%) during

maturation. We also looked at lipid metabolism, which is an additional driver of turgor gen-

eration in M. oryzae. The triacylglycerol lipase degrades lipid bodies that move to the

appressorium during development[24,37]. Accordingly, we followed lipid body distribution

during appressorium maturation in Δtpc1 using Nile red (Fig 3C). We consistently visual-

ised delayed degradation of lipid bodies in conidia and germ tubes in Δtpc1, which were evi-

dent at 9h and 12h after germination on coverslips. Using a cytorrhysis assay, in which

hyperosmotic concentrations of a solute are applied to collapse appressoria, we estimated

the internal solute concentration and turgor of appressoria of the two strains. We observed

that Δtpc1 appressoria clearly collapsed at higher rates than the WT at 1M concentration of

glycerol (Fig 3D). This suggests decreased in turgor within Δtpc1 appressoria, consistent

with the observed delayed degradation of glycogen and lipid bodies. When considered

together, these observations point that autophagy, and glycogen/lipid metabolisms are

delayed during appressorium development in Tpc1-lacking strains.
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Tpc1 is required for re-establishment of polarity during appressorium-

mediated plant infection

Following maturation of the appressorium, a penetration peg emerges from the appressorial

pore to penetrate the plant cuticle and successfully colonise the plant host. To assess whether

repolarization was impaired in the M1422 mutant, a penetration assay was performed on

onion epidermis and rice leaf sheath (Fig 4A). After 24h, 91% of wild-type conidia formed an

appressorium effectively, penetrated and invaded onion epidermal cells. The majority of

M1422 conidia (60%) germinated and produced an appressorium, but failed to penetrate and

invade onion cells. Only 40% of M1422 appressoria formed a penetration peg, but were not

Fig 3. Infection-associated autophagy and glycogen/lipid degradation are impaired in Tpc1-lacking strains. (A) Impaired cellular

localisation of autophagosomes in M1422 during infection-related development. Epifluorescence images of wild-type (WT) Guy11 and

M1422 transformants expressing GFP:MoATG8. Scale bar = 10 μm. Bar charts show mean autophagosome numbers and trend lines

present in conidium, germ tube, and appressorium at the time points indicated for each strain (mean ± SD; three biological repeats).

Asterisks indicate significant differences of the medians with p values of <0.01 (*), <0.001(**) or <0.0001 (***) using the Mann-Whitney

(Wilcoxon) W-test. (B) Glycogen metabolism is delayed in the M1422 mutant. Conidia from Guy11 and M1422 inoculated onto glass

coverslips were exposed to potassium iodide (KI) solution at 0h, 2h, 4h, 6h, 8h and 24h after inoculation. The KI solution stains glycogen

within the conidia, but not simple sugars such as glucose and fructose. Scale bar = 10 μm. Bar charts show the relative percentage of

stained appressoria with KI solution for each strain at 24h after inoculation (three biological replicas). (C) Lipid droplet mobilization during

appressorium maturation visualised using Nile red staining samples and confocal laser scanning microscopy. Fluorescence signals of all

images were captured using the same parameters. Δtpc1structures showing consistently higher fluorescence signals than the WT are

evident at 9h and 12h. (D) In cytorrhysis assays with glycerol, Δtpc1 appressoria collapse quicker than WT appressoria, suggesting that

glycerol concentration inside Δtpc1 appressoria is lower (mean±SD; three biological repeats; n>500).

https://doi.org/10.1371/journal.ppat.1006516.g003
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Fig 4. M. oryzae Tpc1 is required for re-establishment of polarity in appressoria. (A) Tpc1-lacking

mutants are impaired in appressorium-mediated penetration. After 24 hpi wild-type (WT) appressoria formed

on surface of the onion strip and leaf sheath have penetrated the underlying epidermal cell and formed

invasive hyphae (IH). M1422 and Δtpc1 show a defective invasion of onion epidermis and leaf sheath,

respectively. Scale bar = 10 μm. Bar charts show the relative percentage of appressorial-penetration of onion

epidermis and leaf sheath for each strain at 24 hpi (three biological replicas). (B) Micrographs of F-actin ring

organization visualized by expression of gelsolin:GFP and Sep:GFP in Guy11 and Δtpc1 strains. The Δtpc1

mutant produces aberrant septin and actin rings; mis-localization of Sep5:GFP is more severe. The linescan

graphs show fluorescence in a transverse section of individual appressoria. White arrowheads point

appressorial pores.

https://doi.org/10.1371/journal.ppat.1006516.g004
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able to invade the onion epidermal cells and spread away from the point of penetration. Simi-

larly, on rice leaf sheath preparations 81% of wild-type conidia penetrated successfully com-

pared to 21% of Δtpc1 mutant spores, which managed to develop a penetration peg but hardly

ever spread to adjacent cells.

To examine how formation of the germ tube and penetration peg was compromised, we

investigated cellular organization of the F-actin cytoskeleton[38], using the actin-binding pro-

tein fimbrin tagged with GFP (S3 Fig). Once wild-type conidia attached to the surface, fim-

brin:GFP spots were observed at the periphery of the germinating cells (0h). However, conidia

harvested from M1422 instead localised F-actin randomly at the periphery of the three cells of

conidia and not preferentially in the germinating cell (white arrowheads, S3 Fig). The most

clear mis-localisation defects were observed in mutant appressoria. Fimbrin was localised in

discrete puncta at the periphery of Guy11 appressoria, but in contrast was dispersed within

appressoria of the mutant (6h). Furthermore, the F-actin network was more diffuse and several

pores were observed in M1422 mature appressoria (white arrowheads, 24h). These results sug-

gest that re-polarization of the appressorium is adversely affected in the M1422 mutant. To

confirm this, we also tracked gelsolin:GFP and Sep5:GFP in Δtpc1 mutant. The use of gelsolin:

GFP and Sep5:GFP to follow actin reorganization has helped to understand cytoskeleton

dynamics during infection-related development[6]. The disorganisation of the appressorial

cytoskeleton and actin ring was evident in Δtpc1. Sep5 was mis-localised in all mutant appres-

soria and only 26% of mutant appressoria formed an intact actin ring with a central pore (Fig

4B). Consequently, TPC1 is required for the correct penetration peg emergence in M. oryzae.

Tpc1 is a nuclear protein regulated by the Pmk1 signalling cascade

The Tpc1:GFP fusion protein co-localised with histone H1:RFP in nuclei of vegetative hyphae,

attached conidia (30 min), and germinated conidia (Fig 5A). Moreover, whenever Tpc1:GFP

was observed in nuclei, GFP fluorescence was never observed in the cytoplasm or other organ-

elles within conidia. The results are consistent with TPC1 encoding a transcription factor that

acts within the nucleus during the initial stages of spore germination and appressorium devel-

opment, and correlate with the observed overexpression of TPC1 in these fungal structures [29].

To investigate whether TPC1 is associated with specific or multiple regulatory networks,

TPC1:GFP localisation was observed in conidia of different mutant backgrounds (Fig 5B). In

the Δpmk1 MAPK mutant[39], Tpc1:GFP was observed within the cytoplasm but not in nuclei.

By contrast, strong GFP fluorescence was visualised in conidial nuclei of the autophagy-defec-

tive Δatg1 and Δatg8 mutants, compared to the fluorescence observed in M1422 comple-

mented with TPC1:GFP or Guy11 expressing TPC1:GFP. These results suggest that Tpc1

activity is associated with the Pmk1 MAP kinase signalling pathway, which regulates appresso-

rium formation[39], and the control of autophagy[34].

We further analysed the link with between Tpc1 and the Pmk1 pathway by looking at the

ability of Tpc1 to interact with components of this pathway in a yeast two-hybrid system. Strik-

ingly, we observed that Tpc1 interacted with Mst12, a transcription factor that functions

downstream of Pmk1[40], although Tpc1 did not interact with Pmk1 itself (Fig 5C). The mis-

localisation of Tpc1 in Δpmk1 and its interaction with Mst12 strongly support Tpc1 involve-

ment in this pathogenicity-associated MAPK signalling cascade.

Tpc1-like transcriptional regulators are found exclusively in filamentous

fungi

We investigated the phylogenetic relationship of Tpc1 to other putative Magnaporthe Zn

(II)2Cys6 proteins and the closest orthologues of Tpc1 in other fungal species (S4 and S5 Figs).
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We observed that the six cysteine residues of the DNA-binding domain (DBD) in the Zn

(II)2Cys6 proteins were ordered in a conserved pattern, CX2CX6CX5-12CX2CX6-8C (S4A and

S4B Fig). In M. oryzae, the Zn(II)2Cys6 binuclear cluster family is diverse and composed of 175

members (S2 Table). The closest orthologues of Tpc1 (MGG_01285) were identified using

BLASTP and used to construct a phylogenetic tree (S4C and S5 Figs). Tpc1 clustered in a

group with sequences from other Sordariomycetes, such as Fusarium graminearum, N. crassa,

Chaetomium globosum and Podospora anserina. Based on this tree, Tpc1 is a single copy gene

and has not been subject to paralogous duplications. Our phylogenetic analysis reflected the

Fig 5. Tpc1 shows steady state nuclear localisation and is regulated by the Pmk1 signalling pathway.

(A) Nuclear localisation of Tpc1:GFP during infection-related development and vegetative hyphae by confocal

microscopy. Conidia and mycelium from a WT strain expressing both histone H1:RFP and TPC1:GFP protein

fusions. (B) Confocal images of conidia harvested from M. oryzae Δpmk1, Δatg1 and Δatg8 mutants

expressing TPC1:GFP. Tpc1 is not visualized in the nuclei of Δpmk1 mutant. (C) Yeast two-hybrid experiment

showing Tpc1 interacts with Mst12 but not with Pmk1. Yeast colonies co-transformed simultaneously with the

pGAD-TPC1 (bait Tpc1), and pGBK-Pmk1 and pGBK-Mst12 (prey Pmk1 and Mst12) vectors grow in high

stringency media (-His/-Ade/-Leu/-Trp/+X-α-Gal) at specified concentrations: 1 x 106, 1 x 105, 1 x 104, 1 x 103,

1 x 102 cells, each a 10μl droplet. The interaction of proteins expressed by prey and bait vectors generates a

blue-coloured colony due to the activation of α-galactosidase expression in the presence of X-α-Gal. Positive

control cells contain pGBKT7-53 and pGADT7-T plasmids co-transformed into Y2HGold.

https://doi.org/10.1371/journal.ppat.1006516.g005
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diversification of the Zn(II)2Cys6-containing proteins in the fungal kingdom. Interestingly, we

did not find putative homologues of Tpc1 in S. cerevisiae or Schizosaccharomyces pombe using

a BLASTP search.

In F. graminearum, it is remarkable that only 16% (46/296) of the mutants lacking Zn

(II)2Cys6 transcription factors showed a phenotype, compared to the 42% (30/72) of N. crassa
mutants or the 59% (61/104) of M. oryzae mutants[28,41,42]. Among the F. graminearum
mutants with clear phenotypes is found the orthologue of M. oryzae TPC1 (FgTPC1 =

FGSG_08769; GzZC108), which is required for plant infection, perithecia formation, synthesis

of mycotoxins (ZEA, zearalenone; and DON, deoxynivalenol) and growth[41]. Similar to M.

oryzae (Fig 1E and S2F Fig), the Δfgtpc1mutant is more resistant than wild-type to hyperosmo-

tic and oxidative stresses.

We further investigated functional conservation of Tpc1 in the saprotrophic filamentous

fungus N. crassa, and characterized a N. crassa NcTPC1 deletion mutant (Δnctpc1;

NCU05996), obtained from the Fungal Genetic Stock Centre[43]. The analysis of the align-

ment of M. oryzae and N. crassa Tpc1 proteins showed that they share 67% amino acid identity

(S6A Fig). Strikingly, the Δnctpc1 mutant was severely reduced in vegetative growth compared

to an isogenic wild-type strain (p<0.01) (S6B Fig), and its vegetative hyphae also formed com-

pacted colonies. In addition, we observed that the Δnctpc1 mutant of N. crassa was less severely

affected when exposed to increasing osmotic stress using NaCl, compared with the N. crassa
wild-type strain (p<0.01) (S6C Fig). Similar tolerance effect was also found in F. graminearum
Tpc1[41] and in M. oryzae Tpc1 (Fig 1E). Consequently, N. crassa Tpc1 also plays a significant

role in growth and development of the fungus and its responses to abiotic stress.

Oxidation-reduction processes are significantly affected in the Δtpc1

mutant

Tpc1 contains a Zn(II)2Cys6 binuclear cluster DNA binding domain, which is found only in

fungal proteins considered bonafide transcription regulators[13,14]. We carried out a compar-

ative transcriptome analysis using the wild-type strain and the TPC1 deletion mutant to iden-

tify the biological processes and genes regulated by Tpc1. For this experiment, RNA was

extracted from fungal material grown on cellophane on top of CM agar plates (S2D Fig). We

considered it to be an optimal condition since fungal hypha is able to penetrate the cellophane,

i.e. a change in polar growth occurs under these conditions, and allow us to obtain enough

amount of RNA for subsequent microarray analysis. We identified 215 down-regulated genes

and 185 genes to be up-regulated with at least a two-fold change in expression level in the

Δtpc1 mutant (S3 Table). We classified all the genes that were up- and down-regulated into

four functional groups according to potential roles in signalling (13 genes), cell wall biosynthe-

sis or modulation of plant response (secreted proteins; 140 genes), metabolism (127 genes)

and other functions (54 genes). Sixty-six genes encoded proteins that lacked any known

domain. Remarkably, two gene ontology (GO) terms were found significantly enriched among

these differentially expressed genes, the oxidation-reduction process (GO:0055114; 57 genes;

p<0.001) and the oxidoreductase activity (GO:0016491; 58 genes; p<0.001).

Within the signalling functional group, two down-regulated genes encoded phosphatidyl

ethanolamine-binding proteins (PEBP) that have been shown to regulate protein kinase A

(PKA) and mitogen-activated protein kinase (MAPK) pathways[44,45]. Amongst the up-regu-

lated genes, eight of them encoded transcriptional regulators, which suggests a link between

the gene networks controlled by these transcriptional regulators and Tpc1.

The largest group of mis-regulated genes comprised 140 genes coding for secreted or cell

wall-related proteins. Within this group, more than half of the members (74 genes) had no
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matches in databases. However, twenty-four genes were potentially involved in cell wall

remodeling, and encompassed different types of glycosyl hydrolases (GH10, GH18, GH32,

GH43, GH61 and GH81), seventeen proteases and two secreted phospholipases A2. Three

Mas3/Gas1 paralogues and several effector proteins such as a Bas2-like, Bas113 and avrPi54

were also found[46,47,48,49]. The up-down regulation of two CFEM G-protein coupled recep-

tors[50], including PTH11[51], suggested an alteration in the ability of the Δtpc1 mutant to

perceive external signals.

The second largest group of genes with altered expression levels encoded proteins related

with primary and secondary metabolism (127 genes). We found a significant number of them

participating in oxidation-reduction processes (46%) and transport (9%). Alteration in nitro-

gen and glycerol metabolism was evidenced by the expression changes of four NmrA-like reg-

ulatory proteins[52], enzymes involved in amino acid biosynthesis, a glycerol kinase and the

glycerol dehydrogenase Gcy1, an enzyme also associated with redox regulation in yeast[53].

Down-regulation of an α-glucosidase supported the glycogen degradation delay of Tpc1-lack-

ing strains.

The last functional group included 54 genes encoding proteins that carry a wide range of

biochemical roles. The reduced expression of the autophagy gene ATG22 and the up-regula-

tion of three small chaperones Hsp20-like suggested the unbalanced signals for survival and

cell death existent in Δtpc1[54]. Microtubule-dependent vesicle trafficking and cell cycle were

also affected in the mutant as inferred from the misregulation of two dynamins, one kinesin

light chain, one Marvel protein, two cyclins and the Cdc26 subunit. Genes involved in silenc-

ing pathways, spliceosomal snRNP assembly, tRNA processing, RNA-mediated heterochroma-

tin silencing and translational arrest were also misregulated in Δtpc1, highlighting alterations

in other cellular processes that regulate gene expression.

Gene-deletion analysis of down-regulated transcripts in Δtpc1 identifies

a major pathogenicity gene in M. oryzae

The majority of the Zn(II)2Cys6 binuclear cluster proteins are transcriptional activators and

only few of them have been shown to act as repressors[14]. To identify novel pathogenicity

genes we focused on genes that could play a role in TPC1-associated defects. Five out of the

133 down-regulated genes were selected for gene replacement (S3 Table; S7 Fig), including the

conidiation-related gene CON6[55], a glycosyl transferase 18 gene (GH18) that undergoes a

50-fold increased expression in planta[48], and the two signaling-associated PEBP genes (S7

Fig). The PRO41/HAM-6 gene, which is required for hyphal fusion in Neurospora crassa and

sexual development in Sordaria macrospora was also selected for the analysis[56,57]. We con-

firmed by RT-PCR that the five genes were down-regulated in the Δtpc1 mutant (S8A Fig).

Among the six deletion mutants generated, only Δpro41/Δham-6 displayed a severe patho-

genicity-deficient phenotype (S7 Fig). Despite the links found between conidiogenesis and

pathogenicity in M. oryzae[58,59,60], the Δcon6 mutant behaved like wild-type in planta. Simi-

larly, Δgh18, Δpebp1, Δpebp2, and the double mutant Δpebp1Δpebp2 did not show any pathoge-

nicity-associated defects possibly due to redundancy in related gene functions. Consequently,

we selected Δpro41/Δham-6 mutants for further characterization.

M. oryzae NOXD/PRO41 is required for superoxide production, sexual

development and plant penetration

The open reading frame of M. oryzae PRO41 was initially annotated in the EnsemblFungi data-

base as HAM-6, a N. crassa gene required for cell fusion[61]. However, the orthologue of this

protein was first characterized in S. macrospora and named Pro41[57,62]. Pro41 is a novel ER
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membrane protein required for fruiting body maturation in S. macrospora. Later, Pro41 was

found to be the functional orthologue of the p22phox subunit of the NADPH oxidase complex

in both Podospora anserina and Botrytis cinerea[63,64]. Therefore, we renamed the Pro41/

Ham-6 protein NoxD (S8B Fig).

We looked at the growth of the M. oryzae ΔnoxD mutant in different media and stress con-

ditions (Fig 6A and S8C Fig). ΔnoxD grew slightly faster than the wild-type on CM and MM,

under salt stress (0.2 M LiCl, 0.4 M NaCl) and in Congo Red (CR). However, we did not

observe differences in growth under carbon starvation, calcofluor white (CFW) or basic condi-

tions (pH 9.5). Increased resistance to CFW was previously observed for M. oryzae Δnox1 but

not for Δnox2[65], suggesting NoxD and Nox2 fulfill similar roles during cell wall biogenesis.

Growth of M. oryzae ΔnoxD and Δnox1Δnox2 mutants in 1mM methyl viologen, 1mM H2O2

Fig 6. The M. oryzae NoxD protein is required for plant penetration and sexual reproduction. (A) Eight-day old wild-type (WT) Guy11

and ΔnoxD strains grown on different media and stress conditions (additional information in S8C and S8D Fig). The ΔnoxD mutant showed

accelerated growth rate compared to wild-type (WT) on CM. ΔnoxD growth is affected in MM-N media and shows increase resistance to

salts (LiCl, ClNa) and CongoRed (CR). Colony edge is indicated with a black arrowhead. (B) Leaf and root infection assays showing ΔnoxD

pathogenicity defects and functional complementation of PrRP27:NOXD:mCherry construct. (C) Penetration assays using leaf sheaths and

onion epidermal cells. It is very unusual to observe ΔnoxD within the host cells. (D) Fertility assay in oatmeal agar plates pairing Guy11 and

ΔnoxD with the tester strain of opposite mating type TH3. No perithecia were observed from the cross of ΔnoxD×TH3.

https://doi.org/10.1371/journal.ppat.1006516.g006
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and 5mM H2O2 was similar or improved when compared to wild-type (S8D Fig). Thus, the

lack of NoxD did not affect fungal growth under oxidative stressors in contrast to the growth

defects displayed by B. cinerea NADPH oxidase mutants[64].

The infection ability of ΔnoxD was severely affected on leaves and roots (Fig 6B and S7 Fig),

in accordance with the strong penetration defects displayed by Δnox1 and Δnox2[65]. The pen-

etration defect displayed by ΔnoxD was confirmed using rice leaf sheaths (81% in the wild-type

versus 19% in the mutant) and onion epidermis penetration assays (74% in the wild-type ver-

sus 22% in the mutant; Fig 6C). Subsequently, we crossed the ΔnoxD mutant with the rice iso-

late TH3, a M. oryzae strain of opposite mating type (Fig 6D). The inability to produce

perithecia indicated that NoxD is required for sexual reproduction in M. oryzae.
To define whether superoxide production was impaired in the ΔnoxD mutant, we used

nitroblue tetrazolium (NBT), which forms a dark-blue water-insoluble formazan precipitate

upon reduction by superoxide radicals[65,66]. In the ΔnoxD mutant, we observed an increase

in superoxide production at hyphal tips and a significant reduction in appressoria based on

mean pixel intensity measurements (p<0.01) (Fig 7A). This was previously described for

Δnox1Δnox2 mutants[65], and supports the existence of alternative routes for cellular ROS

generation in M. oryzae during hyphal development. Since Δtpc1 was affected in oxidation-

reduction processes, we also included Δtpc1 in this analysis. Increased superoxide production

was found in Δtpc1 hyphal tips but to a lesser extent than nox mutants, while in appressoria

Δtpc1 showed the highest superoxide levels among the strains analyzed, indicating that the lack

of Tpc1 affects superoxide production pathways in M. oryzae.
A yeast two-hybrid assay was used to identify putative NoxD interactors. We found that M.

oryzae NoxD interacts with the Nox1 NADPH oxidase subunit (Fig 7B) but not with Nox2 or

NoxR, supporting previous work in B. cinerea and P. anserina[63,64].

NoxD is visualized in ER-associated vesicles and plasma membrane of

appressoria and conidia

To localize NoxD we generated C-terminal mRFP (cherry variant) and GFP translational

fusions under the control of strong or native promoters, respectively. Both constructs fully

complemented ΔnoxD plant infection defects (Fig 6B), which indicated that the C-terminal tag

does not affect NoxD function, although expression of NoxD:mRFP was clearly stronger. M.

oryzae NoxD was mainly observed in subapical vesicles and the plasma membrane of appres-

soria and conidia (Fig 7C). Co-localization of NoxD:mRFP with GFP containing the ER reten-

tion signal KDEL showed that the vesicles are closely associated with the ER, overlapping with

some of them (Fig 7, white arrowheads). The subapical vesicles observed near plasma mem-

branes and septa in M. oryzae structures correlated with the localisation of NoxD in P. anserina
[63]. In P.anserina, these vesicles co-localised with the GFP:Idi7 reporter protein, suggesting

that they originate from the ER and travel towards the vacuolar system [63].

NoxD is required for septin ring assembly at the appressorial pore

The Nox2-NoxR complex is essential for septin-mediated cytoskeletal reorientation, whereas

Nox1 is dispensable although may have important roles to play in maintenance and elongation

of the penetration peg[6]. To test if NoxD was also involved in this process, we expressed the

acting-binding protein gelsolin:GFP and Sep5:GFP in ΔnoxD. In the wild-type, both a septin

and gelsolin ring was present at the appressorium pore[6] (Fig 7D). In the ΔnoxD mutant,

however, Sep5:GFP formed a disorganized mass in the infection cell as previously reported for

Δnox2 and ΔnoxR expressing Sep5:GFP[6]. Gelsolin:GFP rings in ΔnoxD also possessed dis-

torted pores. Considering that gelsolin colocalizes with F-actin at the appressorial pore[6], the
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altered fluorescence pattern of gelsolin:GFP revealed that the toroidal F-actin ring was disorga-

nized (Fig 7D). Previous reports showed that Sep5:GFP and gelsolin:GFP patterns in the

Δnox1 mutant displayed normal conformation[6]. NoxD and Nox1 therefore appear to play

alternative roles in cytoskeletal re-modeling in appressoria of M. oryzae.

NOXD expression is regulated by Tpc1 and the Pmk1 pathway

The down-regulation of NOXD in Δtpc1 suggested that this gene may be directly regulated by

Tpc1. To investigate this idea, we carried out chromatin immunoprecipitation (ChIP) followed

by qPCR (Fig 8A and 8B). We observed that the promoter region of NOXD comprising the

Fig 7. M. oryzae NoxD is required for ROS production in appressoria, localizes in ER-derived vesicles and plasma membrane, and

interacts with Nox1. (A) Superoxide production is significantly affected in the mutants as shown by nitroblue tetrazolium (NBT) staining and

quantification of pixel intensities in hyphal tips (mean±SD; n = 10). Both ΔnoxD and Δnox1Δnox2 produced less ROS in appressoria but

higher amounts of ROS in hyphal tips compared to WT; Δtpc1 generated higher amounts of ROS in hyphal tips and appressoria. Addition of

diphenylene iodonium (DPI) before NBT treatment abolishes the formation of dark precipitates associated with sites of superoxide

generation. Values to calculate mean pixel intensity were for white 0 and black for 100. (B) A yeast two-hybrid screen reveals that NoxD

interacts with Nox1. A yeast colony co-transformed simultaneous with the pGBK-NOX1 (bait Nox1) and pGAD-NOXD (prey NoxD) vectors

grows in high stringency media (-His/-Ade/-Leu/-Trp/+X-α-Gal). The interaction of proteins expressed by prey and bait vectors generates a

blue-coloured colony due to the activation of α-galactosidase expression in the presence of X-α-Gal. (C) Images of NOXD fusion constructs

using GFP and mRFP under two different promoters, the NOXD promoter and the strong promoter of ribosomal protein Rp27, respectively.

Both NoxD fusions localized in vesicles and plasma membrane. In conidia expressing NOXD:mRFP, fluorescence signal is observed in

vesicles closely associated to ER membranes labelled with GFP containing the ER retention signal KDEL. After 8h, fluorescence signal is

strongly detected at the plasma membrane of the appressoria. pEFGPKDEL encodes GFP with the ER retention signal KDEL. (D)

Micrographs of F-actin ring organization visualized by expression of gelsolin:GFP and Sep:GFP in WT and ΔnoxD. This mutant produces

aberrant septin and actin rings; mis-localization of Sep5:GFP is more severe. The linescan graphs show fluorescence in a transverse

section of individual appressoria.

https://doi.org/10.1371/journal.ppat.1006516.g007
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NOXD1, NOXD2 and NOXD3 fragments immunoprecipitated with Tpc1:GFP, which indi-

cated that NOXD expression is regulated in vivo by this transcription factor. In addition, we

performed electrophoretic mobility shift assays (EMSA) with M. oryzae Tpc1 and Mst12 since

both proteins can interact in yeast two-hybrid assays (Fig 5C). We found that Mst12 strongly

recognised the probe 1 located between -1120 and -643 upstream of the start codon of the

NOXD gene (Fig 8C). Mst12 also recognized probes 2 and 3, but less strongly. Mst12 bound to

Fig 8. Tpc1 and Mst12 bind the promoter region of the NOXD gene. (A) Genomic location of fragments used for chromatin

immunoprecipitation (ChIP) and electrophoretic mobility shift assays (EMSA). Transcription start site (TSS) was identified by 5’-end RACE

(rapid amplification of cDNA ends) followed by sequencing. The 3’UTR length was estimated using EST data. (B) ChIP analysis with anti-

GFP antibody was used to identify Tpc1:GFP levels associated with NOXD promoter (means±SD, n = 4). DNA isolated from chromatin

immunoprecipitated with anti-GFP antibody was subjected to qPCR. The DNA in ChIP fractions prepared without antibody was used as

negative control. The ratio of DNA in ChIP fractions with respect to that in the untagged wild-type cell extracts was calculated for NOXD

region and normalized with the values for the NOXD site. The normalized ratios were plotted in the lower panel. Probes indicated by

asterisks are statistically significant according to the Wilcoxon-Mann-Whitney test and have a p value <0.05 (*) or <0.01 (**). (C) EMSA with

Mst12 and Tpc1. Mst12 recognises strongly probe 1, and with less affinity probes 2 and 3. Tpc1 cannot directly bind to the NOXD promoter.

The promoter region of a YdiU-containing protein was used as a negative control. (D) DNA-binding analysis of Mst12 to NOXD promoter.

Dissociation constant (KD) was estimated using bound probes against protein concentration and the fitting equation y = mx/(k+x). (E) DNA-

binding experiments showing Tpc1 promoting Mst12 DNA-binding affinity to NoxD probe 1 using different amounts of Tpc1. BSA (bovine

serum albumin) resuspended in Tpc1 buffer was used as a negative control; BSA does not stimulate Mst12 binding to the probe. (F)

Analysis of NOXD transcript abundance in Δtpc1 and Δmst12 mutants by qPCR. (G) Transcript abundance of MST12 and TPC1 in Δtpc1

and Δmst12 backgrounds, respectively. cDNA concentration in the mutants was normalised using actin and wild-type levels of the genes

analysed (referred as 1; mean±SD, n = 3).

https://doi.org/10.1371/journal.ppat.1006516.g008
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the probes produced multiple bands, possibly due to the presence of several protein molecules

on the biotinylated DNA (Fig 8D). Intriguingly, Tpc1 itself was not capable of recognizing any

of the three probes under the conditions tested (Fig 8C). However, the addition of Tpc1 to

Mst12 increased its DNA-binding capacity (Fig 8E), which is consistent with both, the ability

of these proteins to interact, and with Tpc1 as modulator of Mst12 DNA-binding affinity.

Increasing amounts of Tpc1 did not alter significantly Mst12affinity. Importantly, the pro-

moter regions tested using these in vitro DNA-binding assays correlated perfectly with the

enriched fragments obtained in the ChIP analysis, which supports that Mst12 and Tpc1 are

part of a complex that coordinately regulate NoxD expression. To further confirm these

results, we checked NOXD expression levels in the Δmst12 mutant and corroborated that they

were reduced (Fig 8F). We also observed that MST12 and TPC1 genes were overexpressed

when the corresponding partner was not present in the fungal cell (Fig 8G). We conclude that

Tpc1 regulates NoxD expression through its interaction with Mst12 and confirm the link

between Tpc1 and the participation of the Pmk1 pathway in the regulation of NoxD

expression.

Discussion

To cause disease in rice, M. oryzae forms a specialised cell called an appressorium, the develop-

ment of which involves transitions from polarised to isotropic cellular growth, followed by

rapid turgor-driven polarisation to penetrate the leaf surface. Understanding how these cellu-

lar transitions occur is critical to controlling the disease at an early stage, prior to entering the

plant. In this study, we have identified a transcription factor, Tpc1 that plays a key role in regu-

lating plant infection, due to its role in polarity control. We have also identified one putative

mechanism by which it acts, via the regulated synthesis of reactive oxygen species and control

of the NADPH oxidase complex, which regulates septin assembly and F-actin re-modelling at

the base of the appressorium. Furthermore, we have found that Tpc1 directly participates in

the Pmk1 pathway and is required for infection-associated autophagy, which are both essential

pre-requisites for appressorium formation and function.

We observed that the TPC1 mutants formed compact colonies, which resembled the colony

morphology shared by a class of mutants with polarity defects in N. crassa[31]. Conidial germi-

nation, and growth of vegetative hyphae were severely impaired in the two mutants lacking

functional Tpc1, supporting defects in sustained tip elongation and establishment of polarity

in apically-growing hyphae. Autophagy plays a major role in supplying amino acids, fatty

acids, and glucose to maintain cellular functions during stress and starvation[67]. The absence

of Tpc1 function altered the onset of infection-associated autophagy which occurs during

appressorium development[68]. Conidial cell death is necessary to initiate appressorium pene-

tration and it is regulated by the Pmk1 pathway [33]. Although M1422 conidia appeared able

to undergo conidial cell death, the cellular localization of autophagosomes and glycogen/lipid

deposits suggested that the process was delayed. Consistent with this observation, Tpc1:GFP

was also highly expressed in Δatg1 and Δatg8 mutants impaired in autophagy, suggesting that

the expression of TPC1 is de-repressed as a consequence of the inability to carry out autophagy

and may therefore be an upstream positive regulator of infection-associated autophagy during

appressorium maturation (Fig 9).

Autophagic cell death is linked with appressorium function and penetration in M. oryzae
[4], and mutants lacking Tpc1 are also penetration defective. The formation of a penetration

peg at the base of the appressorial pore is a cellular process intrinsically linked to polar growth

[69,70]. The F-actin cytoskeleton plays a crucial role during germ tube re-polarisation and

penetration peg emergence. We therefore investigated cytoskeletal dynamics during
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appressorium maturation in the mutant background. The network of F-actin observed with

fimbrin:GFP in mature wild-type appressoria (8h-24h) delineated the appressorial pore, which

was strikingly absent in M1422. This result together with the mis-localization of Sep5:GFP and

gelsolin:GFP in Δtpc1 indicated that the F-actin network is disturbed in Tpc1-lacking strains.

The microarray analysis helped us to identify gene expression changes due to the lack of

Tpc1, which correlated with the observed involvement of this protein in glycogen metabolism,

autophagy and polar growth. Oxidation-reduction processes were also significantly affected in

Δtpc1 including superoxide production pathways, likely due in part to the down-regulation of

the fungal homologue of the p22phox NADPH subunit, the NOXD gene[63,64]. The M. oryzae
ΔnoxD mutant was unable to infect rice leaves and roots. We established an interaction of

NoxD with Nox1, but not with NoxR or Nox2, and confirmed the requirement of NoxD for

Fig 9. Polar growth and associated processes that take place during appressorium maturation in M. oryzae and model of

Tpc1-mediated plant penetration. (A) Polarity factors regulate the emergence and elongation of the germ tube and the penetration peg

required for appressorium development and function. Polarity is concomitant with autophagic cell death and glycogen/lipid degradation–

cellular processes that also control appressorium function. (B) During germination, environmental signals trigger the Pmk1 kinase cascade

and the control of autophagy to activate Tpc1 function. Nuclear-localised Tpc1 in turn activates transcription of genes required for polar

growth, autophagy, and glycogen degradation. Tpc1 interacts with Mst12 and this complex is required for regulation of the expression of

several genes, including NoxD. Polarity is associated with cytoskeletal dynamics that is controlled by Tpc1 through the Nox1 and Nox2

NADPH oxidase complexes. NoxD interacts with Nox1 and maybe with Nox2 indirectly. Interactions of NoxR and Pls1 with Nox1 and/or

Nox2 need to be confirmed. To initiate plant infection Nox1/Nox2 NADPH oxidases regulate the formation of the F-actin network at the

appressorium pore, which leads to penetration peg emergence and subsequent elongation. Mutant strains used in this study are highlighted

in black.

https://doi.org/10.1371/journal.ppat.1006516.g009
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superoxide generation and sexual reproduction in M. oryzae, consistent with NoxD functions

in B. cinerea and P. anserina[63,64]. We also identified ΔnoxD defects in repolarization of the

F-actin cytoskeleton during infection-related development, supporting the previous role

described for the M. oryzae NADPH oxidase complex[6]. Remarkably, the disorganization pat-

tern of gelsolin:GFP and Sep5:GFP in ΔnoxD was similar to that observed in Δnox2 and ΔnoxR
mutants, whereas Δnox1 formed nearly intact ring shapes[6]. This result suggests that Nox1

and NoxD participate differently in septin-mediated cytoskeleton organization despite their

interaction, and strengthens the view of the fungal NADPH oxidase as a dynamic complex

[71]. It seems likely that a Nox2-dependent process initiates septin ring formation, while Nox1

is necessary for maintenance of this conformation (Fig 9). NoxD may therefore be associated

at a relatively early stage in recruiting Nox1 to the appressorium pore, perhaps explaining why

its absence results in a more severe phenotype with respect to actin and septin assembly at the

pore. The role of NoxD, however, highlights that the Nox1 and Nox2 complexes are both nec-

essary for penetration peg elaboration and extensive polar growth. It is worth noting that the

tetraspanin PLS1 deletion mutants exhibit the same phenotype as Δnox2 in M. oryzae and P.

anserina[6,72], suggesting that Pls1 may act as the missing link between Nox2 and NoxD sub-

units of the fungal NADPH oxidase complex (Fig 9). The recent discovery in B. cinerea of the

RasGAP protein homologue IQGAP and its interaction with NoxD also points to IQGAP as a

scaffold protein of the fungal NADPH complex[73]. In mammals, Nox complexes can act

upstream[74] or downstream [75] of MAPK signaling pathways. IQGAP also interacts with

different modules of MAPK- and Ca-dependent signalling cascades[73], pointing the link

between Nox complexes and signalling cascades. Interestingly, the B. cinerea ΔnoxD mutant

showed growth defects in the presence of oxidative stressors in contrast to the wild-type

growth exhibited by the M. oryzae ΔnoxD mutant, which suggests a diversification of the cellu-

lar functions of NoxD in fungi. This result also hints differences in the regulation of ROS-

mediated signalling pathways in the fungal kingdom.

Importantly, two lines of evidence support the direct involvement of Tpc1 in NoxD expres-

sion regulation. The ChIP analysis demonstrates that Tpc1:GFP immunoprecipitates in vivo
with the NOXD promoter region. Tpc1 also regulates Mst12 DNA-binding activity in vitro
using the corresponding NOXD promoter region, and indicates a direct participation of Tpc1

in the MAPK Pmk1 signalling pathway. Despite the ability of Tpc1 and Mst12 to regulate

NOXD expression together, and their participation in common cellular processes such as pene-

tration peg formation and plant invasion[9], Δmst12 and Δtpc1 mutants have different colony

morphology. In contrast to Tpc1, Mst12 is dispensable for growth and appressorial turgor gen-

eration[9]. Consequently, Tpc1 has the ability to modulate expression of genes that participate

in additional cellular processes, either by interacting with other transcription factors, or acti-

vating directly the expression of different genes.

Here, we identified one potential mechanism by which the transcription factor Tpc1 regu-

lates appressorium maturation and plant infection. The loss of pathogenicity associated with

M. oryzae and F. graminearum TPC1 mutants and similar growth defects associated with the

N. crassa Δnctpc1 mutant, suggest that Tpc1 plays a key role as a transcriptional regulator in

the re-establishment of polarity and the response to numerous signalling pathways, such as the

Pmk1 MAP kinase and Atg1 kinase cascades. The role of Tpc1 in appressorium-mediated

plant infection appears to be associated with the NADPH oxidase-dependent re-polarisation

process of the appressorium, and the associated physiological changes such as autophagy, gly-

cogen/lipid mobilisation and asymmetric reorganization of the F-actin cytoskeleton. Future

studies will allow further dissection of this role and precise definition of the biological pro-

cesses regulated by Tpc1 in filamentous fungi.
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Materials and methods

Strains, media and plant infections

M. oryzae was routinely incubated in a controlled temperature room at 25˚C with a 12h light/

dark cycle. Media composition of complete medium (CM), minimal medium (MM), minimal

medium without carbon (MM-C) or nitrogen (MM-N), and DNA extraction and hybridisa-

tion were all as previously described[76]. Growth tests were carried out with 7 mm plugs of

mycelium from Guy11 and the M1422 mutant strains as initial inoculum. The wild-type Neu-
rospora crassa strain and isogenic deletion mutant NCU05996 were obtained from the Fungal

Genetics Stock Centre (FGSC, Kansas City, Missouri, USA). Vogel’s minimal medium was

used for cultivation of N. crassa strains at 25˚C with a 12h light/ dark cycle and for stock-keep-

ing at 4˚C (http://www.fgsc.net/Neurospora/NeurosporaProtocolGuide.htm). Growth tests

were carried out on Vogel plates with 5 mm plugs of mycelium from N. crassa wild-type (wt)

and NcTPC1 KO strains. Plates were incubated at 25˚C for 2 days. M. oryzae leaf and root

infection assays were carried out, as previously described [30,77].

Conidiation, onion/leaf sheath penetration assays, cytorrhysis assay and

glycogen/Nile red staining

Conidia were harvested using 2 ml of sterile water per plate after fungal cultures were incu-

bated at 25˚C for a period of 10 days on CM. Calculations were then carried out to determine

the number of conidia generated per cm2 of mycelium using a Neubauer counting chamber.

Values are the mean ± SD from >300 conidia of each strain, which were measured using the

ImageJ software [78]. Photographs were taken using the Zeiss Axioskop 2 microscope camera

using differential interference contrast (DIC) microscopy or epifluorescence. Conidia were

stained with 5μl calcofluor white (CFW) solution (Fluka) and incubated at 25˚C for 30 min-

utes. Cell number per conidium was determined by visualizing septa with CFW. Appresso-

rium-mediated penetration of onion epidermal strips was assessed using a procedure based on

Chida and Sisler[79]. A conidial suspension at a concentration of 1 x 105 conidia mL-1 was pre-

pared and dropped onto the adaxial surface of epidermal layers taken from onion. The strips

were incubated in a moist chamber at 25˚C and penetration events scored 24h to 48h later by

recording images with an Olympus IX81 inverted microscope system. Leaf sheath assays were

carried out as previously described [10]. Glycogen staining solution contained 60 mg of KI

and 10 mg of I2 per milliliter of distilled water. Glycogen deposits are visible immediately. For

cytorrhysis assays, 105 spores were allowed to form appressoria for 18h on coverslips prior the

addition of external glycerol (1M or 3M). After 10 minutes in glycerol ~500 appressoria were

analyzed in each biological replica; experiment was carried out by triplicate. To visualize lipid

droplets, conidia were allowed to germinate in water on coverslips. After 0h, 2h, 9h and 12h

water was removed and conidia directly stained with Nile red (Nile Red Oxazone (9-diethyla-

mino-5Hbenzo[alpha]phenoxazine-5-one; Sigma). Nile red was used to 2.5 mg/ml diluted in

50mM Tris/Maleate, pH 7.5 and polyvinylpyrrolidone (PVP) (2–3% w/v). Lipid droplets begin

to fluoresce within seconds. Samples were visualized under a confocal laser scanning micro-

scope using a 561 nm excitation wave length and a long pass emission filter (592–700 nm). All

images were taken using the same parameters.

Generation of mutant strains by gene replacement

Gene deletion constructs were generated using multisite gateway technology (Invitrogen) as

previously described[77,80]. TPC1, CON6, GH18, PEBP2 and NOXD coding sequences were

replaced by the hygromycin resistance cassette and PEBP1 by the sulfonylurea resistance
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cassette in the gene replacement constructs. Primers for constructing entry plasmids are

described in S4 Table. Fungal transformants generated by Agrobacterium-mediated transfor-

mation [81] were selected growing in DCM solid media supplied with 5-fluoro-2’-deoxyuri-

dine (50μM) and 200μg/ml Hygromycin or 150μg/ml Chlorymuronethyl in the case of Δpebp1.

DCM is 1.7 g yeast N-base without amino acids, 1.0 g NH4NO3, 2.0 g of L-asparagine and 10 g

of D-glucose. Knockout strains were confirmed by PCR or Southern blotting using radioactive

probes (32P; primers listed in S4 Table). Sequence data and gene numbers used in this study

were taken from EnsemblFungi (Magnaporthe oryzae MG8; http://fungi.ensembl.org/index.

html).

Generation and cellular localisation of fluorescently tagged proteins

To determine the localisation of Tpc1, live-cell imaging was performed using a M. oryzae
Guy11 strain containing two constructs, histone H1 tagged with red fluorescent protein (H1:

RFP; tdTomato) to visualize nuclei [82], and TPC1:GFP. For the construction of a functional

TPC1:GFP gene fusion, primers were designed in order to amplify the TPC1 (MGG_01285)

promoter region and ORF from genomic DNA of M. oryzae Guy11 (S4 Table). The

TPC1_GFP_F forward primer was designed approximately 1.3 kb upstream from the TPC1
start codon to include a substantial component of the promoter sequence. The TPC1_GFP_R
reverse primer spanned the stop codon and contained a complementary region to the GFP
sequence. GFP primers were designed to amplify the 1.4 kb sGFP:TrpC construct cloned in

pGEMT. Both fragments were joined together by fusion nested PCR. The amplicons were

cloned into pGEMT-easy digested with EcoRI. The 4.3 kb TPC1:GFP fragment was gel purified

and cloned into pCB1532 that had previously been digested with EcoRI. The pCB1532 vector

contains the 2.8 kb ILV1 gene, which encodes the acetolactate synthase-encoding allele bestow-

ing resistance to sulfonylurea[83]. The resulting plasmid pCB1532-TPC1:GFP was used to

transform protoplasts of M1422 mutant. For all rounds of PCR amplification, Phusion High-

Fidelity DNA polymerase (Finnzymes, Thermo Fischer Scientific Inc.) was used, following the

manufacturers’ guidelines for PCR conditions.

The GFP:MoATG8[34] and the FIM:GFP constructs were used to transform protoplasts of

M1422 mutant. Protoplast generation and transformation were carried out as previously

described[76]. The GFP:MoATG8 and the FIM:GFP protein fusion vectors were generated

using the native M. oryzaeMoATG8 gene (MGG_01062) and the native M. oryzae fimbrin-

encoding gene (MGG_04478), respectively. Both fragments were cloned into pCB1532 vector

that contains the 2.8 kb ILV1 gene, which encodes the acetolactate synthase allele conferring

sulfonylurea resistance. Transformants showing identical growth and colony morphology to

the background strain were selected for further examination using epifluorescence or confocal

microscopy. At least three different transformants of each were independently analysed.

The TPC1:GFP gene fusion was cloned into pCB1532 vector (SURR) and used to transform

protoplasts of Guy11 expressing Histone H1 fused with red fluorescent protein (H1:RFP)[33],

and also introduced into isogenic Δpmk1, Δatg1 and Δatg8 mutants. Transformants were

selected for further examination using confocal microscopy and verified as containing a single

copy of the gene fusion construct by Southern blot hybridisation. At least three different trans-

formants of each were used in all experiments.

RNA isolation and global gene expression profile using microarrays

Using a modified protocol of LiCl method[77], RNA was extracted from 8-day old fungal

mycelia grown on cellophane placed on top of CM agar plates (S2E Fig). Two to three addi-

tional washes with phenol:chloroform were implemented to avoid RNA degradation from
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cellophane samples. RNA quality control was carried out with Agilent RNA 6000 Nano kit

(ref. 5067–1504). Four biological replicates were independently hybridized for each transcrip-

tomic comparison. Each of these replicates derived from three technical repetitions. Slides

were Agilent Magnaporthe II Oligo Microarrays 4x44K (ref. 015060). Background correction

and normalization of expression data were performed as previously described[77]. Hybridiza-

tions and statistical analysis were conducted by the Genomics Facility at the National Biotech-

nology Centre (Madrid, Spain). The GO term analysis was carried out with gProfiler[84].

Enriched motifs were not found when using the promoter regions of the 185 up-regulated

genes. Microarray data are available in the ArrayExpress database (EMBL_EBI) under acces-

sion number E-MTAB-4127.

Yeast-two hybrid screen

In-Fusion Cloning based on in vitro homologous recombination was performed to generate

vectors including NoxD and Tpc1 into the pGADT7 prey vector, and Nox1, Nox2 NoxR,

Pmk1 and Mst12 into the pGBKT7 bait vector. Genes were amplified from M. oryzae cDNA

derived from mycelia grown on liquid CM using primers with a 15bp overhang and restriction

site complementary to the target vector (S4 Table). For NoxD, a 435bp fragment was amplified,

for Nox1, a 1662bp fragment was amplified, for Nox2, a 1749bp fragment was amplified, and

for NoxR, a 1578bp fragment was amplified. Respective fragments were cloned into pGBKT7

and pGADT7 plasmids linearized by digestion with EcoRI and SmaI. Yeast two-hybrid assays

using pGADT7 or pGBKT7 (Clontech) based constructs were performed according to the

manufacturer’s instructions (MATCHMAKER Gold Yeast Two-Hybrid System).

Imaging of fluorescent fusion proteins

For the construction of NoxD:GFP, primers were designed to amplify the ORF including 2kb

upstream of the start codon, GFP and TrpC terminator with 15bp overhangs complementary

to adjacent fragments (S4 Table). Fragments were ligated into pCB1532[83], which carries the

sulphonyl urea resistance cassette and had been digested with BamHI and HindIII and this

construct transformed into of the wild-type strain Guy11 using protoplasts[6]. The NoxD:

mRFP construct was generated using multi-site gateway technology (Life Technologies) with

the entry mCherry-withSTOP and destination SULPH-R3R4 vectors[77], and PCR fragments

amplified from M. oryzae genomic DNA using Phusion DNA polymerase (NEB) and primers

detailed in S4 Table. Appressorium development assays were performed on hydrophobic boro-

silicate glass coverslips (Fisher Scientific), as described previously[6]. For epifluorescence

microscopy, conidia were incubated on coverslips and observed at each time point using an

IX-81 inverted microscope (Olympus) and a UPlanSApo X100/1.40 oil objective. All micro-

scopic images were analyzed using MetaMorph (Molecular Devices). Confocal imaging was

performed with a Leica SP8 microscope.

qPCR and ROS detection

To confirm microarray results, the relative abundance of gene transcripts were analysed by

qPCR (S4 Table). One μg of total RNA from 8-day old fungal mycelia grown on cellophane

placed on CM agar was reverse transcribed using PrimeScript RT reagent Kit (Takara). The

average threshold cycle (Ct) was normalized against actin transcript and relative quantification

of gene expression was calculated by the 2ΔΔCt method[85]. Primer efficiency was tested using

dilutions of cDNA samples. qPCR reactions were carried out with 1 μl of reverse transcribed

products and fast-start DNA master SYBR green I kit (Roche Diagnostics) in a final reaction

of 20 μl using the following program: one cycle of 95˚C for 4 min and 40 cycles of 94˚C for 30
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s and 60˚C for 30 s. The Ct (threshold cycle) provided a measure for the starting copy numbers

of the target genes. Three technical repetitions from three independent biological experiments

were used for each gene. For ROS detection in M. oryzae fungal structures, NBT staining[65]

and quantification method of pixel intensities in hyphal tips[86] were carried out as previously

described.

Chromatin immunoprecipitation (ChIP) and quantitative PCR (qPCR)

analysis

Two strains, the Δtpc1 mutant expressing TPC1:GFP and M. oryzae wild-type Guy11 strain as

negative control were used for this experiment. Mycelia were grown in liquid CM at 25˚C for

48 h in a shaker (120 rpm), and collected using two layers of Miracloth. Harvested mycelia

were washed extensively with sterile water. To crosslink DNA and proteins, one gram of each

washed mycelium was treated with 1% formaldehyde in 20 mM HEPES pH 7.4 buffer for 20

min with continuous shaking at 100 rpm. Then, 0.125 M glycine was added and incubated at

room temperature for an additional 10 min to stop crosslinking. Mycelia were harvested with

Miracloth, rinsed with water removing excessive water by squeezing and immediately frozen

in liquid nitrogen, grinded into a fine powder and stored at -80˚C until used. ChIP was con-

ducted according to published procedures with some modifications [87]. 600 mg of each

mycelium powder was used for chromatin extraction and sonication. The powder was added

into 10 ml of Extraction buffer 1 (0.4 M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, 5 mM

β-mercaptoethanol/β-ME and Protease Inhibitors Complete-PIC/Roche) and mixed by vor-

texing. The solution was filtered through a double layer of Miracloth and centrifuged at 5000 g

for 10 min at 4˚C. The pellet was resuspended in 1 ml of Extraction buffer 2 (0.25 M sucrose,

10 mM Tris-HCl pH 8, 10 mM MgCl2, 1% Triton X-100, 5 mM β-ME and PIC) and centri-

fuged at 5000 g for 10 min at 4˚C. The pellet was resuspended in 300 μl of Extraction buffer 3

(1.7 M sucrose, 10 mM Tris-HCl pH 8, 0.15% Triton X-100, 2 mM MgCl2, 5 mM β-ME and

PIC) and, carefully layered on the top of additional 600 μl of extraction buffer 3. Then, samples

were centrifuged at 16000 g for 60 min at 4˚C. The chromatin pellet was resuspended in 300 μl

of Nuclei Lysis Buffer (50 mM Tris-HCl ph 8, 10 mM EDTA, 1% SDS and PIC) and sonicated

for 25 min at 4˚C, operating a pattern of 30 sec ON and 30 sec OFF, at high power level in the

Bioruptor Plus (Diagenode, Liege, Belgium) to obtain DNA fragments ranging from 500 to

1,000 bp. The chromatin solution was centrifuged at maximum speed for 5 min at 4˚C to pellet

cell debris. The supernatant was kept as chromatin solution and a small aliquot (10%) was

stored as input DNA control. For each immunoprecipitation, 15 μl of Dynabeads Protein A

magnetic beads (ref. 10001D, Life Technologies) was washed twice with 500 μl ChIP dilution

buffer (1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-HCl pH 8, 167 mM NaCl and PIC).

Then, anti-GFP antibody (ref. A6455, Life Technologies) was added and incubated with gentle

rotation for 1h at 4˚C in 50 μl ChIP dilution buffer. Prepared anti-GFP coated beads were

washed twice with 500 μl ChIP dilution buffer and resuspended in 100 μl of ChIP dilution

buffer. For each immunoprecipitation, the latter and 100 μl of chromatin solution were gath-

ered together and diluted up to 1 ml of ChIP dilution buffer. All immunoprecipitations were

incubated overnight at 4˚C with gentle rotation, then washed with a serie of wash buffers (2

washes with Low Salt Wash Buffer: 150 mM NaCl, 0.1% SDS, 1% Triton X-100, 2 mM EDTA,

20 mM Tris-HCl pH 8; one wash with High Salt Wash Buffer: 500 mM NaCl, 0.1% SDS, 1%

Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH 8; one wash with LiCl Wash Buffer: 0.25 M

LiCl, 1% NP-40, 1% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl pH 8, 2 washes with

TE Buffer: 10 mM Tris-HCl pH 8, 1 mM EDTA). Immunoprecipitated DNAs and Input DNA

control were reverse-crosslinked at 95˚C for 10 min with 200 μl of 10% chelex 100 resin to
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remove any trace of metals. DNA samples were treated with proteinase K that was inactivated

afterwards. After centrifugation, supernatants of DNA samples were stored at -20˚C until

used. Immunoprecipitated chromatin was diluted 10 times for qPCR analysis (primers listed

in S4 Table). This was performed using a Roche LightCycler 480 machine. qPCR reactions

were carried out using either 2 μl of input DNA or 2 μl of immunoprecipitated chromatin in a

final reaction of 12 μl with the following program: one cycle of 95˚C for 5 min and 58 cycles of

94˚C for 10 s, 60˚C for 10 s and 72˚C for 10 s. The Ct (threshold cycle) provided a measure for

the starting copy numbers of DNA. Three technical repetitions from 4 independent biological

experiments were used. Ct values were used to calculate ratios evaluating the fold difference

between experimental samples (GFP-tagged or untagged wild-type strains) and normalized

the input. We normalized with “Fold Enrichment Method” using the untagged strain. The

Wilcoxon Mann Whitney test was applied to analyze the difference between two independent

groups. Statgraphics software was used to make pairwise comparisons between GFP-tagged

strain and untagged wild-type strain.

Protein purification and EMSA

M. oryzae MST12 and TPC1 cDNAs derived from mycelial RNA were cloned by PCR using a

high fidelity Q5 DNA polymerase (NEB), primers (S4 Table) and the restriction enzymes Bam-

HI-NotI and EcoRI- NotI for MST12 and TPC1 respectively, into a modified pET28 vector

(5,667bp; Novagen). MST12- and TPC1-containing plasmids were transformed in E. coli
Rosetta DE3 (Novagen) and colonies grown in LB medium containing chloramphenicol

(34 μg/L) and kanamycin (50 μg/L) until reaching OD600nm = 0.8. Protein expression was

induced 4 hours at 28˚C with 1 mM IPTG (Sigma-Aldrich). Centrifuged cell pellets (30 min at

7000g) were resuspended in lysis buffer (20 mM sodium phosphate pH 8, 300 mM NaCl and

one tablet of PIC/50 ml, 1 mM PMSF and 50 μg/ml Dnase I), lysed by sonication and pelleted

at 4˚C and high speed (20 min at 20,000g). Recombinant proteins were purified from clear

lysate by metal affinity chromatography (HisTrap HP 1 ml, #17-5247-01 GE Healthcare) in

denaturing conditions using 6 M Urea and eluted with 250 mM imidazole containing buffer.

Samples were desalted on PD10 column (#17085101 GE Healthcare) to remove urea and imid-

azole using buffer (20 mM sodium phosphate pH 8, 10% glycerol and PIC). Protein samples

purity was evaluated by SDS-PAGE.

EMSA probes were generated as follows. Amplified by PCR fragments using primers listed

in S4 Table were prepared using modified Biotin 3’end DNA labeling procedure (#89818

Thermo-Scientific). Briefly, each ~500pb purified PCR products was KpnI-digested, purified

and labelled (5 pmol of each probe) with Biotin-11-UTP and Terminal Deoxinucleotidyl

Transferase at 37˚C for 1 hour. Biotinylated probes were purified by Chloroform:IAA (24:1)

extraction and stored at -20˚C until use. EMSA reactions (20 μl) contained 10 mM Tris HCl

pH 7.5, 50 mM KCl, 16 mM DTT, 1 mM ZnCl2, 1 mM MgCl2, 1% Glycerol, 50 ng/μl Poly dI-

dC (#20148E Thermo-Scientific), 10 μg BSA, Protease inhibitor complete (Roche), and 80

fmol of biotinylated probe. Before probe addition proteins (0–12 μM) were incubated in bind-

ing buffer for 10 min, then probe was added and incubated during 30 min at room tempera-

ture before loading. The EMSA gel (0.2% agarose, 5% polyacrylamide, 1% glycerol in TBE

0.5x) was run for 2h 100V in TBE 0.5x and then transferred to a Hybond-XL nylon membrane

(#RPN203S GE Healthcare) at 400 mA for 1 hour. The membrane was UV crosslinked at

120mJ/cm2. Detection was performed with stabilized streptavidin-horseradish peroxidase con-

jugate (#21134 Thermo-Scientific) and enhanced chemiluminescent substrates (#32106

Thermo-Scientific) following LightShift Chemiluminescent EMSA procedure (#20148

Thermo-Scientific).

Polarity and virulence in Magnaporthe oryzae

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006516 July 24, 2017 24 / 31

https://doi.org/10.1371/journal.ppat.1006516


Phylogenetic analysis of Tpc1

First, 141 M. oryzae protein sequences containing a fungal Zn(II)2Cys6 binuclear cluster

domain (PF00172) were identified from the Magnaporthe sequence database at the Broad

Institute (http://www.broadinstitute.org/annotation/fungi/magnaporthe) and the Fungal

Transcription Factor Database (http://ftfd.snu.ac.kr/intro.php). HMMsearch from

HMMER3[88] was used to screen the genome assembly of M. oryzae proteins with the fun-

gal Zn2Cys6 profile hidden Markov model pHMM zn_clus_ls.hmm (PF00172.13) from

Pfam database[89] (http://pfam.xfam.org/). Subsequently, gene numbers were updated

using the MG8 genome version of EnsemblFungi database (http://fungi.ensembl.org/index.

html). Out of these 141 sequences, only 113 had a full length zinc cluster domain, and extra

six closest sequences were included to build S5 Fig. Additional Zn(II)2Cys6 proteins found

in Lu et colleagues[28] were included in S2 Table. Basic Local Alignment Search Tool

(BLAST) was used to find orthologous proteins of TPC1/MGG_01285 (http://blast.ncbi.

nlm.nih.gov/Blast.cgi). Protein sequences were pre-aligned using HMMalign and the

pHMM zn_clus_ls.hmm (S4 Fig) from Pfam. The Zn(II)2Cys6 binuclear cluster domain

region was extensively manually aligned in BioEdit (http://www.mbio.ncsu.edu/BioEdit/

BioEdit.html). Unambiguous aligned positions were used for the subsequent phylogenetic

analyses. The maximum likelihood (ML) analyses were performed with the program PhyML

version 3.0.1[90]. All trees were visualised using the program Figtree (http://tree.bio.ed.ac.

uk/software/figtree/).

Accession numbers

M. oryzae sequence data from this article can be found in the GenBank/EMBL-EBI (Ensembl-

Fungi) databases under the following accession numbers: TPC1 (MGG_01285), PMK1
(MGG_09565), MST12 (MGG_12958), ATG1 (MGG_06393), ATG8 (MGG_01062), CON6
(MGG_02246), GH18 MGG_04732, NOXD (MGG_09956), PEBP1 (MGG_06800), PEBP2
(MGG_14045), NOXR (MGG_05280), NOX1 (MGG_00750), NOX2 (MGG_06559), FIMBRIN
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SEP5 (MGG_03087).
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