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Abstract

Leptospirosis causes significant morbidity and mortality worldwide; however, the role of the
host immune response in disease progression and high case fatality (>10-50%) is poorly
understood. We conducted a multi-parameter investigation of patients with acute leptospi-
rosis to identify mechanisms associated with case fatality. Whole blood transcriptional pro-
filing of 16 hospitalized Brazilian patients with acute leptospirosis (13 survivors, 3
deceased) revealed fatal cases had lower expression of the antimicrobial peptide, cathelici-
din, and chemokines, but more abundant pro-inflammatory cytokine receptors. In contrast,
survivors generated strong adaptive immune signatures, including transcripts relevant to
antigen presentation and immunoglobulin production. In an independent cohort (23 survi-
vors, 22 deceased), fatal cases had higher bacterial loads (P = 0.0004) and lower anti-Lep-
tospira antibody titers (P = 0.02) at the time of hospitalization, independent of the duration
of illness. Low serum cathelicidin and RANTES levels during acute iliness were indepen-
dent risk factors for higher bacterial loads (P = 0.005) and death (P = 0.04), respectively. To
investigate the mechanism of cathelicidin in patients surviving acute disease, we adminis-
tered LL-37, the active peptide of cathelicidin, in a hamster model of lethal leptospirosis and
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found it significantly decreased bacterial loads and increased survival. Our findings indicate
that the host immune response plays a central role in severe leptospirosis disease progres-
sion. While drawn from a limited study size, significant conclusions include that poor clinical
outcomes are associated with high systemic bacterial loads, and a decreased antibody
response. Furthermore, our data identified a key role for the antimicrobial peptide, cathelici-
din, in mounting an effective bactericidal response against the pathogen, which represents
a valuable new therapeutic approach for leptospirosis.

Author Summary

Leptospirosis causes over one million cases and nearly 60,000 deaths annually. Infection
with the spirochetal bacterium results in a spectrum of symptoms, ranging from mild
febrile illness to life-threatening pulmonary hemorrhage syndrome and acute kidney
injury. Despite leptospirosis being a leading cause of zoonotic morbidity worldwide, little
is known about the human immune response to Leptospira infections, and less about the
pathogenic mechanisms resulting in severe disease outcomes. Here, we used a systems
biology approach to discover transcripts and immunoprofiles associated with case fatality.
We identified new risk factors for high bacterial loads and fatal leptospirosis, including the
antimicrobial peptide, cathelicidin, which we validated in an animal model. Cathelicidin
therefore represents a potential novel treatment for severe cases of leptospirosis.

Introduction

Pathogenic Leptospira spp cause life-threatening disease, primarily in the world’s most impov-
erished populations [1]. Leptospirosis is considered the most widespread zoonotic disease due
to the large number of wild and domestic mammalian reservoirs [2] and causes an estimated
1.03 million infections and 59,000 deaths globally per year [3, 4]. In Brazil alone, epidemic out-
breaks of leptospirosis in urban slum communities during seasonal periods of heavy rainfall
account for more than 10,000 reported cases each year [5, 6]. Despite its widespread impor-
tance, development of a vaccine has been hampered by genetic and antigenic diversity in path-
ogenic Leptospira, which are comprised of ten species and >200 serovars. Humans are
accidental hosts and acquire the disease through contact with water or soil contaminated with
Leptospira excreted in the urine of reservoir hosts. During a systemic infection, clinical mani-
festations can range from a self-limiting febrile illness to Weil ‘s disease, the classic severe form
with jaundice, acute renal failure and bleeding, or severe pulmonary hemorrhage syndrome
(LPHS) [1, 7, 8]. Notably, case fatality rates from Weil’s disease and LPHS are >10% and 50%,
respectively [7, 8, 9, 10].

At present, the factors contributing to disease progression and poor clinical outcomes in
patients with leptospirosis are poorly understood. No studies to date have found associations
between genetic differences in Leptospira spp and poor disease outcomes, suggesting other fac-
tors drive disease severity [11, 12]. The infecting inoculum dose may also affect patient out-
comes, but these have been intrinsically difficult to measure and evaluate. Alternatively,
differences in host factors, such as the immune response to bacteria, are known to contribute
in general to the development of lung injury and septic shock, and may be relevant to severity
of responses to Leptospira infection [13-16].
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Several lines of evidence suggest that the pathology associated with severe disease, LPHS
and Weil’s syndrome, is in part, immune-mediated. In the city of Salvador, Brazil, a single sero-
var, L. interrogans serovar Copenhageni, causes the full spectrum of disease, suggesting that
strain-specific differences in pathogen virulence do not explain differences in disease outcome
[7, 17-19]. Furthermore, patients with poor outcomes, such as fatality, have been shown to
have altered cytokine responses, including elevated mRNA transcripts of IL-1o and its antago-
nist receptor, IL-1RA, higher serum levels of IL-10 and IL-6, and high ratios of IL-10:TNFo.
[20-24]. These cytokines are commonly associated with innate immune responses; however,
such cytokine responses are largely uncharacterized in patients with leptospirosis, despite neu-
trophilia being a common disease characteristic, and the known protective or detrimental roles
neutrophils play in other bacterial infections [25-27]. Potential roles for T cells and endothelial
cells in poor disease outcomes have also been described, but these remain less well validated in
patient investigations [28]. While antibodies appear protective in experimental animal models
of leptospirosis [29-32], definitive roles for B and T cells in the resolution or exacerbation of
human Leptospira infections remain largely uncharacterized.

A better understanding of the human response to Leptospira infection could discern likely
pathogenic processes involved in disease development. To identify features of disease response
associated with death or survival, we conducted an in-depth multi-parameter analysis of
immune responses during the acute phase of leptospirosis in a well-characterized cohort of
hospitalized patients, including assessment of transcriptional profiles, serum components, and
immune cell abundances. This work contributes to our understanding of immunopathogenic
processes that affect disease outcome and identifies novel approaches to therapeutic interven-
tion for leptospirosis.

Results

Specific Clinical and Laboratory Features Define Deceased
Leptospirosis Patients

To identify host factors contributing to fatality, we enrolled 16 patients hospitalized with acute
leptospirosis (13 survivors, 3 fatal cases) and 4 healthy community volunteers for in-depth
characterization of clinical course and immune responses. Table 1 describes the patient charac-
teristics for biochemical and clinical values during hospitalization for fatal and nonfatal cases.
As noted in other studies, we observed that fatal cases had significantly elevated percentages of
neutrophils as well as lower minimum hematocrit and percent lymphocytes in peripheral
blood [23, 26]. We also found that acute phase anti-Leptospira agglutinating antibody titers
were lower and Leptospira loads trended higher in the deceased group. Of the outcomes mea-
sured, we determined that only acute lung injury was more frequently associated with the
deceased group. We found no differences in days of symptoms prior to admission (P = 0.26),
age (P = 0.42), gender (P = 0.35), or days of symptoms prior to microarray sampling (P = 0.33)
between survivors (8.4 + 1.9 days) and nonsurvivors (6.7 + 2.3 days). Thus, our patient cohort
is representative of disease outcomes common to leptospirosis in Brazilian patients.

Strong Innate and Adaptive Immune Responses Distinguish Acute
Disease from Convalescence and Healthy Volunteers

To delineate host responses important during acute leptospirosis, we performed a transcrip-
tional analysis of whole blood comparing paired samples from acute disease and convalescence
from 13 survivors and a single sample from four healthy Brazilian volunteers (S1 Text). As
expected, many genes (1089 unique transcripts) were differentially expressed during acute
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Table 1. Characteristics of leptospirosis patients during hospitalization.

CHARACTERISTICS SURVIVORS DEATHS
N Median (IQR) or N (%) N Median (IQR)or N (%) P-value

Age 13 29.0 (22.5-39.0) 3 32.0 (32.0-36.0) -
Gender (Male) 13 12 (92%) 3 2 (67%) -
CLINICAL PRESENTATION
Days of illness® 13 7.0 (5.5-7.5) 3 5.0 (4.0-7.0) -
Fever 13 13 (100%) 3 3 (100%) -
Jaundice 13 9 (69%) 3 1(33%) -
Oliguria 13 1(8%) 3 1(33%) -
Dyspnea® 13 2 (15%) 3 1 (33%) -
CLINICAL LABORATORY
Hematocrit (%) 13 32.4(6.9) 3 26.7 (4.7) 0.05
Leukocytes (1000/uL)? 13 13.7 (9.5-19.8) 3 17.0 (11.4-72.6) -

% Neutrophils® 13 78.0 (74.5-85.5) 3 94.0 (89.0-95.0) 0.01

% Lymphocytes® 13 13.0 (7.5-18.5) 3 4.0 (2.0-7.0) 0.02
Platelets (1000/uL)® 13 97.0 (38.0-167.0) 3 26.0 (15.0-38.0) 0.06
Serum creatinine (mg/dL)d 13 2.4(1.7-4.0) 3 3.6 (2.7-8.8) -
Blood urea nitrogen (mg/dL)® 13 91.0 (45.5-103.5) 3 63.0 (53.0-295.0) -
Serum potassium (meg/L)® 13 4.3 (3.8-4.8) 3 5.0 (3.7-6.8) -
Serum bilirubin (mg/dL)®

Direct 11 6.5 (1.0-19.6) 8.4 (4.3-12.4) -

Indirect 11 1.5(0.7-6.0) 2.4 (1.2-3.6) -
HOSPITAL OUTCOMES
Hospitalization days 13 7.0 (6.0-8.5) 3 2.0(1.0-12.0) -
ICU admission 13 2 (15%) 3 1(33%) -
Dialysis 13 1(8%) 3 1(33%) -
Oliguria® 13 2 (15%) 3 1(33%) -
Mechanical ventilation 13 0 (0%) 3 2(67%) 0.030
Pulmonary hemorrhagef 13 0 (0%) 3 1(33%) -
Acute lung injury® 13 2 (15%) 3 3 (100%) 0.018
Respiratory failure" 13 0 (0%) 3 3(100%) 0.002
LABORATORY DIAGNOSIS
Agglutinating antibody titers

Acute-phase 13 800 (250-2400) 3 0(0) 0.03

Convalescent-phase 13 3200 (1600—-6400) 0 N/A N/A
Leptospiraload (Geg/mL)' 11 0 (0-208) 3 14586 (0-20828) 0.052

& Prior to hospital admission.

® Maximum respiratory rate > 38 breaths per minute during hospitalization.

° Values represent minimum values during hospitalization.

9 Values represent maximum values during hospitalization.

¢ Oliguria (<500mL urine/day) or anuria (<50mL urine/day) or patient received hemodialysis.

f>250 mL blood in the lungs or large volume of blood in an endotracheal tube.

9 Mechanical ventilation, massive pulmonary hemorrhage, and/or maximum respiratory rate > 38 breaths per minute during hospitalization.
" Mechanical ventilation or massive pulmonary hemorrhage during hospitalization.

" Geometric mean of Leptospira genomes/mL as determined by RT-gPCR.

doi:10.1371/journal.ppat.1005943.t001

infection relative to convalescence (S1A Fig). Of these, 363 transcripts increased in relative
abundance during acute illness relative to convalescence, while 726 increased in convalescence
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relative to acute infection (S1 Table). To identify pathways associated with the acute phase of
leptospirosis, we performed a functional analysis (DAVID) of all 1089 significant transcripts
and found 40 significant (FDR < 0.01 and Benjamini <0.05) Gene Ontology terms (GO terms)
enriched in acute versus convalescent comparisons (S2 Table) [33, 34]. These include catego-
ries such as “response to bacterium’, “defense response”, “antigen binding”, and 72 transcripts
for immunoglobulin or immunoglobulin-like genes, which were enriched 2.0-7.9-fold during
acute illness. Notably, no genes were significantly different between the convalescent and
healthy volunteer groups, indicating that the immune state had returned to baseline 1-3

months following hospitalization (S1 Fig).

Transcriptional Profiles Distinguished Survivors from Fatal Cases

When we examined patterns of gene expression in the 16 cases using principal component
analysis, the first principal component (PC1) (which explained 9.9% of the variance), separated
the acute patient samples from paired convalescent and healthy volunteer samples (P = 0.0001)
(Fig 1A). Strikingly, we found fatal acute disease profiles separated significantly from survivor
profiles in principal component 2 (PC2) (7.6% variance; P = 0.014). These data support the
hypothesis that host-derived factors are associated with fatal outcomes. We therefore directly
compared the acute phase transcriptional profiles of 13 nonfatal and three fatal cases to identify
specific gene expression changes associated with survival and death.

We identified 389 differentially expressed (DE) unique transcripts in deceased patients ver-
sus survivors (Fig 1B). We categorized the DE transcripts into three expression profile groups
based on co-expression patterns after hierarchical clustering (Figs 1B and S1A). Groups 1 and
2 represent transcripts more abundant in nonfatal cases, with group 2 transcripts (92 unique
genes) elevated during the acute phase of illness compared to convalescence, and Group 1 tran-
scripts (76 unique genes) stable across nonfatal cases and not significantly different from con-
valescence (Fig 1B and S3 Table). Group 3 contains 221 transcripts with higher abundance in
deceased patients compared to acute phase survivors or convalescents (Fig 1B and S3 Table).

Despite survivors presenting with varying disease severity during acute infection, only 27%
(N =105) of all significant transcripts from acute phase survivors (compared to convalescence)
exhibited differential expression when compared with those of deceased patients (S1D Fig and
S1 Table). Further, a majority of all the transcripts, elevated during acute infection in survivors,
were not elevated during acute infection in deceased patients, suggesting a specific transcrip-
tional alteration in fatal cases (S1D Fig).

Fatal Cases Exhibited Decreased Transcription of Genes Involved in
Chemotaxis, Coagulation, and Adaptive Immune Responses

We performed functional enrichment analyses for transcripts more abundant in each of the
three deceased vs survivor signature groups to discover molecular mechanisms that may have
contributed to fatal disease outcomes (Fig 1C-1F; S2 and S4 Tables) [33, 34]. Within Group 1
transcripts, we identified 38 significant GO terms and 30 REACTOME pathways (Fig 1C; S2
and S4 Tables), the vast majority of which were related to immune function or coagulation. Of
note, the chemokine CCL5 (RANTES), important for recruitment of T cells, leukocytes and NK
cells, had 4.3-fold lower expression in fatal cases (Fig 2). We observed similar reductions (2.6-
3.0-fold) in three chemokine receptor transcripts, CX3CR1, CXCR3, and CCR3 (Fig 2). Fatal
cases also had 2.0-5.0-fold lower abundance of six genes involved in blood coagulation, most
notably platelet factor 4 (PF4/CXCL4), pro-platelet basic protein (PPBP/CXCL?7), and Factor
13 (F13A1) (Fig 2). Together these data suggest that fatal cases had diminished migration of
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Fig 1. Transcriptional signhatures associated with fatal cases. (A) PCA of all probes for 3 patient groups and healthy
volunteers. (B) Heatmap depicting hierarchical clustering of 471 probes with differential expression during acute illness in 3
deceased patients (D) and 13 acute survivors (S). For comparison, the same transcripts for 4 healthy volunteers are shown (H).
Blue indicates down-regulation and Red indicates up-regulation in log,. (C-E) Functional REACTOME pathways for 3 expression
groups with negative log of p-values and number of genes in parentheses. In Groups 1 (black box) and 2 (blue box), transcripts
were enriched in survivors vs fatal cases, while in Group 3 (red box), transcripts were enriched in fatal cases.

doi:10.1371/journal.ppat.1005943.g001

immune cells to sites of infection as well as reduced expression of coagulation factors, which

could contribute to the hemorrhaging observed in many fatal leptospirosis cases.

We identified a prominent diminution in the abundance of Groups 1 and 2 transcripts
involved in antigen presentation and the generation of an adaptive immune response in fatal
cases (Figs 1C, 1D and 2; S2 and S4 Tables) including 2.1-3.9-fold reductions in the abundance
of six HLA Class II transcripts and CD74 (invariant chain). We observed reduced abundance
of 10 transcripts involved in T cell activation and regulation in fatal cases such as 2.7 and
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Fig 2. Specific transcripts associated with case fatality. Values are the average normalized log, fold-change
of signal intensities + Standard Error of the Mean for select transcripts in Groups 1-3 described in Fig 1. The gene
names are shown on the left and the functional annotation is shown on the right. Genes were selected based on
their fold-change in Deceased vs Survivor (DvS) comparisons and had significant g values.

doi:10.1371/journal.ppat.1005943.9002

3.2-fold decreased abundance of CD40LG, a T cell protein, which promotes immunoglobulin
class switching, and CD27, important for T and B cell memory and immunoglobulin class
switching (Fig 2). Further, we identified decreased abundance of 25 pathways related to B cell
and antibody responses in fatal cases (S2 and S4 Tables), with a 2.8- to 13.6-fold decreased
expression for 47 immunoglobulin genes and reduced abundance of transcripts for B cell sig-

naling (BLNK), IgM production (MZB1), and germinal center formation (POU2AF10) (Fig 2).
These results suggest that fatal cases may not be capable of mounting robust T cell and B cell
responses during acute infection because of defects in antigen presentation. Adult patients with
Gram negative septic shock also generate transcriptional profiles with reduced T cell activation
and antigen presentation suggesting fatal leptospirosis cases may share clinical features with
bacterial sepsis [35].

Stronger Adaptive Immune Responses in Patients Lacking Acute Lung
Injury

To examine whether patients with severe infection had diminished adaptive immune cell acti-
vation or frequencies, we employed multi-parameter flow cytometry of peripheral blood
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Fig 3. More robust T and B cell responses in patients lacking acute lung injury. PBMCs from patients with ALI

(N = 4) and hospitalized patients lacking pulmonary complications (No ALI; N = 9) during acute leptospirosis. Cells were
labeled with fluorescent antibodies forimmunophenotyping and analyzed by flow cytometry [36]. Live CD3" cells or
CD37/CD19" cells were sampled and clustered by Citrus analysis, based on the expression of markers in each panel.
Abundance of subsets was compared using SAM (FDR < 5%) between No ALl and ALI groups. Data shown represent
fold change ratios of cell abundance for the indicated cell subsets.

doi:10.1371/journal.ppat.1005943.9003

mononuclear cells (PBMCs) to profile T cell and B cell responses in 11/13 survivors and 1/3
deaths (Fig 3). Acute lung injury (ALL defined in Materials and Methods) is a significant risk
factor for death in leptospirosis [8, 17]. Because we had limited PBMCs from deceased patients,
we stratified patients by ALI to distinguish cases with higher probabilities of fatality. The ALI
group had significantly fewer CD4" and CD8" T cells and larger percentages of naive B cells
[36]. In contrast, the patient group lacking pulmonary complications (No ALI) had elevated
memory B cell and transitional B cell populations, the subsets required for antibody production
[36]. Both the B and T cell subsets associated with immune activation and memory were lower
in the more severe ALI group, which included one fatal case (Fig 3) [36]. These phenotypic
changes are consistent with our microarray findings and suggest that fatal cases had dampened
adaptive immune responses in the peripheral blood.

Lower Antibody Titers and Elevated Bacterial Loads in Fatal Cases Are
Consistent with Reduced Humoral Transcriptional Responses

Because we observed a significant reduction in transcription of immunoglobulin-encoding
genes in fatal cases and reduced B and T cell responses in more severe disease, we quantified
anti-Leptospira agglutinating antibodies in corresponding sera from the 16 patients with
microarray results and an additional 18 fatal cases (N = 21 total) and 11 survivors (N = 24).
Notably, we found that anti-Leptospira antibody titers were significantly lower in fatal cases
(Tables 1 and S6). This is consistent with a decreased abundance of immunoglobulin tran-
scripts (Fig 1B-1D). We also identified a significant correlation between levels of transcription
of 21 immunoglobulin genes and agglutinating antibody titers during early acute infections,
indicating a direct association between transcript levels and antibody titers (S5 Table). Further,
the higher systemic bacterial loads detected in fatal cases inversely correlated with both
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Fig 4. Serum protein levels validate expression profiles of specific gene products identified by
microarray. Serum protein levels of cathelicidin (CAMP [LL-37]) (A) and RANTES (D) were higher in survivors,
while HGF (B) and IL-18 (E) serum levels were higher in deceased patients. (C) Deceased patients had higher
serum of CHI3L1 than survivors, in contrast to microarray results. (F) Elastase levels did not differ between
outcomes. N = 23 for Survivors (S; blue triangles) and N = 22 for and deceased patients (D; red circles) for (A-E).
N = 14 for survivors and N = 15 for deceased patients in (F). Filled symbols denote individuals included in
microarray analyses. Values are medians +/- IQR in pg/mL (B-E) or ng/mL (A, F).

doi:10.1371/journal.ppat.1005943.9004

immunoglobulin gene transcripts and antibody titers (f = -0.3811 + 0.1554, P = 0.0188), pro-
viding functional data suggesting a critical role for decreased humoral responses in fatal cases.

Fatal Cases Show Decreased Expression of Cathelicidin, an
Antimicrobial Peptide, and Elevated Transcription of Proinflammatory
Cytokine Pathways

The transcript with the greatest difference in abundance (17.6-fold) between nonfatal and fatal
cases encodes an antimicrobial peptide (AMP), cathelicidin (CAMP) (Fig 2 and S3 Table). In
survivors, cathelicidin had 20.3-fold higher expression during acute disease compared to con-
valescence (S1 Table). Interestingly, we found no association between disease outcome and
other antimicrobial molecules produced by innate immune cells such as resistins, defensins, or
elastase, although we detected increased abundance of these transcripts in acute illness relative
to convalescence in survivors (S1 Table). Therefore, cathelicidin is the only antimicrobial pep-
tide with significantly decreased expression in fatal cases.

In addition to cathelicidin, fatal cases had many transcripts with significantly elevated
expression compared to survivors (Group 3; 221/389), including two GO terms, “Interleukin 1
Receptor Activity” and “Sulfur Compound Biosynthetic Processes”, and two related functional
pathways “IL-1 Signaling” and “Metabolism” (S2 and S4 Tables). Concordantly, we measured
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large relative increases in expression (2.9-9.4-fold) for the decoy IL-1 receptor (IL-1R2), the
IL-1 receptor (IL-1R1), and IL-18 receptor (IL-18R), indicating transcription of these proin-
flammatory pathways may be relevant to outcome in fatal cases (Fig 2). We identified increased
abundance of transcripts involved in NF-kB signaling, a pathway important for proinflamma-
tory responses: MKK3 and MKK6, members of p38 signaling pathways that respond to envi-
ronmental stress. Additionally, we found elevated transcript levels of human growth factor
(HGF), a gene induced by proinflammatory cytokines, although this may be in response to sig-
naling or driven by higher bacterial loads [37, 38]. Together, these data suggest that the
increased abundance of specific proinflammatory responses in nonsurvivors may have contrib-
uted to fatality.

Serum Levels of Cathelicidin and IL-18 Differ Based on Disease
Outcome

The transcriptional studies identified more than 30 genes with striking differences between sur-
vivors and non-survivors, which may shed light on pathogenesis or have potential as new ther-
apeutic targets or diagnostic markers (Fig 2). To investigate some of these targets, we
quantitated serum levels of LL-37 (active fragment of cathelicidin, CAMP), IL-18, RANTES,
HGE, and CHI3LI by single or multiplex ELISA. (Fig 4A-4F; N = 45 patients, 22 of whom died
during acute infection). Notably, we measured significantly higher serum levels of LL-37 in sur-
vivors, consistent with microarray findings, while finding no differences in the levels of elas-
tase, an enzyme produced by neutrophils, suggesting some normal neutrophil function.
Consistent with our microarrays, we found elevated serum protein levels of RANTES in survi-
vors, and lower levels of HGF and IL-18, the ligand for IL-18R. These data provide further evi-
dence that these genes and their products may play critical roles in disease progression. Lastly,
levels of CHI3L1 protein were lower in survivors than in fatal cases (Fig 4). We do not know
why these findings for CHI3L1 contrast with the results of gene expression analyses; however,
lower CHI3LI in surviving patients is consistent with its presence as a biomarker of severity in
other inflammatory diseases [39].

Risk Factors for High Bacteremia and Fatality in Leptospirosis

To identify factors associated with case fatality including the clinical, transcriptional, cell sub-
set, and serum factors assessed in stratified leptospirosis patients, we employed univariate anal-
yses of data for the entire patient cohort (S6 Table). As we noted in our initial cohort assessed
for transcriptional analysis (Table 1), fatal cases had lower platelet counts, lower antibody
titers, and higher bacterial loads. We also found an association of ALI with death. In contrast,
survivors had less evidence of renal failure as measured by significantly lower maximum blood
urea nitrogen, creatinine, and potassium levels, fewer hemodialysis treatments, and lower inci-
dence of oliguria or anuria (S6 Table).

To identify independent risk factors for higher bacterial loads and death, we included all sig-
nificant univariate variables (Fig 4) and days of symptoms in multivariate linear and logistic
regression models, respectively (S1 Text). These analyses revealed that survivors had signifi-
cantly higher titers of agglutinating antibodies ( = -0.3811 + 0.1554; P = 0.02), and further,
that lower serum levels of cathelicidin (LL-37) predicted higher bacterial loads (Table 2). Addi-
tionally, lower RANTES levels and higher CHI3L1 serum levels were independent risk factors
for death in patients with leptospirosis (Table 2). Gender (P = 0.17), age (P = 0.10), and days of
symptoms (P = 0.09), possible confounders of disease outcome, were not significantly different
between the two patient groups.
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Table 2. Risk factors associated with death in leptospirosis patients.

Variable

Days of Symptoms?
LL-37 (ng/mL)

IL-18 (pg/mL)
RANTES (pg/mL)
CHI3L1 (pg/mL)
HGF (pg/mL)

Bacterial load (log)?
Univariate®

B+SE
-0.2041+0.1334
-5.033E3 + 1.883E7
2.028E™ + 4.389E™
-1.994E“ + 1.563E™
3.697E° + 1.466E°
4.901E°+5.917E°

Death®
Multivariate® Univariate® Multivariate'

P-value [B+SE P-value |B+SE P-value |B+SE P-value
0.134 | -0.2404 +0.1225 0.057 | -0.0493+0.141 0.727 | 0.5269 +0.3077 0.087
0.011 -5.395E2+1.832E | 0.006 |-5.988E°+2635E° | 0.023 |-4.663E>+3.085E° | 0.131
0.647 |- - 4.247E%+2.043E® 0.038 |- -

0210 |- - -9.764E* +4.189E“ | 0.020 | -1.345E°+6.540E™ | 0.040
0.016 | - - 6.297E°+2.266E° | 0.005 |6.590E°+2787E° |0.018
0413 |- - 6.114E3+2.242E2 1 0.006 | - -

& Number of Leptospira genome equivalents/mL whole blood was the outcome for the univariate and multivariate analyses.

b Death was the outcome for the univariate and multivariate analyses for acute, confirmed leptospirosis.

¢ Univariate linear regression of each variable predicting the number of Leptospira genome equivalents/mL whole blood.

9 Final multivariate linear regression model (lowest AIC score using deletion method) predicting the number of Leptospira genome equivalents/mL of whole

blood.

¢ Univariate logistic regression of each variable predicting death from acute leptospirosis.
" Final multivariate logistic regression model (lowest AIC score using deletion method). We excluded HGF due to nonlinearity of features.

9 Days of symptoms prior to blood collection.

doi:10.1371/journal.ppat.1005943.t002

Cathelicidin Protects Against Lethal Leptospira Challenge in Hamsters

As our results suggest a critical role for cathelicidin during infection with Leptospira spp, we
tested the effect of LL-37, the active peptide of cathelicidin, in a hamster model of lethal lepto-
spirosis. Immediately prior to lethal infection with 100 live Leptospira interrogans serovar
Copenhageni, we injected hamsters with LL-37 reconstituted in ddH,O, an LL-37 scrambled
peptide reconstituted in ddH,O (control group), or water alone (control group). We found
that while all hamsters in both control groups (N = 14) died within 11 days of infection with
high blood bacteremia, hamsters treated with LL-37 (N = 7) were significantly protected from
lethal infection, and controlled systemic bacterial loads (Figs 5 and S3). These data provide
strong evidence that cathelicidin is a critical immune molecule protecting against fatal
leptospirosis.

Discussion

Despite the important global disease burden of leptospirosis [3, 4], there are key gaps in our
understanding of host pathogenic mechanisms that contribute to poor disease outcomes such
as massive pulmonary hemorrhage and death. To identify host factors contributing to fatality,
we conducted an in-depth characterization of clinical, transcriptional, immune cell subset, and
serum factors in hospitalized leptospirosis patients, including the first comprehensive human
transcriptome analysis of peripheral blood during acute leptospirosis. We demonstrated that
low serum levels of cathelicidin (LL-37) is a risk factor for high bacterial loads and suggests
cathelicidin is a novel, potential therapeutic for leptospirosis. Additionally, we identified
CHI3L1 and RANTES, as new risk factors for death from leptospirosis. Our data suggests a
lower magnitude of specific innate immune responses may underlie poor early control of infec-
tion and diminished activation of adaptive immune responses. Subsequently, increased bacte-
rial proliferation promotes systemic inflammation, contributing eventually to patient death.
The mechanistic details of this proposed model of pathogenesis remain to be determined.

The most pronounced finding in the transcriptional profiling was the markedly lower level
of transcripts encoding the antimicrobial peptide, cathelicidin, in fatal cases. The defect in

PLOS Pathogens | DOI:10.1371/journal.ppat.1005943 November 3, 2016
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Fig 5. Cathelicidin (LL-37) protects hamsters from lethal Leptospirainfection. (A) Survival in hamsters pre-
treated with 1 mg/kg of cathelicidin (LL-37) (n = 7) was significantly greater than LL-37 scrambled peptide
(Scrambled) (n=7) (P=0.016) or ddH,O-treated controls (ddH,0) (n = 7) (P = 0.008) following lethal challenge
with 100 Leptospira. (B) Bacterial loads (Leptospira genome equivalents per mL of whole blood) in 7 infected
hamsters were significantly lower at 4 (P=0.035; P=0.146), 6 (P=0.003; P=0.001), and 8 days (P = 0.003;

P =0.001) post-infection in LL-37-treated hamsters relative to 7 scrambled peptide (black) or ddH,O-treated
controls (red), respectively. Shown are medians + IQR. An * signifies a P-value <0.05; ** signifies P<0.01 as
determined by Mantel Cox test for (A) or Mann-Whitney test for (B).

doi:10.1371/journal.ppat.1005943.9005

production of antimicrobial peptides was not a global innate immune dysfunction, as we found
no significant differences in other antimicrobial transcripts or serum proteins (elastase, resis-
tins, and defensins) between survivors and fatal cases. We identified differences in abundances
in only two Toll-like Receptors: TLR8 (can detect single-stranded bacterial RNA) [40, 41],
which was elevated in fatal cases likely due to higher bacterial loads, and TLR7 (senses bacterial
RNA in phagosomes) [42, 43], which was less abundant in fatal cases, possibly due to fewer
phagocytic cells.

Cathelicidin functions as an antimicrobial peptide, capable of directly killing bacteria, fungi,
parasites, and some viruses [37]. Consistent with our results, direct anti-leptospiricidal activity
has been demonstrated for the active peptide of cathelicidin, LL-37, in vitro [44, 45]. Unlike
other antimicrobial peptides, cathelicidin is also an important activator of neutrophils, stimu-
lating phagocytosis, diminishing apoptosis, and reducing LPS-driven TLR-dependent proin-
flammatory responses [37]. Reduced levels of circulating cathelicidin therefore could
contribute to elevated bacterial load, which we observed in the hamster model, and higher lev-
els of proinflammatory cytokines, such as IL-1 and IL-18, which we observed in fatal human
cases. Consistent with our current findings, others and we have shown previously that high lev-
els of proinflammatory cytokines, and their transcripts, IL- 10, IL-6, and IL-8 as well as the IL-1
antagonist receptor 1, are associated with poor disease outcomes for leptospirosis [21, 23, 24,
46]. These results strongly suggest that decreased cathelicidin might contribute both to
decreased bactericidal activity and increased levels of inflammation, resulting in greater tissue
damage and higher bacterial loads. These findings, combined with our animal experiments and
recent biochemical [47] and clinical studies [48, 49] involving cathelicidin, suggest a potential
role for cathelicidin during acute illness as a novel therapeutic option for patients with
leptospirosis.

We identified several markers of inflammation in fatal cases: CHI3L1, HGE and proinflamma-
tory cytokine receptors, IL-18R and IL-1R1. CHI3L1 expression is induced by proinflammatory
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cytokines, and is associated with increased patient mortality in sepsis and other infectious or
inflammatory diseases [50]. Proinflammatory cytokines also induce expression of HGE a pleio-
tropic cytokine, which decreases inflammation, inhibits antigen presentation, and promotes organ
injury repair [38]. HGF promoted healing in a mouse model of lung injury, and is in early clinical
trials for reducing inflammation in acute spinal cord injuries [38]. We detected higher levels of
HGF in fatal cases, suggesting these patients had greater systemic inflammation than survivors.
IL-1 and IL-18 are cytokines produced following TLR signaling and inflammasome activation to
induce downstream immune responses and inflammation [51]. Patients with poor disease out-
comes from other critical illness, such as sepsis, also have elevated levels of IL-18 [13, 52, 53]. Sev-
eral clinical trials are assessing the efficacy of IL-18 inhibition in primarily chronic inflammatory
diseases, but their application to leptospirosis will require consideration of potential protective
roles for IL-18. Together, these data suggest CHI3L1, IL-18, and HGF represent new potential
prognostic and therapeutic strategies for leptospirosis.

Our study illustrated the importance of the adaptive immune response, and in particular the
antibody response, in protection from fatal leptospirosis. While the humoral immune response is
accepted widely as the primary mode of immunity to Leptospira infection, a protective role for
antibodies has not been demonstrated definitively in humans. Passive transfer experiments in
animal models of leptospirosis have shown that anti-LPS antibodies confer protection from
homologous reinfection [54, 55]. In keeping with these data, we detected significantly lower anti-
body titers and transcript abundance for immunoglobulins in patients that did not survive. The
notable decrease in chemokines, such as RANTES, which functions to recruit immune cells to
sites of infection, and which we identified as a risk factor for death, suggests aberrant cell traffick-
ing could contribute to poor or slower adaptive immune response generation in fatal cases. How-
ever, further studies are needed to determine the mechanistic causes of neutropenia and
lymphocytopenia in fatal cases, despite lower LL-37 and chemokine levels. Lastly, we observed a
larger number of memory B cell and transitional B cell responses in patients with less severe lep-
tospirosis, raising the intriguing idea that more severe disease may represent primary infection
and that secondary infections, where some memory B cell responses are available for recall, may
be less severe. Taken together, our data support the animal data in which anti-Leptospira anti-
bodies are critical for bacterial clearance and improved disease outcomes [12, 56, 57].

The associations we identified in our microarray findings are strengthened by the functional
assays we performed on the larger cohort of confirmed patients and the animal studies. How-
ever, our patients represent primarily individuals of mixed Caucasian and African descent and
it will be important to identify whether the pathways we identified are generalizable to global
populations, given that several studies have shown association of specific alleles with increased
susceptibility to leptospirosis [15, 16, 58, 59]. Further, it will be important to compare our find-
ings on whole blood transcriptional profile with samples from the lungs in patients that
develop LPHS. Studies of the specific tissue site may reveal additional immune dysfunction in
the lungs.

Our study provides the first evidence that patients die from leptospirosis because of a failure
to mount innate and adaptive immune response to this pathogen. While we were able to ana-
lyze only a small number of patients, the results demonstrate the power of using systems biol-
ogy approaches to understand disease pathology. We have identified several unique targets,
which may represent new diagnostic and treatment of leptospirosis patients at greatest risk of
death. CHI3L1 and RANTES serum levels are attractive candidate diagnostic markers, which
could identify patients at risk for developing severe disease and allow hospitals to focus limited
resources on patients with greatest risk. Most importantly, the development of anti-Leptospira
antibody therapies or administration of cathelicidin are potential new strategies for reducing
bacterial loads in severely ill patients.
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Methods
Ethics Statement

The Yale Institutional Review Board (HIC#1006006956), the Ethics Committees at Fiocruz-
Salvador (CEP-CPqGM 329) and Hospital Couto Maia (175), and the Brazilian Ministry of
Health National Ethics Committee in Research (CONEP 15925) approved the study protocol
prior to study initiation. Our trained study team obtained written informed consent in the
native language (Portuguese) from all participants prior to blood and data collection.

All animal protocols and work were approved and conducted under the guidelines of the
Yale Institutional Animal Care and Use Committee (IACUC), under approved protocol
#2014-11424. The Yale IACUC strictly adheres to all Federal and State regulations, including
the Animal Welfare Act, those specified by Public Health Service,and the US Department of
Agriculture, and uses the US Government Principles for the Utilization and Care of Vertebrate
Animals Used in Testing, Research, and Training as a guide for all animal studies.

Study Design

We performed active surveillance at an infectious disease hospital in Salvador, Brazil, to iden-
tify patients with suspected leptospirosis between April 2013 and September 2013 with the goal
of discovering markers associated with case fatalities. We used previously described criteria to
identify cases: <15 days of fever, jaundice, high serum creatinine and/or blood urea nitrogen,
acute lung injury ([ALI]; defined by mechanical ventilation, >250 mL blood in lungs or endo-
tracheal tube, and/or respiration rate >38/min), oliguria (<500 mL urine/24 h), and epidemio-
logic data supporting likelihood of exposure to Leptospira spp [17]. For transcription studies,
we stratified patients by survival, and for immunophenotyping by ALI [17]. We confirmed
cases using serum microagglutination test (MAT) (13/16), qQPCR (Leptospira genome/mL
blood) (5/16), and/or blood culture (2/16), as described previously [7, 17, 18, 60, 61]. We col-
lected clinical data during patient interviews and from hospital charts for all enrolled patients
using a RedCap database [62, 63]. In surviving patients, we collected two venous blood sam-
ples: acute phase (<72h of hospital admission; one patient collected at 168h; mean collection
time: survivors 8.4 +1.9d, fatal cases 6.7+2.3d) and convalescence (32-90d post-admission). We
collected the identical acute sample from fatal cases, and a sample from four healthy individu-
als with prior Leptospira exposure (303-367d post-admission). We collected whole blood
directly into red-top tubes (sera for ELISAs, MATs, and MSDs), PAXgene solution (RNA
microarrays), CPT tubes (peripheral blood mononuclear cells [PBMCs]), EDTA tubes (qQPCR),
or EMJH culture medium (blood culture), processed and froze all samples at -70°C the same
day of collection. We bar-coded all samples, monitored transport temperature, and recorded
all cold chain data including sample receipt, processing time, and freezing time.

Microarray Data and Analysis

Microarray sample preparation. We extracted RNA from thawed PAXgene samples
using a Qiagen PAXgene Blood Kit according to the manufacturer’s protocol (Qiagen,
Cat#762164). We used 22.5ng of total RNA (quality confirmed on Agilent Bioanalizer) from
each sample, or the RNA spike in controls (Agilent; 10 x 32 E1A spike-in control probes), for
initial cDNA synthesis. We prepared and purified Cy3-labeled cRNA using the Low Input
QuickAmp Labeling Kit One-Color (Agilent, Cat#5190-2305) and RNA Spike-In Kit, One-
Color (Agilent, Cat#5188-5282). We fragmented and hybridized 600ng of Cy3-labeled cRNA
to SurePrint G3 Human Gene Expression 8x60K v2 Microarrays according to manufacturer’s
specifications (Agilent, Cat#G4851B; 50,599 biological features).
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Microarray scanning and data processing. We scanned the microarrays using the Agilent
Microarray Scanner (Agilent Technologies), and collected data using Agilent Feature Extrac-
tion Software (v10.7). We quantile normalized data using limma, and retained data in all
instances in which the signal was >64 in at least 3 samples [64]. We averaged the signal from
replicate probes. All data are available at the NCBI Gene Expression Omnibus, accessible
through GEO Series accession number GSE72946 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgitacc=GSE72946) [65].

Microarray data analysis. We used Significant Analysis of Microarrays (SAM) to identify
differentially expressed probes [66]. Unless otherwise stated, differences were considered sig-
nificant if the false discovery rate (FDR) <1% and there was at least a 2-fold difference in the
average expression between compared groups. We identified principal components using sin-
gular value decomposition [67]. We calculated Spearman’s correlation coefficients between rel-
ative gene expression levels and clinical variables using a perl-based script after deriving a null
distribution through permutation of label levels [68].

For functional annotation of specific groups of transcripts, we employed the Database for
Annotation, Visualization, and Integrated Discovery and Innate DB [33, 34, 69]. We consid-
ered DAVID functional categories (GO terms) significant if the FDR <0.01 and the p<0.05
after Benjamini correction for multiple hypothesis testing. We selected only the GO term with
the smallest p-value for each significant DAVID cluster to avoid identifying redundant catego-
ries. We listed all identified GO terms in S3 Table. We performed subset analyses using the rec-
ommended hypergeometric analysis algorithm and Benjamini Hochberg p-value correction for
Pathway, Transcriptional Factor, and GO term analyses (54 Table). We considered results with
corrected p<0.05 significant.

Flow Cytometry and Clustering Analysis

We isolated peripheral blood mononuclear cells (PBMCs) from the blood of leptospirosis patients
using CPT tubes and cryopreserved them in 90% FBS containing 10% DMSO and stored in liquid
nitrogen until batch analysis as described [70]. On the day of analysis, we thawed cells and labeled
them with fluorescent antibodies for immunophenotyping as follows: 1) T cell panel: HLA-DR,
CD38, CD28, CD8, CCR7, CD45RA, CD27, and CD4; 2) T1/2/17 cell panel: CD4, CD38,
CD45R0, CD8, CXCR3, CCR6, CXCRS5, and CCR4; 3) T cell panel: HLA-DR, CD127, Foxp3,
CD45R0, CD25, CCR4, CD39, and CD4; and 4) B cell panel: IgD, CD38, CD20, CD24, CD27,
and CD10 [36]. We analyzed cells by flow cytometry using a custom, programmed BioMek
robotic platform and detected using an LSR Fortessa (BD BioSciences) [70].

We employed two-dimensional gating analysis of flow cytometry files by Flow]Jo (Treestar)
to remove doublets and debris using scatter channels. We labeled living cells with a viability
marker and pre-gated for T cells (CD3") or B cells (CD3"). Imnmunophenotyping panels
defined T cell subsets (Ty;1/2/17 cell, and Ti.g) or B cells (CD3°CD19"). We clustered cell sub-
sets as defined above using Citrus version 0.08 (https://github.com/nolanlab/citrus) to compare
no ALI and ALI (met criteria for ALI described above and/or died) samples [71]. The SAM
model type employed file sample size of 200 events, and the minimum cluster size was <5%,
significance for false discovery rate (FDR) (g < 0.05). We performed each comparison at least
3 times to ensure reproducibility [71].

ELISAs for LL-37, Elastase, IL-18, CHI3L1, HGF, and CCL5 Meso Scale
Discovery (MSD) Assays

We quantified the levels of LL-37, the active peptide form of cathelicidin (HyCult Biotech,
Cat#HK321-02), and elastase (Hycult Biotech, Cat#HK319) by ELISA using duplicate dilutions

PLOS Pathogens | DOI:10.1371/journal.ppat.1005943 November 3, 2016 15/21


http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72946
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE72946
https://github.com/nolanlab/citrus

@'PLOS | PATHOGENS

Cathelicidin Insufficiency in Fatal Leptospirosis

of sera collected from the patients described in this study, and sera frozen at -80°C from an
additional 33 patients (49 total) with laboratory-confirmedleptospirosis: 13 survivors (25
total) and 21 nonsurvivors (24 total). Due to sera availability, we measured elastase in only 29
patients: 14 survivors and 15 deceased patients. We measured serum levels of IL-18, CHI3L1,
HGE, and CCLS5 using technical replicates on single-plex MSD kits for each molecule as speci-
tied by the manufacturer (Meso Scale Discovery, IL-18: K151MCD-1; RANTES Ultra-Sensitive
Kit: K151BFC-1; HGF: K151HDC-1; and CHI3L1/YKL-40: K151NHD-1).

Hamster Infection Model

We intraperitoneally infected 3-week old Golden Syrian hamsters with 100 live leptospires
(Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130) immediately following
intracardiac injection of 1 mg/kg LL-37 (synthetic peptide) in ddH20 (BACHEM,; treated
group), 1 mg/kg scrambled LL-37 (scrambled control [BACHEM Cat. H-7886]), or the identi-
cal volume of ddH,O (ddH,O control group) [72, 73]. On days 4, 6, and 8 after infection, we
performed qPCR on peripheral blood as described above. We monitored animals a minimum
of two times daily. We immediately euthanized moribund or animals with signs of clinical dis-
ease by CO, inhalation.

Statistical Analysis

We used GraphPad Prism 6.0, R, and Epilnfo 7 to perform all statistical analyses except for
microarray data, which we analyzed as described above. We performed descriptive statistics on
continuous variables, and used the Fisher exact test or Mann-Whitney t-test to compare cate-
gorical or continuous variables, respectively, between survivor and deceased groups. We per-
formed linear regression and logistic regressions in R, using backward elimination, to predict
bacterial load and death, respectively. For the multivariate regression predicting death, we used
a backward elimination approach to identify the best model fit using variables that were signifi-
cantly associated with death in univariate analysis and days of symptoms prior to blood collec-
tion. We did not include HGF in the logistic regression analysis due to a high number of
outliers resulting in non-linearity of features (S2 Fig). We considered P<0.05 significant.

Supporting Information

S1 Fig. Differential gene expression between acute and convalescence in survivors with lep-
tospirosis. (A) The abundance of these transcripts differs significantly between acute survivors
(S) and healthy volunteers (H), but not between convalescent (C) and healthy samples. Rectan-
gles denote transcript clusters with similar expression profiles and functions: green rectangles
denote transcripts with higher abundance in S vs C or H and gray rectangles mark those with
lower abundance. Also shown are days of reported symptoms prior to blood collection. (B) Sig-
nificant GO Terms for transcripts with higher abundance in S vs C, and (C) transcripts with
higher abundance in S vs C. (D) Scatter plot of log, fold-change of significant transcripts for
deceased (D) vs S (red) overlaid with those shared with S vs C (black). Zero indicates no
change, while negative numbers indicate the transcripts for survivors in D vs S or at the conva-

lescent time point (C) were elevated relative to deceased patients or acute phase, respectively.
(TIF)

S2 Fig. Determining model fitness for experimental variables associated with death. In
order to assess the linearity of features and goodness of model fit (blue lines), we plotted the
observed values of variables associated with death (x-axis) as an outcome for confirmed lepto-
spirosis cases versus the predictive probability of death (y-axis) within a 95% confidence
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interval (dotted or solid black lines). Modeling is described in the Supplemental Methods.
(TIF)

S3 Fig. Cathelicidin (LL-37) protects hamsters from lethal Leptospira infection. (A) Survival
in hamsters pre-treated with 1 mg/kg of cathelicidin (LL-37) (n = 14) was significantly greater
than ddH,O-treated controls (n = 14) following lethal challenge with 100 Leptospira
(P<0.0001). (B) Bacterial loads (Leptospira genome equivalents per mL of whole blood) in 14
infected hamsters were significantly lower at 4 (P = 0.010), 6 (P = 0.004), and 8 days

(P =0.0006) post-infection in LL-37-treated hamsters relative to 14 ddH,O-treated controls.
Shown are medians + IQR. An ** signifies a P-value <0.01; ***, P<0.001; and ****, P<0.0001
as determined by Mantel Cox test for (A) or Mann-Whitney test for (B).

(EPS)

S1 Table. Differentially expressed transcripts in Acute vs Convalescent Survivors (SvC).
(XLSX)

$2 Table. All significant Functional GO terms for DE transcripts in Acute vs Convalescence
(SvC) and Deceased vs Survivors (DvS).
(XLSX)

$3 Table. Differentially expressed transcripts in Deceased vs Survivors (DvS).
(XLSX)

S4 Table. All significant REACTOME functional pathways for differentially expressed
transcripts in Deceased vs Survivors (DvS).
(XLSX)

S5 Table. Association between acute antibody titer and immunoglobulin transcript fold-
change.
(XLSX)

S6 Table. Clinical signs and symptoms for patients with leptospirosis.
(XLSX)

S1 Text. Statistical modeling of possible risk factors predicting death.
(DOCX)
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