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Introduction

The mammalian gut is home to a densely populated community of microorganisms that not

only provide their host with nutritional benefits but also offer protection against foreign patho-

gens [1]. Since the gut is an environment limited in both space and nutrients, these microbes

have evolved multiple mechanisms and strategies to either coexist or compete with other

organisms that share the same resources. While some species will switch their metabolism to

utilize secondary nutrients, others opt to take a more direct approach and directly kill their

competitors by releasing chemical compounds or by secreting effectors via specific secretion

systems [2] such as the type VI secretion system (T6SS).

T6SSs are contact-dependent secretion machineries capable of directly injecting toxins into

other bacteria as well as eukaryotic cells [3]. Recent studies have highlighted the role of T6SS-

dependent antibacterial responses in interbacterial competition in the mammalian gut [4–8],

suggesting that T6SSs may be important in not only shaping microbial community composi-

tion but also governing interactions between the microbiota and invading pathogens. In this

short article, we discuss recent advances in our understanding of how commensal intestinal

microbiota and enteric bacterial pathogens use T6SS-mediated antibacterial activity to influ-

ence host health and whether manipulating the T6SS could be used for potential therapies in

the future.

What is the T6SS and how does it function?

To manipulate and control their local environment, bacteria often secrete proteins and effec-

tors into the surrounding extracellular medium or directly into target cells using complex

nanomachines called secretion systems. While these systems can vastly differ in function and

composition, the T6SS is structurally homologous to a contractile T4 bacteriophage tail [9]

and shares many evolutionarily conserved core components found in the T4 bacteriophages

[3].

In regard to its mechanism of action, the T6SS is sometimes compared to a crossbow or

speargun in that contractile sheath proteins ClpV-interacting protein A and B (VipA-VipB)

cover a nanotube of stacked hexamers (hemolysin-coregulated proteins [Hcp]) that make up

the body of the arrow [10]. Once the sheath contracts, the nanotube, which is often loaded

with effectors, is injected into the target cell [11]. After firing, the sheath is recycled by the

ATPase caseinolytic peptidase V (ClpV) [12], effectively resetting the system so that a new

arrow could be fired again.

T6SSs are well-conserved amongst gram-negative bacteria, especially throughout the Pro-

teobacteria and Bacteroidetes phyla [13]. Although the first data describing secreted compo-

nents of T6SS (Hcp’s) can be found as early as 1996 [14], the secretion system was named T6SS

by John Mekalanos’s group in 2006 (for a review, see [15]) and was initially thought to simply
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target eukaryotic cells. Since 2010, several studies found these machineries could also serve as

an antibacterial weapon, greatly expanding our understanding of the role and function of the

T6SS (for a review, see [16]). Some bacteria use their T6SS for both antiprokaryotic and anti-

eukaryotic functions. For example, Pseudomonas aeruginosa encodes 3 distinct T6SS loci in its

genome, H1- to H3-T6SS, that allow the pathogen to target both eukaryotic and prokaryotic

cells. While H1-T6SS is specifically an antibacterial weapon, H2- and H3-T6SS can target both

bacterial and eukaryotic cells and mediate invasion of nonphagocytic cells (for a review, see

[17]). T6SS-encoding bacteria can mount a counterattack by expressing antitoxins that bind

T6SS-injected toxins to inactivate them [18].

Why is it relevant to study the role of T6SS in the gut?

Once it was established that the T6SS can serve as an antibacterial weapon, researchers won-

dered whether this activity is important in modulating bacterial interactions in the mammalian

gut. By studying the gut commensal bacterium Bacteroides fragilis, Wexler and colleagues

determined that more than 109 T6SS-firing events occur per minute per gram of colonic con-

tents, and that these microbial symbionts require their T6SS to persist in the gut [4]. Moreover,

130 T6SS loci were identified within the 205 human Bacteroidales genomes analyzed, suggest-

ing that about a quarter of the human gut microbiota encode at least 1 T6SS [19] and that

T6SS genetic elements may be transferable between Bacteroidales species [20]. Based on the

dramatic firing rate and the large distribution of such machineries amongst gut commensals’

genomes, it is reasonable to hypothesize that T6SSs are key players involved in modulating

ecological dynamics of the gut microbiota.

That said, the rules that govern the T6SS-dependent warfare in the mammalian gut are

complicated and are still being worked out. One recent publication utilized in vitro killing

assays to demonstrate that B. fragilis uses its T6SS to antagonize numerous Bacteroidales spe-

cies isolated from the human gut [8]. In addition to killing other commensal bacteria, nontoxi-

genic B. fragilis limits acquisition of pathogenic enterotoxigenic B. fragilis in the guts of mice

[5] (Fig 1A). This strain-specific competition with toxigenic B. fragilis was dependent on T6SS

and the presence of a specific effector-immunity pair [5]. Altogether, T6SSs in commensal bac-

teria play an important role in defense against invading pathogens and might be one major

player dictating microbial composition in the host gut, therefore greatly influencing host

health.

Are T6SSs utilized by enteric pathogens in the gut?

T6SSs are not limited to commensal bacteria. Many gram-negative enteric pathogens, includ-

ing Vibrio cholerae, Campylobacter jejuni, Shigella flexneri, and Citrobacter rodentium, contain

T6SSs. Moreover, both V. cholerae and C. rodentium utilize their T6SS to kill other bacteria in

vitro [21–22]. In fact, in vitro studies have shown that the V. cholerae T6SS is activated by

mucins and by microbiota-modified bile salt [23]. Consistent with these findings, an intact

T6SS is required for V. cholerae colonization of the guts of infant rabbits [24].

To determine whether a T6SS-dependent anticommensal activity is required for the pa-

thogen to effectively colonize and proliferate in the host gut, we recently used a Salmonella
enterica serovar Typhimurium mouse model and found S. Typhimurium kills a commensal

bacterium Klebsiella oxytoca in vitro and in the host gut in a T6SS-dependent manner [7]. This

killing was magnified in the presence of bile salts in vitro and required the T6SS-dependent

antibacterial toxin type VI amidase effector (Tae4). While it is still too early to fully understand

why Salmonella might target K. oxytoca, recent studies have found Klebsiella is capable of me-

tabolizing sugars that are similar to the sugars utilized by Salmonella in the guts of mice [25],
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suggesting that the pathogen might be killing a nutritional competitor through its T6SS cross-

bow (Fig 1B).

The presence of T6SS loci in many other gram-negative enteric pathogens supports the

hypothesis that T6SS may be an evolutionarily conserved mechanism used by gram-negative

enteric pathogens to establish themselves in the heavily populated gut to further cause disease.

Is there any potential biomedical application of this knowledge?

The answer is “possibly.” Though there is much to be discovered, it may be possible to engi-

neer probiotic commensal species that produce and use T6SSs that are designed to specifically

kill certain enteric pathogens. Engineering such a commensal may come at a cost, however,

depending on how specific the T6SS-dependent antibacterial response is. If the T6SS’s target

isn’t specific enough, it may also kill resident gut bacteria that are important for maintaining

homeostasis and thus negatively impact the health of the host.

Alternatively, if we understand which specific commensals are targeted by a pathogen, it

might be possible to provide them with the appropriate antitoxin genes to prevent them from

being killed. This engineered commensal would therefore become immune to the pathogen’s

T6SS attack and become a direct competitor for the pathogen, thus providing the host with

colonization resistance to the pathogen (Fig 2).

Is there a secret bacterial warfare in the gut?

In a way, yes, there is. It seems bacteria are secretly fighting amongst one another in the gut via

their T6SSs. While much is yet to be discovered, T6SSs provide their host with protection against

invading pathogens and may be responsible for dictating resident microbiota compositions. On

Fig 1. The T6SS-mediated bacterial warfare in the host gut. (A) Commensal Bacteriodes fragilis bacteria (in blue)

target and kill enterotoxigenic B. fragilis (in yellow) in a T6SS-dependent manner (shown as crossbows), providing

colonization resistance to the host. (B) Salmonella Typhimurium (in yellow) uses its T6SS crossbow to kill Klebsiella

oxytoca (in blue), a potential nutritional competitor, allowing Salmonella to expand in the host gut. Dead bacteria are

represented in grey, the gut epithelium is represented in light blue, and green cubes represent similar sugars

metabolized by Salmonella and Klebsiella.

https://doi.org/10.1371/journal.ppat.1006325.g001
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the other hand, pathogens have figured out how to breach this defense mechanism, leading to

their successful colonization of the mammalian gut.

Based on our current knowledge, the bacterial warfare in the gut does not appear to cause

adverse effects such as inflammation in the gut, keeping this war a secret from the host. Maybe

it’s because microbes don’t want us to know, since the first rule of Fight Club is “You do not

talk about Fight Club.”
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