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Why do cancer and stem cell transplant patients develop invasive

bacterial and fungal infections?

In the 1960s, combination chemotherapy (using cytotoxic agents with different mechanisms of

action) was adopted to treat cancer patients, resulting in much higher cure rates. During this

time, however, a substantial proportion of cancer patients developed bacterial bloodstream

infections, predominantly with gram-negative organisms such as Pseudomonas aeruginosa and

Escherichia coli, and the morbidity and mortality associated with these infections was striking.

Ironically, these pathogens originated from the patient’s own gastrointestinal (GI) tract, based

originally on autopsy results and later using molecular studies [1, 2]. In particular, those

patients with severe neutropenia (absolute neutrophil count <100 cells/mm3) and fever were

found to be at highest risk for developing bacterial and fungal bloodstream infections.

These findings led to sweeping changes in clinical practice whereby initiation of empiric

antibiotics for cancer patients with fever and neutropenia became and continues to be stan-

dard of care and had a remarkable effect on decreasing the morbidity and mortality associated

with these infections [3]. These patients are often admitted for inpatient hospitalization and

maintained on antibiotics until the fever has resolved and the neutrophil count has recovered

(>500 cells/mm3).While treating febrile and neutropenic patients with antibiotics is standard

of care, the choice of which antibiotic(s) to use is still largely institution dependent, as a num-

ber of antibiotics have been shown to be efficacious in this setting. Thus, cancer and stem cell

transplant (SCT) patients often receive multiple antibiotics for long durations of time, and

many patients never have a laboratory-documented infection. Cessation of empiric antibiotics

before neutrophil recovery, however, is associated with an increased risk of infection [4].

While countless lives have been saved by this practice, clinicians are now facing an increasing

number of antibiotic-resistant bacteria in these patients [5]. Furthermore, recent studies have

now shown that cancer and SCT patients with significant disruptions in gut microbiota com-

munities are at increased risk for developing invasive infections [2] and the posttransplant

complication known as graft-versus-host disease (GVHD) [6–8]. In fact, specific antibiotic

therapies, particularly those that destroy specific anaerobic commensal communities, appear

to be linked to the development of these complications [5, 8–10]. These data suggest that new,

antibiotic-independent approaches to prevent or treat invasive microbial infections in these

patients are needed.
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What are the host factors that prevent bacteria and fungi from

disseminating from the gut?

The major host immune deficits that promote bacterial and fungal translocation from the GI

tract include deficiencies in cellular immunity (particularly neutropenia); impaired intestinal

barriers (an adverse consequence of cytotoxic chemotherapy, also referred to as mucositis);

and GI microbiota imbalance (often driven by use of broad-spectrum antibiotics). In cancer

and SCT patients, as a consequence of cytotoxic chemotherapy, all 3 defense mechanisms are

often compromised. In preclinical models emulating the development of gut-derived bacter-

emia and fungemia, all 3 host defense mechanisms need to be impaired to promote microbial

dissemination from the gut: antibiotics to deplete gut commensal microbiota, allowing high

levels of pathogenic microbial colonization (i.e., P. aeruginosa or Candida albicans) and cyto-

toxic chemotherapy (e.g., cyclophosphamide) to both deplete neutrophils and damage GI epi-

thelium [11, 12]. Whereas severe neutropenia and gut mucosal damage are, more or less,

experienced by all cancer and SCT patients, there is emerging evidence that those patients with

profound disturbances in gut microbiota populations are at higher risk for developing blood-

stream infections [2].

What role does the gut microbiota play in the development of these

enteric-derived infections?

One beneficial function of the gut microbiota is promoting colonization resistance to patho-

gens, a process by which the host’s commensal gut bacteria prevent pathogenic bacteria

from colonizing the intestine [13]. While the concept of colonization resistance was recog-

nized over 50 years ago, some of the mechanisms underlying colonization resistance have

only recently been elucidated. For example, in mice, commensal bacteria can induce GI epi-

thelial cells to produce antimicrobial peptides (AMPs) that are active against bacteria (e.g.,

regenerating islet-derived protein 3 gamma (RegIIIγ) against Enterococcus spp. [14]) (Fig

1A) or fungi (e.g., LL-37/cathelin-related antimicrobial peptide (CRAMP) against C. albi-
cans [15]) (Fig 1B), thus decreasing GI colonization levels of these potentially pathogenic

microbes. When antibiotics are given that deplete commensal microbiota, particularly

commensal anaerobes, GI AMP production decreases, pathogenic microbial colonization

increases, and the risk of dissemination increases (Fig 1). Not surprisingly, fecal microbiota

transplantation or more precise probiotic therapy can restore colonization resistance and

thus decrease the risk of infection [15, 16]. Interestingly, even in the setting of antibiotics

and depleted levels of commensal microbiota, bacterial ligands (e.g., lipopolysaccharide

(LPS) activating toll-like receptor 4 (TLR4) [17]) or pharmacologic agents [15] can be used

to induce GI AMP production, reduce pathogenic microbial colonization, and ultimately

decrease pathogenic dissemination from the GI tract.

Interestingly, in human SCT patients, an expansion of GI Enterococcus spp. or Enterobac-

teriaceae (along with a concomitant depletion of commensal anaerobic microbiota) is associ-

ated with a significantly increased risk of developing bloodstream infection with the same

bacterial species [2, 18]. These data suggest that the primary variable that determines which

cancer or SCT patients will develop gut-derived microbial bloodstream infections may be

those who have significant gut microbiota perturbations, resulting in increased levels or bur-

den of pathogenic bacteria or fungi. Of note, in preclinical models, a 1–2 log–fold reduction in

bacterial [17] or fungal gut colonization levels [15] is sufficient to significantly decrease dis-

semination or mortality. These data suggest that complete eradication or absence of coloniza-

tion is not needed to achieve a significant decrease in dissemination.
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Should we be monitoring gut microbiota populations in cancer and

SCT patients?

With the widespread use of advanced gut microbiota profiling tools, such as 16S rRNA

sequencing or metagenomic shotgun sequencing (MSS), the question is whether clinicians

should be using real-time monitoring of gut microbiota populations in these patients. For

instance, given that increased E. coli gut microbial burden precedes and significantly increases

the risk of E. coli bacteremia in this patient population [2], frequent monitoring of gut

Fig 1. Overview of commensal gut microbiota modulation of colonization resistance to pathogenic bacteria and fungi. (A) Commensal gut

microbiota induces the intestinal antimicrobial peptide regenerating islet-derived protein 3 gamma (RegIIIγ), which has activity against gram-positive

bacteria, including Enterococcus, via a TLR/MyD88-dependent mechanism [14]. Antibiotic therapy can deplete commensal gut microbiota, thereby resulting

in decreased levels of RegIIIγ and a concomitant increase in Enterococcus colonization [17]. Increased gut Enterococcus burden is associated with a

significantly increased risk of Enterococcus bloodstream infections in stem cell transplant patients [2]. (B) Commensal gut microbiota (particularly the

Bacteroidetes and Clostridial Firmicutes) induce intestinal production of the transcription factor hypoxia-inducible factor-1α (HIF-1α), which in turn regulates

production of the antimicrobial peptide LL-37/CRAMP, which has activity against Candida albicans [15]. Antibiotic-induced depletion of commensal

anaerobic bacteria results in decreased intestinal HIF-1α and LL-37/CRAMP levels and results in increased C. albicans dissemination in mice [15]. TLR, toll-

like receptor; MyD88, myeloid differentiation primary response gene 88.

https://doi.org/10.1371/journal.ppat.1006342.g001
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Enterobacteriaceae (the family of bacteria which includes the notable gram-negative pathogens

such as E. coli, Klebsiella spp., Enterobacter spp., etc.) in cancer and SCT patients could be used

to identify those patients at risk for developing Enterobacteriaceae bacteremia.

Unfortunately, both 16S rRNA sequencing and MSS have not been used in the clinical

setting because of logistical barriers to implementation—namely, time, cost, and complex-

ity. The turnaround time for 16S rRNA and MSS sequencing data is on the order of weeks

to months and thus is far too slow for informing clinical decisions. Another limitation of

both 16S rRNA sequencing and MSS is that absolute levels of microbiota cannot be deter-

mined, only relative abundance. An increase in gut microbiota relative abundance does not

necessarily correlate with an increase in total microbiota levels. In contrast, group or spe-

cies-specific microbial quantitative polymerase chain reaction (qPCR) performed on

patient fecal specimens could theoretically be provided to a clinician within days. qPCR

has been applied to 16S rRNA methodology and has been validated for quantification of

bacterial groups as well as specific bacterial species within complex bacterial communities

[15, 19]. Bacterial species or group qPCR measures the number of gene copies per sample

(normalized to both tissue genomic deoxyribonucleic acid (gDNA) concentration and

sample weight), not actual bacterial numbers or colony-forming units (CFUs), but qPCR

values correlate well with CFU [15, 19, 20]. Furthermore, many clinical microbiology labs

already offer numerous pathogen-specific qPCR assays, such as cytomegalovirus, Epstein-

Barr virus, adenovirus, etc. In fact, routine screening or monitoring patients for systemic

viral infections with qPCR tests (e.g., cytomegalovirus (CMV) qPCR) is standard practice

for patients undergoing SCT. Thus, a clinical microbiology laboratory should be able to

implement a bacterial qPCR assay for fecal specimens. Bacterial qPCR, however, will not

provide a snapshot of the entire gut microbiota population, and thus the clinician will be

limited to following levels of the specific bacterial qPCR tests offered by the clinical micro-

biology laboratory. Therefore, additional studies will need to be conducted to determine

which groups/types of bacteria should be followed in order to identify those patients at

highest risk for developing invasive microbial infections.

What does the future hold for the clinical management of invasive

microbial infections in cancer and SCT patients?

Prophylactic and empiric antibiotic therapy in cancer and SCT patients has saved countless

lives. However, the use of broad-spectrum and possibly unnecessarily prolonged-duration

antibiotic therapy has resulted in increasing microbial resistance and unintended deleteri-

ous effects to patients as well. In the short term, perhaps more narrow-spectrum antibiotics

should be preferentially used to prophylactically treat cancer patients—focusing on cover-

ing the gram-negative organisms such as E. coli and P. aeruginosa—and relegating broad-

spectrum antibiotic use (e.g., meropenem) to when clinical use dictates (e.g., documented

extended-spectrum beta-lactamase producing (ESBL) bacteremia). More selective patho-

gen-target intervention strategies are now being investigated: (1) conjugating an antibiotic

to a pathogen-specific antibody [21], (2) genetically engineered bacteria designed to out-

compete pathogenic bacteria [22], and (3) clustered regularly interspaced short palindromic

repeats/CRISPR associated protein 9 (CRISPR/Cas9) phagemids—plasmids carrying the

information to package phage particles that would target specific pathogens [23]. Perhaps,

in the future, active monitoring of GI microbiota populations followed by a more targeted

manipulation of the gut immune system and gut microbiota populations to either prevent

or treat infections or GVHD could become standard of care for cancer and SCT patients

(Fig 2).
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