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Abstract

Kaposi’s sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-

Saharan Africa. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of

KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors

harbor latent KSHV episomes and express latency-associated viral proteins and micro-

RNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigen-

esis are not completely understood. Recent developments have highlighted the importance

of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs

by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miR-

NAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression

profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126

lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host

lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-indepen-

dent fashion through latency-associated proteins. Several lncRNAs that were previously

implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our

results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased

proliferation and migration of endothelial cells.

Author summary

KS is the most prevalent cancer associated with AIDS in sub-Saharan Africa, and is also

common in males not affected by AIDS. KSHV manipulates human cells by targeting pro-

tein-coding genes and cell signaling. Here we show that KSHV alters the expression of

hundreds of human lncRNAs, a broad class of regulatory molecules involved in a variety

of cellular pathways including cell cycle and apoptosis. KSHV uses both latency proteins

and miRNAs to target lncRNAs. miRNA-mediated targeting of lncRNAs is a novel regula-

tory mechanism of gene expression. Given that most herpesviruses encode miRNAs, this
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mechanism might be a common theme during herpesvirus infections. Understanding

lncRNA deregulation by KSHV will help decipher the important molecular mechanisms

underlying viral pathogenesis and tumorigenesis.

Introduction

Kaposi’s sarcoma-associated herpesvirus (KSHV) is an opportunistic human oncovirus, which

causes Kaposi’s sarcoma (KS), Primary Effusion lymphoma (PEL) and Multicentric Castle-

man’s disease (MCD) in immunocompromised individuals, primarily AIDS patients and

organ-transplant recipients [1]. KSHV uses the lytic mode of replication for spread of infec-

tion, and latency for persistence in the host. All tumor cells isolated from KS patients test

positive for latent viral episomes [1]. Latent KSHV expresses only 10% of its 140-kb dsDNA

genome, encoding primarily four latency proteins (Kaposin, vFLIP, vCyclin and LANA) and

25 mature miRNAs [1]. miRNAs are 21–23 nt long non-coding RNAs that recognize target

mRNAs using 7 bp ‘seed sequences’ and silence them (see [2] for review). To identify the

means by which KSHV causes tumors, KSHV latency proteins and miRNAs have been studied

extensively [1]. Ribonomics approaches to identify targets of KSHV miRNAs have focused

exclusively on mRNAs [3, 4].

Recently, lncRNAs have emerged as important regulatory molecules in cancer [5]. LncRNAs

play a variety of regulatory roles in both the cytoplasm and nucleus [6, 7]. This group includes

all RNA molecules longer than 200 nt with no apparent coding potential, and they have diverse

functions ranging from acting as a scaffold, sponge/decoy or guide aiding in cell-signaling [6,

8]. Owing to their diversity, over 95% of the lncRNAs remain uncharacterized. Disease associa-

tion is a starting point for identifying and characterizing lncRNAs with important regulatory

roles. Using this approach with different cancer types, oncogenic lncRNAs such as MALAT-1,

ANRIL, UCA1, and tumor suppressor lncRNAs like Gas-5 and MEG3 have been functionally

characterized [5]. Another important group of disease-relevant lncRNAs includes those in-

volved in the innate immune response following viral or bacterial infections [9]. A few studies

have addressed the roles of host lncRNAs during viral infections, for example HULC (Hepati-

tis-B) and NRON (HIV) [10]. However, the question of whether viruses manipulate specific

host lncRNAs to their advantage remains largely unexplored. Understanding deregulation of

specific host lncRNAs, especially cancer-related lncRNAs by persistent oncoviruses, such as the

γ-herpesviruses, would shed light on how these viruses drive oncogenesis.

Regulatory cross-talk is known to occur between miRNAs and lncRNAs, at multiple levels.

LncRNAs like BIC1 and H19 act as precursors for miRNAs [11, 12] and lncRNAs such as

HULC and CDR1-AS act as sponges for miRNAs [13, 14]. Conversely, human miRNA miR-9

represses the expression levels of the lncRNA MALAT1 [15]. Work from the Steitz laboratory

demonstrated that the viral lncRNAs HSUR1 and HSUR2, encoded by Herpesvirus Saimiri,

act as sponges for cellular miR-16, miR-142-3p and miR-27 and thereby silence some of these

miRNAs in T-lymphocytes, suggesting that γ-herpesviruses can utilize virus lncRNAs to target

host miRNAs[16]. Conversely, whether herpesvirus miRNAs can target and downregulate

host lncRNAs remains an open question.

In this study, we demonstrate that latent KSHV infection of endothelial cells alters the host

lncRNA profile. We provide evidence that KSHV deregulates hundreds of host lncRNAs

including many cancer-associated lncRNAs such as UCA1, ANRIL and MEG3 in both a

miRNA dependent and independent manner. Furthermore, KSHV appears to manipulate

the host lncRNAs to favor proliferation and migration of latently infected endothelial cells.

miRNA dependent and independent deregulation of lncRNAs by an oncogenic herpesvirus
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Results

KSHV deregulates host lncRNAs

Previously, we identified the mRNA targetome of viral miRNAs in PEL cells by High Through-

put Sequencing-Crosslinking Immuno Precipitation (HITS-CLIP) analysis of the Ago protein

[3]. The PEL cell lines we studied were BC-3 and BCBL-1, which are KSHV positive B-cell

lines. We reanalyzed the HITS-CLIP data for enriched lncRNAs and compared our results

with a similar reinvestigation of Ago PAR-CLIP data from lymphoblastoid cell lines infected

with Epstein-Barr Virus (EBV) [17], a related γ-herpesvirus that causes cancer. We found that

approximately 357 and 750 lncRNAs were a part of the KSHV and EBV miRNA targetome,

respectively, and 64 lncRNAs were potentially targeted by miRNAs from both viruses (S1

Table).

We aimed to determine the effect of latent KSHV infection on the lncRNA expression pro-

file of endothelial cells and specifically question whether KSHV encoded miRNAs targeted

endothelial lncRNAs. To address these questions, we used Telomerase Immortalized Vein

Endothelial (TIVE) cells, an in vitro model system to study KS [18]. We performed lncRNA

expression profiling on latently infected TIVE cells harboring either the wt-KSHV or Δcluster-

KSHV [19, 20], in which a region containing 10 of the 12 miRNA genes is deleted, and used

the lncRNA profile of mock-infected TIVE cells as reference. The KSHV latency-associated

region of the wt and mutant bacmid backbones used for this experiment is shown in Fig 1A.

The profiling analysis revealed that wt-KSHV and Δcluster-KSHV infections deregulate 858

and 2372 host lncRNAs, respectively (Table 1), indicating that latent KSHV infection globally

affects lncRNA expression. The higher count of deregulated lncRNAs in Δcluster-KSHV infec-

tion is likely due to increased spontaneous reactivation rate in the absence of viral miRNAs

[20, 21]. The differentially expressed lncRNAs are listed in S2 Table. We grouped the de-

regulated lncRNAs into three categories based on a cut-off of fold change� 2.0: upregulated,

downregulated and rescued. We defined rescued genes as those that were downregulated in

wt-KSHV-infected cells compared to mock, and were upregulated in Δcluster-KSHV-infected

cells compared to wt-infected cells. We validated using qRT-PCR two downregulated lncRNAs,

two upregulated lncRNAs, and three rescued lncRNAs that were identified from the microarray

analysis (S1 Fig). We identified 126 candidates in the rescued category, which are putative direct

targets of viral miRNAs (Fig 1B).

Mature viral miRNAs and Ago-2 are present in the nuclei of KSHV-

infected cells

Based on lncRNA localization data from HUVEC cells [22], at least 9 of the 126 putative

lncRNA targets of viral miRNAs we identified are exclusively nuclear localized, and 32 of them

are partially nuclear localized. It is important to note that the localization information was

available for only 72 out of the 126 rescued lncRNAs. Similarly, the 357 lncRNAs identified

from Ago HITS-CLIP of PEL cells include nuclear resident lncRNAs such as ANRIL

(CDKN2B-AS1) and MALAT-1. Moreover, several of the uncharacterized candidates of these

357 lncRNAs may be nuclear localized. miRNA-mediated regulation of nuclear localized

lncRNAs seemed paradoxical at the outset, as mature miRNAs and RISCs including the Ago

family proteins are believed to reside and function in the cytoplasm. Recently, several groups

showed that Ago-2 complexes can be present in the nuclei of different cell types [23, 24].

Moreover, studies in Hodgkin’s lymphoma lines identified that several lncRNAs co-isolate

with Ago protein [25]. To determine whether KSHV miRNAs could regulate nuclear lncRNAs,

we investigated the nuclear/cytoplasmic distribution of viral miRNAs and Ago-2 in PEL cells.

miRNA dependent and independent deregulation of lncRNAs by an oncogenic herpesvirus
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We fractionated BCBL-1 cells into nucleus and cytoplasm and analyzed the distribution of

KSHV miRNAs using stem-loop RT-qPCR, which amplifies mature miRNAs but not their

precursors. Mature KSHV miRNAs were found in both the cytoplasmic and nuclear fraction

(Fig 2A). It is important to note that a cellular miRNA hsa-miR-16 is also distributed between

the nucleus and the cytoplasm (Fig 2A), and such partial nuclear localization of mature miR-

NAs has been previously reported in other cell lines [26, 27]. We probed the fractions for Ago-

2 using western blotting (Fig 2B). Calnexin, an ER resident, was used as a control to ensure

that the nuclear preparations were free of endoplasmic reticulum. A significant fraction of

Ago-2 was localized in the nucleus of BCBL-1 cells. This observation is consistent with a study

by Gagnon et al., which reported comparable amounts of Ago2 in the nucleus and cytoplasm

Fig 1. Expression profiling of wt-KSHV andΔcluster-KSHV infected endothelial cells. (A) Latency

associated region of wt-KSHV in a Bac16 backbone. The region deleted in the Δcluster-KSHV virus is

highlighted. (B) Heatmap of unsupervised hierarchical clustering of the microarray samples in the ‘rescued’

category of genes (n = 3 technical replicates).

https://doi.org/10.1371/journal.ppat.1006508.g001

Table 1. Summary of deregulated lncRNAs from the microarray analysis.

wt-KSHV vs. Mock Δcluster-KSHV vs. Mock Common

Upregulated 325 1107 247

Downregulated 533 1265 238

https://doi.org/10.1371/journal.ppat.1006508.t001
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of multiple cell lines including HeLa, T47D, A549 and fibroblasts [23]. These results were con-

firmed using immunofluorescence analysis (IFA) of Ago-2 in isolated BCBL-1 nuclei by confo-

cal microscopy and 3D-reconstruction. The images in Fig 2C show Ago-2 in all planes of view

(XY, YZ and ZX) with and without DAPI, and it is evident that Ago-2 is present inside the

BCBL-1 nuclei. We observed similar results with IFA performed on KSHV-infected TIVE cells

(Movie S1). Thus, we concluded that Ago2 and viral miRNAs are present in the nuclei of

infected cells, and miRNAs could potentially interact via Ago2 with nuclear lncRNAs.

KSHV miRNAs directly target host lncRNAs

Of the 126 rescued lncRNAs identified based on transcriptional profiling, 98 contained seed

sequence matches for at least one KSHV miRNA. Repeated sampling of 126 sequences from

randomly generated DNA sequences, controlling for lncRNA length, revealed that the pres-

ence of KSHV miRNA seed matches in 98 out of 126 lncRNAs is statistically significant (p-

Fig 2. KSHV miRNAs and Ago2 are partially localized in the nuclei of latently infected cells. (A)

qRT-PCR analysis of mature KSHV miRNA distribution in the cytoplasmic and nuclear fractions of PEL cells.

Percentage distribution was calculated by normalizing to expression in whole PEL cells, assuming no loss

during fractionation. RNU48 was used as a nuclear control for fractionation. The bar graphs show the mean

values (n = 3) ± SEM. p-values: * < 0.05; ** < 0.01; *** < 0.005. (B) Subcellular distribution of Ago2 proteins in

PEL cells analyzed using Western blotting. Tubulin was probed as positive control for cytoplasm, Sm and

Lamin A/C are positive controls for nuclei and Calnexin is the negative control for Endoplasmic Reticulum (C)

Localization of Ago2 in PEL nuclei analyzed using IFA and confocal microscopy. Ago2 is shown in green and

DAPI in blue. DAPI is shown at half the original intensity.

https://doi.org/10.1371/journal.ppat.1006508.g002
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value = 5.79 x 10−8, one-sided t-test). These data provide genetic evidence for miRNA-depen-

dent deregulation of host lncRNAs during KSHV latency.

In order to validate that KSHV miRNAs can target host lncRNAs in the absence of KSHV

infection, we chose four lncRNAs from the 98 containing seed sequences, and transfected

pools of corresponding miRNA mimics into uninfected TIVE cells. The pools of mimics trans-

fected were specific to the seed matches that those lncRNAs contained. Their respective mimic

pools when compared to control mimic significantly knocked down all four lncRNAs tested,

demonstrating that the viral miRNAs target lncRNAs in the absence of KSHV infection (Fig

3A).

The miRNA-dependent downregulation of lncRNAs could result from direct targeting of

lncRNAs by miRNAs, or from an indirect secondary effect (e.g., through miRNA-mediated

downregulation of transcription factors). To investigate direct interaction between KSHV

miRNAs and lncRNAs, we performed miRNA pull-down experiments in TIVE-Ex-LTC cells.

TIVE-Ex-LTC cells were derived from TIVE cells (see Materials and Methods), but grow

much faster compared to TIVE cells. KSHV negative TIVE-Ex-LTC cells were transfected with

biotinylated miRNA mimics for either miR-K12-6-5p, miR-K12-11� or siGLO (lacks biotin)

and pull-down experiments were performed 24 h post-transfection. It is important to note

that the mimics are dsRNAs that require loading into the RISC in order to bind their targets.

Loc541472 has one binding site for miR-K12-6-5p but none for miR-K12-11�, and CD27-AS1

has one binding site for miR-K12-11� but none for miR-K12-6-5p. Biotinylated miR-K12-6-5p

mimic pulled down 43.7% of Loc541472 and none of CD27-AS1, and miR-K12-11� mimic

pulled down 12.9% of CD27-AS1, but no Loc541472, thus confirming direct miRNA-lncRNA

interaction (Fig 3B). The fact that we identified putative lncRNA targets of viral miRNAs in

PEL and endothelial cells by Ago HITS-CLIP and viral genetics, together with biochemical evi-

dence for direct miRNA-lncRNA interaction, demonstrated that KSHV deregulates a subset of

host lncRNAs in a miRNA-dependent fashion.

Fig 3. KSHV miRNAs directly bind to and downregulate host lncRNAs. (A) Uninfected TIVE cells were

transfected with 5 nM final concentration of miRNA mimic pools (Loc541472: miR-K12-1, K12-6-5p;

CD27-AS1: miR-K12-1*, K12-11*; RP11-438-N16.1: miR-K12-1*, K12-8*, K12-11*; Linc00607: miR-K12-

2*, K12-11*). Relative expression levels of target lncRNAs were analyzed 48 h post-transfection using

qRT-PCR. The bar graphs show the mean values ± SEM after normalization to GAPDH (n = 3). (B)

Biotinylated miRNA mimics of miR-K12-6-5p and miR-K12-11* were transfected into uninfected TIVE-ExLTC

cells (5 nM final concentration) and were pulled down 24 h later. Target lncRNAs were analyzed using

qRT-PCR. siGLO pulldown was used a negative control. The bar graphs show the mean values ± SEM after

normalization to input (n = 3). p-values: * < 0.01; ** < 0.005; *** < 0.0005; and **** <0.0001.

https://doi.org/10.1371/journal.ppat.1006508.g003
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Latent KSHV deregulates lncRNAs aberrantly expressed in cancer

To date a very small percentage of all lncRNAs are functionally annotated, making interpreta-

tion of lncRNA expression data challenging. As a starting point, we analyzed lncRNAs that

were deregulated (upregulated, downregulated and rescued) in response to latent KSHV infec-

tion for known or proposed functions in disease processes. Comparison of our dataset to two

public databases [28, 29] identified 54 lncRNAs that were previously shown to be aberrantly

expressed in various human cancers (S3 Table). These include HOTTIP, DLEU2, HOTAIRM1,

ANRIL, MEG3 and UCA1. Ten of the 54 lncRNAs are listed in Table 2, and include oncogenic

and tumor suppressor lncRNAs. HOTTIP is upregulated in hepatocellular carcinoma, osteosar-

coma, lung, prostate and other cancers [30]; DLEU2 is deleted in lymphocytic leukemia and epi-

genetically silenced in myeloid leukemia [31, 32]. Knockdown of HOTARM1 has been shown

to promote proliferation in promyelocytic leukemia cells [33]. ANRIL is an oncogenic lncRNA

that promotes proliferation in numerous cancers including basal cell carcinoma (BCC), glioma,

prostate and ovarian cancers [34]. UCA1 is upregulated in multiple cancers, including bladder,

endometrial and pancreatic cancer and acts as an oncogenic lncRNA [35]. Loss of MEG3 ex-

pression has been reported in a wide spectrum of malignancies ranging from gliomas to colon

and liver cancers [36]. To understand the mechanisms by which cancer-related lncRNAs are

deregulated by KSHV, and their contribution to pathogenesis, we chose to initially study

UCA1, ANRIL and MEG3.

Viral miRNAs downregulate tumor suppressor lncRNA MEG3

MEG3 is a tumor suppressor lncRNA which is proposed to act by enhancing transcription

from p53-dependent promoters [36]. Studies in HCT116 and U2OS cell lines have identified

Table 2. Examples of oncogenic and tumor-suppressor lncRNAs deregulated by KSHV.

lncRNA Function Comparison group(s) Ref.

ANRIL

(CDKN2B-AS1)

Epigenetic silencing of tumor suppressor INK4B KSHV vs. Mock: Down, Δcluster vs.

Mock: Down

[34]

CRNDE Upregulates mTOR pathway in gliomas, recently shown to code for a short

nuclear peptide

KSHV vs. Mock: Down, Δcluster vs.

KSHV: Up

[37]

DLEU2 Host gene for tumor suppressor miRNAs miR-15a and miR-16-1 KSHV vs. Mock: Up, Δcluster vs. Mock:

Up

[31,

32]

HOTAIRM1 Modulates gene expression of cell adhesion molecules KSHV vs. Mock: Up,

Δcluster vs. Mock: Up

[33]

HOTTIP Upregulates transcription of the antisense transcript, HOXA13 KSHV vs. Mock: Up, Δcluster vs. KSHV:

Down

[30]

MEG3 Enhances p53 transcription and p53 responsive promoter transcriptions KSHV vs. Mock: Up, Δcluster vs. KSHV:

Up,

Δcluster vs. Mock: Up

[36]

PLAC2 (TINCR) Binds to Stau1 protein and regulates KLF2 mRNA in cells KSHV vs. Mock: Up,

Δcluster vs. Mock: Up

[38]

PTCSC3 Tumor suppressor lncRNA that acts by downregulating S100A4 KSHV vs. Mock: Down,

Δcluster vs. Mock: Down

[39]

UCA1 Promotes cell cycle progression via PI3K-AKT pathway; also aids pRb1 and

SET1A interplay

KSHV vs. Mock: Up,

Δcluster vs. Mock: Up

[35]

ZEB1-AS1 Promotes EMT by upregulating ZEB1, MMP2, MMP9, N-cadherin, and

Integrin-β1

KSHV vs. Mock: Down [40]

https://doi.org/10.1371/journal.ppat.1006508.t002
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that MEG3 is a nuclear localized lncRNA [41], which was also confirmed in GM12878 cells by

the GENCODE project [42]. According to the microarray data (S2 Table), MEG3 was slightly

upregulated during latent KSHV infection. However, when validating MEG3 expression by

qRT-PCR, it behaved in a rescued pattern, being suppressed in wt-KSHV infection and restored

in Δcluster-KSHV-infected cells, suggesting regulation by KSHV miRNAs (Fig 4A). MEG3 con-

tained seed sequence matches for miR-K12-3, K12-5, K12-6-5p, K12-8� and K12-9�. Uninfected

TIVE cells were transfected with a pool of three KSHV miRNA mimics (miR-K12-5, K12-6-5p

and K12-8�). MEG3 expression was reduced by almost 80% (Fig 4B). Furthermore, miRNA

pull-down assays using biotinylated miR-K12-6-5p mimic pulled-down 24.5% of MEG3 (Fig

4C). miR-K12-11� mimic did not pull down MEG3 lncRNA. These data are consistent with

viral miRNAs directly binding to and downregulating MEG3.

Viral miRNAs and latency proteins both target ANRIL

ANRIL is a nuclear localized oncogenic lncRNA that drives proliferation by silencing the

INK4 tumor suppressor gene by recruiting PRC2 complexes [34]. The fact that ANRIL was

downregulated in KSHV-infected cells from the microarray data suggested that ANRIL does

not have a direct role in proliferation; however, ANRIL has recently also been implicated in

innate immune responses, albeit in the context of bacterial infection [43]. Analysis of ANRIL

expression by qRT-PCR showed a very strong 100-fold downregulation in wt-KSHV-infected

cells, and a slightly reduced inhibition in the Δcluster-KSHV-infected TIVE cells (Fig 5A).

Such strong repression is not typical of miRNAs, however, the cDNA of ANRIL had a total of

17 6-mer seed matches for 12 of 25 mature KSHV miRNAs. To investigate whether the large

number of KSHV miRNA seed sequence matches in ANRIL are targeted by KSHV miRNAs,

we ectopically overexpressed the shortest isoform (transcript variant 12) of ANRIL from a

CMV promoter-driven vector in wt-KSHV-infected and uninfected TIVE-Ex-LTC cells. Since

TIVE cells are highly resistant to plasmid transfection, we used TIVE-Ex-LTC cells for this

experiment. As shown in Fig 5B, the ANRIL expression levels achieved in wt-KSHV-infected

cells were 80% less compared to uninfected cells. We note that this expression difference was

Fig 4. Tumor suppressor lncRNA MEG3 is targeted by KSHV miRNAs. All bar graphs show the mean values ± SEM after normalization to GAPDH

(n = 3), unless specified otherwise. (A) MEG3 expression in Uninfected, wt-KSHV-infected and Δcluster-KSHV-infected cells measured by qRT-PCR. (B)

Uninfected TIVE cells were transfected with 5 nM final concentration of miRNA mimic pool (miR-K12-5, K12-6-5p and K12-8*). Relative expression level

of MEG3 was analyzed 48 h post-transfection using qRT-PCR. (C) Biotinylated miRNA mimic of miR-K12-6-5p was transfected into uninfected TIVE cells

(5 nM final concentration) and was pulled down 24 h later. MEG3 expression was analyzed using qRT-PCR. siGLO pulldown was used as a negative

control. The data were normalized to input. p-values: * < 0.05; ** < 0.01; *** < 0.005; **** < 0.0005; and ***** < 10−4.

https://doi.org/10.1371/journal.ppat.1006508.g004
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Fig 5. LncRNA ANRIL is targeted by both KSHV miRNAs and latency proteins. All bar graphs show the

mean values ± SEM after normalization to GAPDH (n = 3), unless specified otherwise. (A) ANRIL expression

in Uninfected, wt-KSHV-infected and Δcluster-KSHV-infected cells measured by qRT-PCR. (B) Uninfected

and wt-KSHV-infected TIVE cells were transfected with pcDNA3.1-ANRIL and relative over-expression of

ANRIL was measured using qRT-PCR. LSD-1 was used a control to verify comparable transfection

efficiencies of uninfected and infected cells. Y-axis is calculated as the ratio of fold-overexpression observed

in wt-KSHV infected cells to the fold-overexpression observed in uninfected cells. Overexpressions were

normalized to any expression changes observed by transfecting empty vector, which is thus set at one. (C)

Uninfected TIVE cells were transfected with 5 nM final concentration of miRNA mimic pool (miR-K12-1*, K12-

6-5p, K12-2* and K12-11*). Relative expression level of ANRIL was analyzed 48 h post-transfection using

qRT-PCR. (D) Biotinylated miRNA mimics of miR-K12-6-5p and miR-K12-11* were transfected into

uninfected TIVE cells (5 nM final concentration) and were pulled down 24 h later. ANRIL expression was

analyzed using qRT-PCR. siGLO pulldown was used as a negative control. The data were normalized to

input. (E) ANRIL expression in Uninfected, wt-KSHV-infected and Δall-KSHV-infected cells measured by

qRT-PCR (n = 2). (F) HeLa cells were transfected with latency gene(s) (LANA, vCyclin, vFLIP, Kaposin or
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not due to differences in transfection efficiencies, since a control gene (LSD-1), expressed

from the same vector, was expressed at similar levels in both cell lines (Fig 5B). Hence, the

reduced ANRIL expression levels in infected cells compared to control cells strongly suggested

post-transcriptional miRNA-dependent regulation of ANRIL. To test this, we transfected a

pool of four miRNA mimics (miR-K12-1�, K12-6-5p, K12-2� and K12-11�) which led to a

strong knock-down of ANRIL expression in uninfected TIVE cells compared to the control

mimic (Fig 5C). Additionally, pull-down experiments in TIVE cells using biotinylated

miR-K12-6-5p and miR-K12-11� mimics, for which ANRIL contains two seed matches each,

significantly pulled-down 12.7% and 22.7% of ANRIL transcripts, respectively (Fig 5D).

Together these data show that ANRIL is targeted by multiple viral miRNAs. Since ANRIL

also contained miRNA seed sequence matches for miR-K12-10 and K12-12, which are still

present in Δcluster-KSHV (Fig 1A), we wanted to test ANRIL expression in the absence of all

viral miRNAs. To this end we analyzed ANRIL expression in TIVE cells by infecting with a

virus lacking all 12 miRNA genes (Δall-KSHV). Surprisingly we did not observe significantly

altered ANRIL expression compared to wt-KSHV-infected cells (Fig 5E). These data suggested

that ANRIL may also be negatively regulated by latency associated proteins. To directly

address this question we ectopically expressed the major latency associated proteins of KSHV

(LANA, vCyclin, vFLIP and Kaposin) and monitored ANRIL expression by qRT-PCR. Since

TIVE-Ex-LTC cells do not express detectable levels of ANRIL, this experiment was performed

in HeLa cells, which are known to robustly express ANRIL [44]. vFLIP and vCyclin downregu-

lated ANRIL expression by almost 75% and 53%, respectively (Fig 5F). LANA and Kaposin

did not have significant effects. The observation that ANRIL is negatively regulated by both

miRNAs and latency associated proteins is in congruence with other host genes that are tar-

geted by multiple viral mechanisms [45].

miRNA-independent deregulation of host lncRNA UCA1 promotes

proliferation and migration

Urothelial Cancer Associated 1 (UCA1) is a lncRNA which was identified as highly upregu-

lated in bladder cancer and has since been implicated in other cancers like colorectal, ovarian

and renal carcinomas [35]. UCA1 is partially localized in both the nucleus and the cytoplasm

and plays distinct roles in different sub-cellular compartments [46, 47]. Recently, it was shown

that UCA1 transcription is induced by HIF-1α, to enhance hypoxic proliferation, migration

and invasion of bladder cancer cells [35]. UCA1 was upregulated by approximately 90-fold

during wtKSHV infection and approx. 300-fold during Δcluster-KSHV infection (Fig 6A).

Since UCA1 was upregulated under both infection conditions and its cDNA sequence con-

tained no seed matches for any KSHV miRNAs, UCA1 is presumably not regulated by a

miRNA-dependent mechanism.

To determine which of the four major latency-associated proteins (LANA, vCyclin, vFLIP

and Kaposin) upregulates UCA1, we transfected TIVE-Ex-LTC cells with expression vectors

either alone or in combination. Ectopic expression of vCyclin and Kaposin led to a 3.9 and

5.7-fold upregulation of UCA1 as monitored by qRT-PCR, respectively. Furthermore, co-

transfection of vCyclin and Kaposin increased UCA1 to almost 15-fold compared to empty

vector suggesting synergy (Fig 6B). LANA and vFLIP had no effect. The fact that the upregula-

tion observed in transfected cells is much less than in the context of infection could be a

vCyclin + Kaposin) expressed from pcDNA3.2 vector. ANRIL expression was analyzed 72 h post-transfection

using qRT-PCR. p-values: * < 0.05; ** < 0.01; *** < 0.005; **** < 0.0005; ***** < 10−4 and n.s. = not

significant.

https://doi.org/10.1371/journal.ppat.1006508.g005
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consequence of either an altered stoichiometry or absolute expression levels of latency pro-

teins, or mean that other viral genes might contribute to UCA1 upregulation.

To address whether UCA1 directly contributes to KS-associated phenotypes, we knocked-

down UCA1 expression using siRNAs in KSHV-infected TIVE cells. At 24, 48, 72 and 96 h

Fig 6. UCA1 is upregulated by KSHV in a miRNA-independent manner. (A) UCA1 expression in Uninfected, wt-KSHV-infected and Δcluster-KSHV-

infected cells measured by qRT-PCR. The bar graphs show the mean values ± SEM after normalization to GAPDH (n = 6). (B) Uninfected TIVE cells

were transfected with latency gene(s) (LANA, vCyclin, vFLIP, Kaposin or vCyclin + Kaposin) expressed from pcDNA3.2 vector. UCA1 expression was

analyzed 72 h post-transfection using qRT-PCR. The bar graphs show the mean values ± SEM after normalization to GAPDH (n = 6 for vCyclin, n = 3 for

others). (C) wt-KSHV-infected TIVE cells were transfected with 10 nM concentration of siUCA1 or Scr control. At 24, 48, 72 and 96 h, UCA1 expression

was analyzed using qRT-PCR. The bar graphs show the mean values ± SEM after normalization to GAPDH (n = 3). (D) wt-KSHV-infected TIVE cells

were transfected with 5 nM or 10 nM concentration of siUCA1 or Scr control. At 24, 48, 72 and 96 h, the samples were subject to MTS assay and

absorption was measured at 495 nm wavelength. The bar graphs show the relative absorbance ± SEM (n = 3). (E and F) wt-KSHV-infected TIVE cells

were transfected with 10 nM concentration of siUCA1 or Scr control. At 24, 48, 72 and 96 h, the samples were subject to scratch assay. Plates were

imaged at 0 and 12 h and the images were processed using T-Scratch. (E) Representative images of the wound healing assay, scale bar = 100 pixels. (F)

The bar graphs show the percentage of scratch area recovered ± SEM (n = 3). p-values: * < 0.05; ** < 0.01; *** < 0.005; and **** < 0.0005.

https://doi.org/10.1371/journal.ppat.1006508.g006
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post-transfection we observed 60–85% knockdown of UCA1 expression (Fig 6C). First, we

assayed for proliferation using the MTS assay. We measured proliferation at 24, 48, 72 and

96 h post-transfection and observed a statistically significant and dose-dependent decrease in

proliferation of cells treated with siUCA1 as compared to scrambled control (Scr). Upon treat-

ment with 10 nM siUCA1, the proliferation rate dropped to 72% by day 1 and then progres-

sively to 52% by day 4 (Fig 6D). We observed a similar decrease in proliferation of uninfected

TIVE cells transfected with siUCA1 (S2A Fig) suggesting that UCA1 contributes to endothelial

cell proliferation in general. To test whether latent KSHV upregulates UCA1 in all infected

cells, we measured UCA1 expression levels in uninfected and KSHV-infected iSLK cells.

UCA1 was upregulated by almost 5-fold in KSHV-infected iSLK cells (S3A Fig). Knockdown

of UCA1 in uninfected and KSHV-infected iSLK cells led to a mild reduction in proliferation

of these cells (S3B and S3C Fig). The magnitude of effect observed in iSLK cells was much

lower than that in TIVE cells, presumably because iSLK cells are transformed and unlike TIVE

cells form tumors in nude mice [18]. Next, we assayed the effect of UCA1 knockdown on

migration of KSHV-infected TIVE cells. The migration assay (wound healing) involves intro-

duction of a scratch in a monolayer of cells and measuring the percentage of the clear area that

gets covered by migration at 12 hours post introduction of the scratch under serum-free condi-

tions (Fig 6E). siUCA1-treated cells were consistently slower in migration from day 1 through

day 4, as they recovered only between 12–15% of the scratch area, while Scr-treated cells recov-

ered between 26–35% of the area (Fig 6F). A similar reduction in migration was observed on

days 1 and 2 when UCA1 was knocked down in uninfected TIVE cells, however, no difference

was evident after day 3 (S2B Fig). This suggests that high UCA1 levels in KSHV-infected endo-

thelial cells contribute to increased migration of these cells. These data demonstrate that the

induction of UCA1 by the KSHV latency-associated proteins Kaposin and vCyclin promotes

proliferation and migration, and likely contributes to KSHV pathogenesis and tumorigenesis.

Discussion

Here we show that latent KSHV infection significantly alters the lncRNA expression profile of

endothelial cells. Deregulation of lncRNAs has implications in diseases such as diabetes, neu-

rological disorders, viral infections and cancer [48, 49]. Our study establishes that KSHV

employs its latency proteins and miRNAs, either alone or in combination, to target specific

lncRNAs and potentially contribute to sarcomagenesis.

Post-transcriptional regulation of lncRNA expression by miRNAs is a newly described phe-

nomenon. Yoon et al showed let-7 loaded RISCs targeted lincRNA-p21 in a HuR-dependent

manner in cervical carcinoma cells, eventually destabilizing and degrading lincRNA-p21 [50].

In bladder cancer, UCA1 and miR-1 expressions were inversely correlated, and overexpression

of miR-1 phenocopied the knockdown of UCA1 [51]. Further, MALAT-1, a nuclear lncRNA,

was reported to be targeted by miR-9 in an Ago-2-dependent manner in the nuclei of Hodg-

kin’s lymphoma and glioblastoma cell lines [15]. We identified 126 lncRNAs as potential tar-

gets of viral miRNAs in endothelial cells, and we verified direct miRNA/lncRNA interactions

by pulldown experiments with biotinylated KSHV miRNA mimics targeting Loc541472,

CD27-AS1, ANRIL and MEG3. Results from the Ago HITS-CLIP experiment further suggest

that this regulation proceeds in an Ago and hence RISC-dependent manner. As per our cur-

rent understanding, RISC-mediated silencing of mRNAs proceeds via translation repression

and induction of mRNA turnover [52, 53]. RNA destabilization followed by degradation is

perhaps the mechanism relevant to silencing of lncRNAs. However, the details of the mecha-

nism, especially for lncRNAs lacking a cap and/or a poly-A tail, remain to be uncovered.
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An alternative and not mutually exclusive mechanism that involves direct engagement of

miRNAs and lncRNAs is miRNA sponging by lncRNAs [54]. LincRNA-RoR sponges miR-

145-5p thereby increasing the expression of pluripotent stem cell factors Oct4, Nanog and

Sox2 [55]. The Steitz lab showed that lncRNAs encoded by Herpesvirus Saimiri, called HSURs,

sequester host miRNAs in infected T-lymphocytes [16]. It is plausible that some host lncRNAs

could sponge KSHV miRNAs, thereby derepressing downstream targets instead of being tar-

geted by miRNAs themselves.

We demonstrated that viral latency proteins vCyclin and Kaposin synergistically upregulate

UCA1 while vFLIP and vCyclin downregulate ANRIL. Thus, aside from miRNAs, the latency

proteins play a pronounced role in perturbing lncRNA expression. This is not surprising given

we identified 858 differentially expressed lncRNAs during wt-KSHV infection and only 126

were potential miRNA targets. vCyclin, an ortholog of cellular Cyclin D, upregulates expres-

sion of cell cycle regulatory genes [56]. Moreover, Kaposin stabilizes cytokine mRNAs thereby

increases their turnover time [57]. vCyclin and Kaposin may act cooperatively by augmenting

transcription and simultaneously preventing turnover of UCA1. We also showed that ectopi-

cally expressed vFLIP strongly downregulates ANRIL. STAT1-mediated activation of the

ANRIL locus in vascular endothelial cells has been reported based on GWAS studies [58].

Studies using a mutant virus that lacks vFLIP in HUVEC cells showed activation of STAT1 in

a NF-κB-dependent manner, suggesting that vFLIP probably inhibits STAT1 to downregulate

ANRIL expression [59]. A recent study in endothelial cells demonstrated that ANRIL expres-

sion is induced by pro-inflammatory molecules, especially NF-κB and TNF-α, and silencing of

ANRIL expression led to a reduction in IL6/IL8 response [60]. This further underlines the role

of ANRIL in immunity and supports the notion that KSHV may downregulate ANRIL to

evade innate immune responses.

KSHV drives latently infected cells towards proliferation by a variety of mechanisms such

as encoding orthologs for cell cycle proteins like vCyclin, or interfering with the p53 pathway

through LANA [61], encoding miR-K12-11, an ortholog of oncomir-155 [62], and the induc-

tion of the oncogenic host miRNA cluster miR-17/92 [45]. Here we demonstrate that KSHV

also upregulates UCA1 to drive proliferation and migration in endothelial cells. UCA1 has

also been shown to promote the Warburg effect [63], an effect that has been shown to be

required for maintenance of latent KSHV in endothelial cells [64]. We found that 53 additional

lncRNAs previously shown to be aberrantly expressed in various malignancies are deregulated

by KSHV, suggesting that UCA1 exemplifies how KSHV could similarly exploit lncRNAs that

contribute to phenotypes such as proliferation and migration in the context of tumorigenesis.

Given that the majority of lncRNAs we catalogued in this study remain uncharacterized, the

repertoire of cancer-relevant lncRNAs regulated by KSHV may be much larger. Although can-

cer is the pathological consequence of KSHV infection, KSHV could target lncRNAs of biolog-

ical significance in other cellular processes, for example, lncRNAs involved in inflammation

and innate immunity [9]. KSHV continually evades the innate immune response using several

approaches, like suppressing TGF-β signaling [45], activation of NF-κB response genes [65]

and encoding trace amounts of v-IL6, a truncated version of human IL-6, during latent infec-

tion [66]. Loc541472, which we show here is targeted directly by KSHV miRNAs, is antisense

to the hIL-6 promoter, suggesting that targeting of this lncRNA contributes to regulation of

IL-6 expression. Indeed, preliminary experiments suggest a correlation between Loc541472

and hIL-6 expression and mechanistic studies are currently ongoing.

We identified a novel paradigm by which KSHV, an oncogenic herpesvirus, regulates cellu-

lar gene expression by targeting host lncRNAs with viral miRNAs and latency proteins. Study-

ing lncRNAs deregulated by KSHV may yield novel mechanisms by which viruses evade the

host immune response and in the case of EBV and KSHV contribute to tumorigenesis, as
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exemplified by our data on UCA1 which modulates migration and proliferation. Finally, stud-

ies on aberrantly expressed lncRNAs in KSHV-infected cancer cells may aid the functional

characterization of cellular lncRNAs and at the same time identify novel virus-specific thera-

peutic targets for KS.

Material and methods

Virus and plasmid constructs

The viruses used in this study, wt-KSHV, Δcluster-KSHV and Δall-KSHV, have the viral

genome cloned into a Bac-16 backbone, as described in Brulois et al. [19] and Jain et al. [20].

Transcript variant 12 (RefSeq ID: NR_047542.1) of ANRIL was expressed from a pcDNA3.1

vector [67]. LANA, vCyclin, vFLIP and Kaposin were expressed from pcDNA3.2 vectors [68].

Cell culture

Telomerase immortalized vein endothelial cells (TIVE) and long-term cultured KSHV infected

cells (TIVE-LTC) were generated by immortalizing passage 2 HUVEC cells (kindly provided

by Dr. Keith McCrae, Case Western Reserve University) in our laboratory as described [18].

All uninfected and infected TIVE cells were grown in complete Medium-199 (1% Pen-Strep,

20% FBS), supplemented with Endothelial cell growth supplement (Sigma). TIVE-Ex-LTC

cells were obtained by culturing TIVE-LTC cells as single cell dilutions without antibiotic

selection, and have lost all copies of viral episomes. TIVE-Ex-LTC cells grow faster and are

more transfectable compared to TIVE cells. All uninfected and infected TIVE-Ex-LTC cells

were grown in complete DMEM (1% Pen-Strep, 10% FBS). Latently infected TIVE and

TIVE-Ex-LTC cells were maintained under hygromycin (10 μg/mL) to prevent episome loss.

Body-cavity-based lymphoma (BCBL-1) cell line was derived from KSHV positive primary

effusion lymphoma (PEL) and was kindly provided by Dr. Don Ganem at UCSF [69]. BCBL-1

cells were grown in complete RPMI (2% Pen-Strep, 10% FBS). HeLa cells and iSLK cells were

grown in complete DMEM (1% Pen-Strep, 10% FBS).

Bioinformatics analysis

Reanalysis of CLIP data. The BED files generated as a part of the analysis of Ago HIT-

S-CLIP data from PEL cells [3] were compared with GENCODE V19 [70] to obtain a compre-

hensive list of putative lncRNA targets. These lncRNAs were compared with published tables

available from EBV PAR-CLIP [17]. Statistical test for enrichment of KSHV miRNA seed matches
in lncRNAs: R version 3.3.0 was used for this analysis. 100,000 random DNA sequences of length

1189 nt were generated. This number was obtained by calculating the mean length of the 126

rescued lncRNAs. KSHV miRNA seed matches were counted using repeated sampling (10,000

times) of 126 random DNA sequences. One-sided t-test was performed to compare the average

number of seed matches in random sequences to that of rescued lncRNAs.

Fractionation of PEL cells

The method for isolating nuclear and cytoplasmic fractions was adapted from [71]. Briefly, 1 x

107 BCBL-1 cells were pelleted and washed twice with ice cold PBS. Cells were resuspended

smoothly by gentle pipetting in Sucrose buffer I (SB-I: 0.32 M Sucrose, 3 mM CaCl2, 2 mM Mg

(Ac)2, 0.1 mM EDTA, 10 mM Tris-HCl (pH 8), 1 mM DTT, 0.5 mM PMSF and 0.5% NP-40)

using 100 μL buffer per 1 x 107 cells. Lysis was at room temperature for 60–90 s. The nuclei

were pelleted at 800 x g, 4 ˚C for 5 min and the supernatant (cytoplasmic fraction) was frozen

immediately and stored at -80C. The pellet was resuspended smoothly by gentle pipetting in
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50 μL of SB-I and allowed to sit for 30 s at RT. The nuclei were pelleted again at 800 x g, 4 ˚C

for 5 minutes. The supernatant was discarded and the pellet (now whiter) was washed twice in

1 mL ice cold PBS. The resuspension was smooth and easy indicating no nuclear rupture.

10 μL of the 1 mL suspension from the second wash was trypan blue stained and checked by

microscopy to verify the purity and integrity of the isolated nuclei. The nuclear fraction was

frozen immediately and stored at -80 ˚C.

Immunofluorescence assays

TIVE cells were grown overnight on coverslips at a dilution of 1 x 104 cells per well in a 6-well

plate. Nuclei isolated from PEL cells were prepared as described [72], and fixed with a 1:1 ratio

of methanol and acetone for 10 min in a humid chamber at 4 ˚C. The samples were blocked in

PBS with 3% BSA for 1 h at room temperature, and then incubated overnight at 4 ˚C with

either primary anti-Ago2 antibody or blocking solution (control). After washing, the samples

were incubated with Alexa-468 anti-rat secondary antibody for 1 hour at room temperature.

The slides were then stored at -20 ˚C and imaged using a LEICA TCS SP2 AOBS Spectral Con-

focal microscope. The images were analyzed and figures were generated using the freeware

Vaa3D [73]. The movie was generated using Volocity1 6.3.

Western blots

SDS-PAGE and Western blotting were performed using whole cell lysates, or cytoplasmic or

nuclear fractions prepared from 100,000 cells/well. The following antibodies were used to

probe the membrane: Ago2 (11A9, [74]), β-Tubulin (Millipore, CP06-100UG), Sm antigen

(Dr. Joan Steitz’s lab, Yale University), Lamin A/C (Active Motif, 39288), Calnexin (ENZO

Lifesciences, ADI-SPA-865-D).

RNA isolation and microarray analysis

Total RNA was isolated with RNA-Bee (Tel-Test Inc.) using the protocol provided by the

manufacturer. Total RNA (5–10 μg) was treated with DNase I (NEB) according to the manu-

facturer’s instructions and ethanol precipitated overnight. Genome-wide lncRNA microarray

analysis was performed with ArrayStar using Human LncRNA Array v3.0 (8 x 60K, Arraystar).

A fold change cut-off of 2.0 was applied to filter lncRNAs into different categories (upregu-

lated, downregulated and rescued) for further analyses. Three technical replicates for each of

the three samples were analyzed.

qRT-PCR of miRNAs

Total RNA preparations from PEL cell fractions were reverse transcribed using the TaqMan

MicroRNA Reverse Transcription Kit (ThermoScientific). Stem-loop qPCR was performed

using the TaqMan Gene Expression Master Mix and appropriate miRNA assays from Applied

Biosystems.

qRT-PCR of mRNA or lncRNAs

Total RNA (2 μg) was reverse transcribed using SuperScript III (Life Technologies) using

random hexamers according to the manufacturer’s instructions. cDNA corresponding to 50–

100 ng RNA was used per 10 μL of qPCR reaction. Instruments used for real-time PCR

included ABI StepOne Plus (Applied Biosystems) and LightCycler96 (Roche). qPCR primer

sequences are listed in S4 Table.
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miRNA mimic transfections

TIVE cells were seeded in 48-well plates (50,000 cells/well) and transfected with pools of

miRNA mimics (in equimolar ratios and a final concentration of 5 nM) purchased from Qia-

gen. At 48 h post transfection, the lncRNA expression levels were measured using the Power

SYBR Green Cells-to-CT Kit (ThermoFisher). In the cases of ANRIL and MEG3, 10 cm plates

were seeded to 70% confluency and qRT-PCR analysis was performed using the conventional

approach described above.

Biotinylated miRNA pulldown

Biotinylated miRNA mimics (miR-K12-6-5p and miR-K12-11�) were purchased from Exiqon.

Pulldown was performed from TIVE and TIVE-Ex-LTC cells according to the previously pub-

lished protocol [75] with minor changes. Each replicate started with 6x106 cells for TIVE-Ex-

LTCs (instead of 4x106) and 8x106 cells for TIVE cells. Input RNAs saved for analysis were 5%

and 20% for TIVE-Ex-LTC and TIVE cells, respectively.

Ectopic expression of latency genes from plasmids

TIVE-Ex-LTC cells were reverse transfected in 6-well plates (300,000 cells/ well) with 2 μg of

plasmid DNA using FuGENE HD according to the manufacturer’s protocol. HeLa cells were

seeded in 6-well plates (150,000 cells/ well) and were transfected 24 h later with 2 μg plasmid

DNA using Lipofectamine 3000 according to the manufacturer’s protocol. DMEM (10% FBS)

was used for transfection of both cell types. Comparable transfection efficiencies were ensured

by co-transfection of pmaxGFP. Total RNA was harvested from transfected cells at 72 h post-

transfection.

siRNA knockdown

wtKSHV-infected or uninfected TIVE cells were plated in 96-well plates (20,000 cells/well for

MTS assay) and 48-well plates (250,000 cells/well for wound healing assay). Uninfected and

wtKSHV-infected iSLK cells were plated in 96-well plates (8000 cells/well for MTS assay). siR-

NAs (5nM or 10 nM) against UCA1 (Qiagen) were transfected using Lipofectamine RNAi-

MAX reagent (ThermoFisher) according to the manufacturer’s protocol. ON-TARGETplus

Non-targeting Control siRNA (Dharmacon) was used as the scrambled negative control. At 4

h post-transfection, the serum free medium was replaced by complete Medium-199 (TIVE) or

DMEM (iSLK). Comparable transfection efficiencies were ensured by co-transfection of

siGLO (Dharmacon).

Cell proliferation and migration assays

MTS assay. At 24, 48, 72 and 96 h post-transfection of siRNAs, the MTS assay was per-

formed using the CellTiter 96 AQueous Non-Radioactive Cell Proliferation Assay kit (Pro-

mega) according to the manufacturer’s instructions. The absorbance of the samples was

measured at 490 nm. Wound-healing assay: At 24, 48, 72 and 96 h post-transfection with siR-

NAs, the confluent wells were scratched using a 200 μL pipette tip along the diameter of the

well. Images of the scratch were recorded at 0 and 12 h, and analyzed using the freeware

Tscratch [76].

Statistics

Statistical analyses on experimental measurements were done using two-tailed student’s t-test

assuming unequal variances for all experiments reported.
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Data availability

Raw data files from the microarray experiment were deposited to the Gene Expression Omni-

bus under the accession number GSE89114.

Supporting information

S1 Fig. Validation of microarray results. All bar graphs show the mean values ± SEM after

normalization to GAPDH (n = 2), unless specified otherwise. Expression levels of two downre-

gulated lncRNAs, two upregulated lncRNAs, and three rescued lncRNAs were measured by

qRT-PCR in uninfected, wt-KSHV-infected and Δcluster-KSHV-infected TIVE cells. In addi-

tion, data for ANRIL in the downregulated category and UCA1 in the upregulated category

are shown in Fig 5A and Fig 6A, respectively.

(TIF)

S2 Fig. Knockdown of UCA1 in uninfected TIVE cells. (A) Uninfected TIVE cells were

transfected with 5 nM or 10 nM concentration of siUCA1 or Scr control. At 24, 48, 72 and 96

h, the samples were subject to MTS assay and absorption was measured at 495 nm wavelength.

The bar graphs show the relative absorbance ± SEM (n = 3). (B) Uninfected TIVE cells were

transfected with 10 nM concentration of siUCA1 or Scr control. At 24, 48, 72 and 96 h, the

samples were subject to scratch assay. Plates were imaged at 0 and 12 h and the images were

processed using T-Scratch. The bar graphs show the percentage of scratch area recovered ±
SEM (n = 3). For 96 h time-point, those data points where the scratch area was completely

recovered were omitted. p-values: � < 0.05; �� < 0.005; and ��� < 0.0005.

(TIF)

S3 Fig. Knockdown of UCA1 in uninfected and wt-KSHV-infected iSLK cells. (A) UCA1

expression in uninfected and wt-KSHV-infected iSLK cells measured by qRT-PCR. The bar

graphs show the mean values ± SEM after normalization to GAPDH (n = 2). (B) wt-KSHV-

infected iSLK cells were transfected with 5 nM or 10 nM concentration of siUCA1 or Scr con-

trol. At 24, 48, 72 and 96 h, the samples were subject to MTS assay and absorption was mea-

sured at 495 nm wavelength. The bar graphs show the relative absorbance ± SEM (n = 3). (C)

Uninfected iSLK cells were transfected with 5 nM or 10 nM concentration of siUCA1 or Scr

control. At 24, 48, 72 and 96 h, the samples were subject to MTS assay and absorption was

measured at 495 nm wavelength. The bar graphs show the relative absorbance ± SEM (n = 3).

p-values: � < 0.05; �� < 0.005.

(TIF)

S1 Movie. Immunofluorescence of Ago2 localization in wt-KSHV infected TIVE cells.

(MP4)

S1 Table. List of lncRNAs that were identified in both Ago HITS-CLIP of PEL cells (KSHV

infected) and Ago PAR-CLIP of LCL cells (EBV infected).

(XLSX)

S2 Table. Transcriptional profiling data.

(XLSX)

S3 Table. List of deregulated lncRNAs identified from microarray analysis and the cancer

type where their aberrant expression has been reported.

(XLSX)

S4 Table. qRT-PCR primers and biotinylated miRNA mimic sequences.

(PDF)
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