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Abstract
Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to

block viral replication, they might inadvertently increase retroviral genetic variation by induc-

ing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermu-

tation to viral genetic diversity and evolution. Confounding factors contributing to the debate

include the extent of lethal (stop codon) and sublethal hypermutation induced by different

APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APO-

BEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the

frequency of retroviral recombination, and the extent to which viral recombination occurs in

vivo, which can reassort mutations in hypermutated genomes. Here, we determined the

effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic varia-

tion through recombination to generate progeny genomes containing portions of hypermu-

tated genomes without lethal mutations. We found that hypermutation did not significantly

affect the rate of recombination, and recombination between hypermutated and wild-type

genomes only increased the viral mutation rate by 3.9 × 10−5 mutations/bp/replication cycle in

heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hyper-

mutated and wild-type genomes occurs very rarely in vivo, recombination between hypermu-

tated and wild-type genomes does not significantly contribute to the genetic variation of

replicating HIV-1. We also analyzed previously reported hypermutated sequences from

infected patients and determined that the frequency of sublethal mutagenesis for A3G and

A3F is negligible (4 × 10−21 and1 × 10−11, respectively) and its contribution to viral mutations

is far below mutations generated during error-prone reverse transcription. Taken together, we

conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic variation

is substantially lower than that frommutations during error-prone replication.
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Author Summary

HIV-1 populations exhibit high levels of genetic variation, allowing the virus to escape
immunological and pharmacological selection pressures, and thwarting efforts to develop an
effective vaccine; thus, it is critical to understand all sources of HIV-1 genetic diversity. In
addition to error-prone reverse transcription and frequent recombination, APOBEC3 pro-
teins, expressed as part of the host intracellular antiviral defense mechanism, could poten-
tially contribute to viral genetic variation through sublethal hypermutation or rescue of
hypermutated portions of the genomes without lethal mutations through recombination.
Here, we show that hypermutation by APOBEC3 proteins does not affect the rate of recom-
bination; in addition, even in proviruses generated from heterozygous virions containing
wild-type and hypermutated genomes, hypermutation only modestly increased the viral
mutation rate by twofold. Since the frequency of copackaged wild-type and hypermutated
genomes in patients is extremely low, we conclude that hypermutation does not significantly
contribute to HIV-1 genetic variation. Analysis of hypermutated sequences from infected
patients indicates that the frequency of sublethal mutagenesis is negligible and its contribu-
tion to viral variation is substantially lower than that of error-prone viral replication.

Introduction
Human immunodeficiency virus type 1 (HIV-1) undergoes continuous evolution and adapta-
tion to its host environment resulting in high genetic variation which allows the virus to escape
immune responses or to acquire drug resistance [1]. This genetic diversity is generated by three
key factors. First, HIV-1, like other retroviruses, has a high mutation rate which has been mea-
sured to be between 1.4–3.4 × 10−5 mutations/bp/replication cycle [2–6]. This is mainly attrib-
utable to error-prone reverse transcriptase (RT) [7] and a minor contribution by RNA
polymerase II [3, 8–11]. Second, HIV-1 copackages two viral RNA genomes per virion, allow-
ing recombination during DNA synthesis that reassorts mutations in the copackaged genomes
and leads to a further increase in genetic diversity. For HIV-1, recombination rates of ~9 tem-
plate switches/genome/single cycle have been measured [12, 13]. Third, HIV-1 produces on
average 1011 virions/day/patient, with ~107–108 productively infected CD4+ T cells [1, 14–17],
which provides a large population of variants and hence great evolutionary potential.

In 2002, a cellular host protein APOBEC3G (apolipoprotein B mRNA editing enzyme, cata-
lytic polypeptide-like 3G) was identified, which was able to inhibit HIV-1 infection in the
absence of the virally-encoded protein Vif (virion infectivity factor) [18]. Some members of the
APOBEC3 (A3) family of proteins are potent viral restriction factors and serve as parts of the
host’s innate antiviral cellular defense. Among the seven A3 family members, APOBEC3G
(A3G), APOBEC3F (A3F), APOBEC3D (A3D), and APOBEC3H (A3H) hapolotypes II, V and
VII are packaged into virions in producer cells in the absence of vif. These A3s largely contrib-
ute to the inactivation of HIV-1Δvif by causing cytidine deamination (cytosine-to-uracil) dur-
ing reverse transcription of the newly synthesized minus-strand cDNA in the infected target
cells [19, 20]. This process results in extensive guanine-to-adenine (G-to-A) mutations in the
viral double-stranded DNA genome, called hypermutation [6], which introduces substitutions
and stop codons that often lead to the formation of replication-defective proviruses. Lethal
mutagenesis of HIV-1 by A3 proteins can be observed in a single round of viral replication
[21–23]. In addition, A3 proteins have also been shown to block the HIV-1 life cycle through
non-editing mechanisms, as catalytic site mutants are still able to retain some antiviral activity
[24, 25]. A3 proteins can inhibit reverse transcription by blocking RT template binding,
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reducing tRNA binding and processing, inhibiting strand transfer events, and blocking cDNA
synthesis elongation [24–33]. Furthermore, A3G and A3F have been shown to inhibit integra-
tion by interfering with tRNA primer removal or blocking the 3’ processing of viral DNA ends
by integrase, respectively [32, 34]. HIV-1 has evolved to protect itself against A3 proteins by
expressing Vif, which targets the A3 proteins for degradation through the ubiquitin-protea-
some pathway [35–41]. This in turn excludes the A3 proteins from being encapsidated into
viral particles, leading to a productive viral infection.

Analysis of patient proviral sequences has shown the presence of G-to-A hypermutation,
indicating that Vif is not always completely successful at degrading the A3 proteins. Depending
upon the study, ~25% (9–43%) of patient-derived proviral sequences are hypermutated [42–
46]. A3 proteins are characterized by their preference to introduce cytidine deamination in cer-
tain dinucleotide motifs: 5’GG!AG for A3G and 5’GA!AA for A3F, A3D, or A3H [21, 47–
54]. Although G-to-A mutations in hypermutated proviral sequences found in patients exhibit
specific sequence contexts, these analyses are complicated by mutations introduced by RT.
Studies of RT fidelity ex vivo have identified that one of the major substitutions introduced by
RT is also G-to-A; however the sequence contexts in which these mutations occur have not
been fully defined [2–6, 55–57].

Currently, the extent to which hypermutated genomes in HIV-1 infected patients contribute
to viral genetic variation and evolution is being debated and has not been clearly determined. It
has been proposed that A3 sublethal mutagenesis has the potential to contribute to viral varia-
tion and the emergence of drug resistance mutations [44, 58–67]. However other studies have
proposed that A3-induced hypermutation is an “all or nothing” phenomenon [64], failed to
find a correlation between hypermutation and emergence of drug resistance mutations [60],
and observed purifying selection such that viral RNA incorporated into the virion will contain
little to no hypermutation [68].

Therefore, the role of hypermutation on the HIV-1 life cycle and its contribution to genetic
diversity are currently unclear. To address these important questions, we determined the effect of
hypermutation on recombination and the contribution of hypermutation to the HIV-1 mutation
rate per replication cycle. These studies clarify the role of APOBEC3 proteins in HIV genetic var-
iation and significantly contribute to the resolution of a long-debated question in HIV biology.

Results

HIV-1 constructs containing A3G- and A3F-induced hypermutation
To study the effects of hypermutation on HIV-1 recombination and mutation rates per replica-
tion cycle, we generated five HIV-1 constructs (Fig 1A). These constructs are based on HIV-1
NL4-3 (GenBank AF324493.2) and contain the necessary cis-acting elements required for virus
expression and replication. They also contain gag and pol genes, and express functional Tat
and Rev, but contain inactivating deletions in vif, vpu, vpr, and env. In the construct pWTHXB2,
the NL4-3 pol sequence has been replaced with the pol sequence from the HXB2 isolate; in
addition, it also expresses from the nef open reading frame, the mouse heat stable antigen (hsa)
followed by the internal ribosomal entry site (IRES) from encephalomyocarditis virus and
green fluorescent protein gene (gfp) with an inactivating mutation at the 5’ end of the gene.

The remaining four constructs contain the NL4-3 pol sequences: either completely wild type
(pWTNL43), or a pol sequence in which the RT region contains 64 G-to-A changes (pN-A3-
Ghigh) or 27 G-to-A changes (pN-A3Glow) at A3G target sites, or contains 27 G-to-A changes
(pN-A3F) at A3F target sites. These G-to-A changes are relative to pWTNL43, and the 64 G-to-
A changes are high while 27 mutations are low, relative to an average of 42 G-to-A mutations
estimated in the same RT region of hypermutated proviral sequences from patients [69];
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Fig 1. Experimental system to study the contribution of hypermutation to HIV-1 recombination and
genetic variation. (A) Plasmids pWTHXB2 and pWTNL43 are HIV-1-based constructs expressing hsa-IRES-
gfp or Thy-IRES-gfp, respectively, from the nef open reading frame. For pWTHXB2, the pol region is replaced
with HXB2 pol sequence (gray shaded region); gfp in the nef open reading frame contains an inactivating
mutation at the 5’ end of gfp (*gfp). For pWTNL43, the pol region remains NL4-3 and gfp in the nef open
reading frame contains an inactivating mutation at the 3’ end of gfp (gfp*). The inactivating mutations in gfp
are 588 bp apart. All constructs contain inactivating mutations in vif, vpu, vpr and env. * denotes inactivating
mutations in gfp and gag genes. Constructs derived from pWTNL43 contain a modified RT region
hypermutated by A3G (pN-A3Ghigh or pN-A3Glow), or by A3F (pN-A3F). The number of G-to-A changes
relative to pWTNL43 and number G-to-A changes leading to a stop codon is shown on the right. Red vertical
lines indicate GG!AGmutations, while blue vertical lines indicate GA!AAmutations (Hypermut [102];
www.hiv.lanl.gov). (B) Single cycle recombination system to study the effects of hypermutation. Briefly, 293T
cells were infected with WTHXB2-dervied viruses at a low MOI, and HSA+ cells were enriched by sorting.
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analysis of hypermutated proviral sequences used to estimate the number of G-to-A mutations
in the RT region is discussed later in Results Section. The 64, 27, and 27 G-to-A changes in
pN-A3Ghigh, pN-A3Glow, and pN-A3F resulted in 19, 9, and 3 stop codon mutations, respec-
tively. In addition, these four constructs contain in nef a mouse CD90.2 gene (thy) followed by
IRES and gfp with an inactivating mutation at the 3’ end of the gene. All thy-containing con-
structs also contain a frameshift mutation resulting in a premature stop codon in gag to prevent
expression of the Gag/Gag-Pol polyproteins; hence, functional Gag and Gag-Pol are only pro-
duced fromWTHXB2.

Creation of 293T producer cells expressing wild-type and hypermutated
proviruses to determine effect of hypermutation on recombination
To study recombination, we generated four producer 293T cell lines, each containing a
WTHXB2 provirus and either WTNL43, N-A3Ghigh, N-A3Glow or N-A3F provirus (Fig 1B).
These cell lines were generated by sequential infections at low multiplicity of infection (MOI)
followed by multiple rounds of cell sorting to ensure that the majority of cells in each cell line
contained a single integrated copy of each parental provirus. More than 97% of the cells in the
producer cell lines expressed both HSA and Thy markers, with each cell line representing a
pool of at least 115,000 independent infection events.

None of the aforementioned constructs express functional HIV-1 Env; to produce infectious
viruses, we transfected the four cell lines (WTHXB2/WTNL43, WTHXB2/N-A3Ghigh, WTHXB2/
N-A3Glow, and WTHXB2/N-A3F) with a plasmid expressing CCR5-tropic HIV-1 envelope
from the AD8 strain [70]. Since 293T cells lack the CD4 receptor, the viruses containing the
AD8 Env cannot reinfect the producer cells. We then used the resulting AD8 Env containing
viruses to infect Hut78/CCR5 target cells at a low MOI (<0.08) in order to minimize the
chance of double infection.

In the producer cells, the full-length RNAs from the two parental proviruses can be assorted
randomly prior to being packaged into virions [71–73], resulting in the formation of homozy-
gous virions (both RNAs from same parent) and heterozygous virions (two RNAs from differ-
ent parents). During DNA synthesis, RT can switch templates between the copackaged RNAs
to generate recombinants containing portions of both genomes [74, 75]. Although recombina-
tion can occur in all viruses, the two RNAs in the homozygous viruses contain the same inacti-
vating mutation in gfp, and the resulting DNA will have a mutant gfp. In contrast, the two
RNAs in the heterozygous viruses have different mutations in gfp, and recombination between
the two mutations can reconstitute a functional gfp that confers a GFP+ phenotype to the target
cell. Therefore, expression of a functional GFP in target cells can be used to identify proviruses
derived from heterozygous virions.

Effect of hypermutation on the recombination rate
The HIV-1 constructs used in this system express either hsa or thy; thus target cells infected
with these viruses would be HSA+ or Thy+. However, only recombinant proviruses generated

These HSA+ cells were then infected at a low MOI with virus derived from either WTNL43, N-A3Ghigh,
N-A3Glow, or N-A3F and sorted for HSA+/Thy+ cells. The respective four cell lines were then transfected with
a plasmid expressing HIV-1 Env from the AD8 strain; virus was harvested and used to infect Hut78/CCR5
target cells. The infected cells were used for flow cytometry analysis or sorted for GFP+ cells to be used in
single genome sequencing analysis. (C) Rate of GFP reconstitution for each of the four vector pairs after
infection into Hut78/CCR5 target cells. Average of 2 independent infections. Paired two-sample t-tests of
comparison of each group to WT indicated no significant differences (P > 0.5).

doi:10.1371/journal.ppat.1005646.g001

APOBEC3 Hypermutation and HIV-1 Diversity

PLOS Pathogens | DOI:10.1371/journal.ppat.1005646 May 17, 2016 5 / 26



from heterozygous particles can reconstitute a functional gfp and confer the GFP+ phenotype.
Therefore, we used the frequency of the gfp reconstitution as a measurement for HIV-1
recombination rate. Flow cytometry analysis of the infected target Hut78/CCR5 population
showed that the recombination rate, as measured by the reconstitution of gfp, was not signifi-
cantly different for all four vector pairs: 4.5%, 4.3%, 4.6% and 4.7% for WTHXB2/WTNL43,
WTHXB2/N-A3Ghigh, WTHXB2/N-A3Glow, and WTHXB2/N-A3F, respectively (p> 0.05;
one-way ANOVA and paired two-sample t-tests) (Fig 1C). This result indicated that the
presence of hypermutation in pol did not affect the frequency of recombination in gfp. Only
the proviruses derived from heterozygous viruses can confer GFP+ in target cells; thus, these
results also indicated that hypermutation in pol did not affect the copackaging efficiency of
RNAs from two parental proviruses into the same viral particle.

Single genome sequencing of retroviral recombinants and determination
of recombination junctions
To further analyze recombination events that occurred between wild-type and hypermutated
sequences, we harvested viruses from the aforementioned four producer cell lines and infected
target Hut/CCR5 cells in two sets of independent experiments. GFP+ cells, which were infected
with heterozygous virions, were enriched through multiple rounds of cell sorting until>87% of
cells were expressing GFP. Two pools of GFP+ cells were generated for each pair of parental
viruses and each target cell pool contained at least 7,700 individual infection events that yielded
GFP+ cells. Genomic DNA from GFP+ cell pools was isolated and subjected to single-genome
sequencing (SGS) for the pol region, and the results from both GFP+ pools were combined. A
total of 152, 140, 141, and 132 single genome sequences were recovered fromWTHXB2/WTNL43,
WTHXB2/N-A3Ghigh, WTHXB2/N-A3Glow, andWTHXB2/N-A3F samples, respectively. Within
the 3096-nt stretch of pol that was sequenced, there are 96 distinct polymorphisms present
betweenWTHXB2 andWTNL43, resulting in 97% nucleotide sequence identity. Within the
1320-nt RT region there are 37 distinct polymorphisms present betweenWTHXB2 andWTNL43

(97% sequence identity); due to the introduction of hypermutations in RT, there are 95, 62, and
62 polymorphisms present in RT betweenWTHXB2 and N-A3Ghigh, N-A3Glow and N-A3F,
resulting in 92%, 95% and 95% sequence identity, respectively (Fig 2; see polymorphic site
distribution).

Using polymorphic sites as reference points and the sequences obtained from SGS, we deter-
mined the recombination junctions in the entire pol for each progeny recombinant. The average
distance between marker sites in pol for WTHXB2/WTNL43, WTHXB2/N-A3Ghigh, WTHXB2/
N-A3Glow, andWTHXB2/N-A3F is 31, 19, 24 and 24 nucleotides, respectively. At these marker
distances, the probability of unobserved double-crossover events is extremely low. Most of the
565 recombinants recovered had a unique recombination pattern. The average number of cross-
overs per clone in pol (3 kb) was determined to be 2.4, 2.3, 2.1 and 2.7 for WTHXB2/WTNL43,
WTHXB2/N-A3Ghigh, WTHXB2/N-A3Glow, andWTHXB2/N-A3F, respectively (Table 1). In
comparison to WTHXB2/WTNL43, there were no significant differences in the numbers of cross-
overs in pol when one of the parental viruses had hypermutations (all p values> 0.05; Wilcoxon
rank sum test). Further analysis of only the RT region where hypermutation was introduced, the
average numbers of crossovers per clone was (1.3 kb) were 1.1, 1.0, 1.0 and 1.2 for WTHXB2/
WTNL43, WTHXB2/N-A3Ghigh, WTHXB2/N-A3Glow, andWTHXB2/N-A3F, respectively
(Table 2). These numbers were not significantly different fromWTHXB2/WTNL43 or from each
other (all p values> 0.05; Wilcoxon rank sum test), nor were they significantly different from
the numbers of crossovers in a region of similar size from RNase H to integrase (1.2 kb) that
was not hypermutated in comparison to WTHXB2/WTNL43: 1.0, 1.0, 0.9 and 1.0 for WTHXB2/
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Fig 2. Single-cycle recombination rates across the target pol gene. The recombination rate per 25-nt
region is plotted for each pair of parent viruses. The RT region where hypermutation was introduced is
shaded in gray. Nucleotide numbering corresponds to HXB2 (GenBank Accession number K03455). A total
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WTNL43, WTHXB2/N-A3Ghigh, WTHXB2/N-A3Glow, andWTHXB2/N-A3F, respectively (all p
values> 0.05; Wilcoxon rank sum test). Additionally, in all four vector pairs the 0.4-kb protease
region also contained similar numbers of crossovers per clone in comparison toWTHXB2/
WTNL43: 0.4, 0.3, 0.3, and 0.4 for, WTHXB2/WTNL43, WTHXB2/N-A3Ghigh, WTHXB2/
N-A3Glow, andWTHXB2/N-A3F, respectively (all p values> 0.05; Wilcoxon rank sum test)
(Table 2). Thus, hypermutation did not affect the average number of crossovers in a single repli-
cation cycle.

To further characterize the distribution of crossovers for each pair of viruses, we deter-
mined the number of recombination events in each region between two neighboring

of 96, 154, 121, and 121 polymorphic sites are shown as black vertical lines between HXB2 and N-A3Ghigh,
N-A3Glow, and N-A3F, respectively, whereas black circles indicate positions of G-to-A hypermutation in the
RT region (Highlighter for Nucleotide Sequences v2.2.3 [103]: www.hiv.lanl.gov).

doi:10.1371/journal.ppat.1005646.g002

Table 1. Distribution and average number of crossovers in pol observed in recombinants.

No. of Recombinants

WTHXB2 + WTHXB2 + WTHXB2 + WTHXB2 +

No. of crossovers WTNL43 N-A3Ghigh N-A3Glow N-A3F

0 19 19 24 16

1 35 29 32 30

2 36 39 37 25

3 31 25 23 22

4 14 9 9 15

5 5 9 7 12

6 5 6 7 6

7 2 3 2 3

8 3 1 0 1

9 1 0 0 0

10 0 0 0 2

11 1 0 0 0

Total no. clones 152 140 141 132

Avg. no. of

crossovers per clone* 2.4 2.3 2.1 2.7

*The average number of crossovers per clone was calculated as follows: sum of [(number of crossovers) × (number of recombinants with that many

crossovers)]/ total number of recombinant clones.

doi:10.1371/journal.ppat.1005646.t001

Table 2. Crossover analysis for recombinants throughout pol.

Vector pair Avg. no. of crossovers in pol (PR/RT/
RNaseH/IN)

Avg. no. of crossovers
in PR

Avg. no. of crossovers
in RT

Avg. no. of Crossovers in
RNaseH + IN

WTHXB2 + WTNL43 2.4 0.35 1.07 1.01

WTHXB2 +

N-A3Ghigh
2.3 0.32 0.99 1.03

WTHXB2 +

N-A3Glow
2.1 0.30 0.96 0.88

WTHXB2 + N-A3F 2.7 0.39 1.23 1.04

doi:10.1371/journal.ppat.1005646.t002
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polymorphic sites. We then calculated the recombination rate/nucleotide/genome by dividing
the observed events by the number of nucleotides between the two polymorphic sites and then
by the number of genomes sequenced. Using the recombination rate of each nucleotide, we
summed the rates for 25 nucleotides to generate the recombination rates per 25-nt segment.
The results of these analyses are summarized in Fig 2 and the RT regions containing the
hypermutations are shaded in grey. These results showed that recombination events can be
observed throughout the pol gene; furthermore, crossovers occur throughout the RT regions
regardless of the presence of hypermutations in the RT-coding region of one of the parents.
Taken together, our results showed that once a genome was packaged into the virion, the pres-
ence of hypermutations in the RNA did not affect the frequency or the distribution of the
crossovers events.

Contribution of hypermutation to the HIV-1 mutation rate
G-to-A substitutions generated by A3 proteins frequently introduce stop codons that lead to
loss of expression or expression of aberrant viral proteins resulting in replication defects. Hyper-
mutated sequences in vectors N-A3Ghigh, N-A3Glow and N-A3F contained 19, 9 and 3 stop
codons, respectively, due to G-to-A hypermutations (Fig 1A). To determine if any recombinants
during template switching acquired G-to-A changes, but not the “lethal” stop codons, we ana-
lyzed all recombinants for the presence of G-to-A changes between the first and last stop-codon
mutations. Fig 3 depicts the G-to-A changes present between the 19, 9 and 3 stop codons for
N-A3Ghigh (Fig 3A), N-A3Glow (Fig 3B) and N-A3F (Fig 3C), respectively. For WTHXB2/
N-A3Ghigh, we recovered one out of 140 recombinants that acquired three G-to-A changes, but
lacked stop codons (Table 3). For WTHXB2/N-A3Glow, three out of 141 recombinants acquired
one, five and three G-to-A changes, respectively, and forWTHXB2/N-A3F one out of 132 recom-
binants acquired two G-to-A changes without stop codons. Therefore, out of a total of 413
recombinants analyzed (354,642 nts sequenced), 14 G-to-A mutations were rescued from
hypermutated genomes without stop codons, and the overall contribution of hypermutation to
the HIV-1 mutation rate was 3.9 × 10−5 mutations/bp/replication cycle. The mutation rate was
slightly lower for theWTHXB2/N-A3Ghigh population (2.0 × 10−5/bp/replication cycle), and
higher for theWTHXB2/N-A3Glow population (6.3 × 10−5/bp/replication cycle). Thus, the con-
tribution of hypermutation to the HIV-1 mutation rate for a population of heterozygous virions
containing a hypermutated genome and a nonhypermutated genome was similar to the retrovi-
ral mutation rate of 3.4 × 10−5/bp/replication cycle [2].

In silicomodeling of the contribution of A3 hypermutation and
recombination to HIV-1 mutation rate
We simulated the potential contribution of A3G- and A3F-mediated hypermutation to viral
diversity using a custom in-house MATLAB computer program. The NL4-3 genome was used
as the baseline sequence, and the input variables were 1) the number of template switches, 2)
the number of G-to-A mutations, and 3) the number of heterozygous virions containing a
wild-type and a hypermutated genome simulated to undergo one cycle of replication. Our pro-
gram randomly selected the locations of the template switches and the locations of the G-to-A
mutations. For A3G, we simulated 90% of the mutations at GG sites and 10% at GA sites, and
for A3F we simulated 86% of the mutations at GA sites and 14% at GG sites; these ratios were
based on our previously published [68] observations of the G-to-A mutations induced by A3G
and A3F in ex vivo experiments. NL4-3 has 616 GG sites, of which 119 (19.3%) are predicted to
generate stop codons upon mutation to AG. NL4-3 also has 756 GA sites, of which 37 (4.8%)
are predicted to generate stop codons upon mutation to AA. The program then determined the
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Fig 3. Recombinants with G-to-A changes after single-cycle recombination assay.Distribution of G-to-A changes (relative to WTHXB2) for parental
N-A3Ghigh (A), N-A3Glow (B), and N-A3F (C) pairs, and for resulting recombinants with non-lethal G-to-A changes. Shown are the G-to-A changes
retained by each of the recombinants: one recombinant fromWTHXB2/N-A3Ghigh, three recombinants fromWTHXB2/N-A3Glow, and one recombinant
fromWTHXB2/N-A3F. A total of 14 G-to-A changes were observed in these 5 recombinants. G-to-A changes in the GG!AG and GA!AA dinucleotide
context are shown as red and blue vertical lines, respectively (Hypermut [102]; www.hiv.lanl.gov), while lethal G-to-A changes that introduce stop
codons are marked by * and numbered. Nucleotide numbering corresponds to HXB2 (GenBank Accession number K03455).

doi:10.1371/journal.ppat.1005646.g003
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number of viable recombinants, which was defined by the absence of stop codons, and the
mutation rate was then calculated as the number of mutations in nonlethal recombinants
divided by the total number of nucleotides.

For both A3G and A3F, the contribution of hypermutation to the HIV-1 mutation rate was
independent of the number of template switching events in the simulation, regardless of the
starting number of G-to-A changes in the input sequence (Fig 4A and 4B). Thus, using 9 tem-
plate switches as the average number per single replication cycle [12, 13] and with simulations
of 10,000 heterozygous virions containing a wild type and a hypermutated genome undergoing
one cycle of replication per scenario, our results showed that when the HIV-1 genome contains
10–15 G-to-A mutations, A3G has the most impact on viral genetic diversity with a mutation
rate of 1.9 × 10−4 mutations/bp/simulated replication cycle (Fig 4C). However, as the shown in
the patient sequence analyses (Fig 4E), none of the 194 hypermutated proviruses that were pre-
dominantly mutated at GG sites had the optimal 10–15 GG-to-AG mutations. Instead, hyper-
mutated sequences from patients had an average of 231 GG-to-AG mutations per proviral
genome (Table 4 and Tables A and C in S1 File), which is predicted to contribute only
7.8 × 10−7 mutations/bp/cycle, a rate that is>200-fold less than the retroviral mutation rate.
One caveat to the estimation above is that purifying selection has been observed previously
[68] and HIV-1 RNAs packaged into viral particles contain fewer G-to-A mutations (~27%)
than those in hypermutated proviral DNA. Therefore, the virion RNA should have an average
of 62 G-to-A mutations/genome (27% of 231). As the distribution of the GG-to-AG hypermu-
tations in proviral genomes shows only three of 194 proviruses (~2%) had<80 mutations, sug-
gesting that very few of the proviral genomes would generate an RNA that will be packaged
into virions. For the few mutated RNAs that were able to be packaged into viral particle along
with a wild-type RNA, our modeling results predicted that with an average of 62 G-to-A muta-
tions/genome, rescue of GG-to-AG mutations through recombination would result in a muta-
tion rate of 2.7 × 10−5/bp/cycle, which is similar to the HIV-1 mutation rate/bp/cycle
(3.4 × 10−5/bp/cycle). Therefore, even in the best case scenario, recombination and rescue of
hypermutated portions of proviral genomes without stop codons would only increase the viral
mutation rate by twofold. However, since the frequency of copackaging of hypermutated and
wild-type genomes is extremely low ([44, 45, 76, 77]; see Discussion), the overall contribution
of hypermutation to the viral mutation rate is far less than the mutations generated during
reverse transcription.

We performed a similar analysis for patient proviral genomes that were predominantly
hypermutated at GA sites, and were likely hypermutated by A3F, A3D or A3H (Table 5). Pro-
viruses that were predominantly hypermutated at GA sites (17 total) had an average of 197
GA-to-AA mutations/genome. GA-to-AA mutations generate stop codons fourfold less fre-
quently (4.8%) than GG-to-AG mutations (19.3%), suggesting that there will be less purifying
selection of GA mutations and more GA-to-AA mutations will be present in the virion RNA.
When there are an optimal number of GA-to-AA mutations (30-35/genome; Fig 4F, and

Table 3. Contribution of hypermutation to the HIV-1 mutation rate per replication cycle.

No. of clones No. of G-to-A mutations rescued Total no. of nt sequenced Mutations/bp/ replication cycle

N-A3Ghigh 140 3 149100 2.0 × 10−5

N-A3Glow 141 9 142974 6.3 × 10−5

N-A3F 132 2 62568 3.2 × 10−5

Total 413 14 354,642 -

Average - - - 3.9 × 10−5

doi:10.1371/journal.ppat.1005646.t003
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Fig 4. In silicomodeling of the effect of hypermutation on the HIV-1 mutation rate. (A) and (B) represent the estimated contribution by A3G and
A3F to the HIV-1 mutation rate, respectively. The number of G-to-A changes and the number of template switches were varied. One thousand
simulations of a heterozygous virion containing a wild-type genome and a hypermutated genome undergoing one cycle of replication were scored per
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scenario. (C) and (D) show the contribution of GG!AG and GA!AA hypermutations, respectively, to the mutation rate/bp/replication cycle obtained
using simulations for 9 template switches/replication cycle. Ten thousand simulations of a heterozygous virion containing a wild-type genome and a
hypermutated genome undergoing one cycle of replication were scored per scenario for A3G and A3F. Dotted line indicates the HIV-1 mutation rate of
3.4 × 10−5/bp/replication cycle. Shown on the graph in (C) is the estimated 231 G-to-A changes per patient proviral DNA resulting in a mutation rate of
7.8 × 10−7/bp/replication cycle and the 62 G-to-A changes per virion RNA genome introduced by A3G (with a HIV-1Δvif), resulting in a mutation rate of
2.7 × 10−5/bp/replication cycle. Shown in the graph in (D) is the estimated 197 G-to-A changes per patient proviral DNA introduced by A3F, resulting in
a mutation rate of 5.2 × 10−5/bp/replication cycle. (E) and (F) distribution of patient proviruses predominantly mutated at GG sites by A3G or GA sites by
A3F, A3D, or A3H, respectively. The numbers of G-to-A mutations for the proviral genomes were estimated as described in Tables A and B in S1 File,
and plotted in bins of 10 mutations. The simulated impact of hypermutation and recombination on the retroviral mutation rate plotted in C and D (blue
line) is superimposed as a blue dotted line in E and F, respectively, for comparison to the distribution of G-to-A mutations per genome.

doi:10.1371/journal.ppat.1005646.g004

Table 4. Summary of analysis to determine sub-lethal mutagenesis probability for patient sequences that were predominantly hypermutated at
GG sites1.

Study No. of Seqs. Seq. Total nt GG!AG Mtns/
genome2

GA!AA Mtns/
genome

G!A mtns/
genome

Probability of

Total Stops Total Stops Total Stops 0 Stops3

Eyzaguirre et al. 2013 10 Full-length 92,440 206 40 38 2 244 42 6 × 10−19

Gandhi et al. 2008 161 Env/nef 73,698 238 46 38 2 276 48 1 × 10−21

Ho et al. 2013 23 Gag, Env, nef-LTR 54,550 195 38 33 2 228 40 4 × 10−18

Total 194 220,688 44,863 8,659 7,270 349 52,076 9,068

Average4 - - 231 45 37 2 268 47 4 × 10−21

1 Details of the analysis of sequences are described in Tables A and C in S1 File.
2 Mutations/genome were estimated based on sequence length and average frequency of mutations in the same region of the genome in 11 full-length

hypermutated sequences from the Eyzaguirre et al. study [69] to adjust the mutation frequencies for the previously described 5’-to-3’ hypermutation

gradient [49, 79–81].
3 The probability of sub-lethal mutagenesis was determined by using the average number of stop codon mutations/genome and Poisson distribution.
4 The average number of mutations per genome was determined by summing up the total number of mutations estimated per genome for all sequences

and dividing by the number of sequences.

doi:10.1371/journal.ppat.1005646.t004

Table 5. Summary of analysis to determine sublethal mutagenesis probability for patient sequences predominantly hypermutated at GA sites1.

Study No. of Seqs. Seq. Total nt GG!AG Mtns/
genome2

GA!AA Mtns/
genome

G!A Mtns/
genome

Prob. of

Total Stops Total Stops Total Stops 0 Stops3

Eyzaguirre et al. 2013 1 Full-length 9,244 64 12 209 10 273 22 3 × 10−10

Gandhi et al. 2008 5 Env/nef 2,282 70 13 167 8 237 22 3 × 10−10

Ho et al. 2013 11 Gag, Env, Nef-LTR 11,460 86 17 209 10 295 27 2 × 10−12

Total 17 22,986 1,358 262 3,346 161 4,703 422

Average4 - - 80 15 197 9 277 25 1 × 10−11

1 Details of the sequence analysis are described in Tables B and D in S1 File,
2 Mutations/genome were estimated based on sequence length and average frequency of mutations in the same region of the genome in 11 full-length

hypermutated sequences reported by Eyzaguirre et al. [69] to adjust the mutation frequencies for the 5’-to-3’ hypermutation twin gradient [49, 79–81].
3 The probability of sublethal mutagenesis, defined as the probability of generating a viral genome without stop codons, was determined by using the

average number of stop codon mutations/genome and Poisson distribution.
4 The average number of mutations per genome was determined by summing up the total number of mutations estimated per genome for all sequences

and dividing by the number of sequences.

doi:10.1371/journal.ppat.1005646.t005
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assuming these RNAs are copackaged with a wild-type RNA, rescue of GA-to-AA mutations
without stop codons through recombination would increase the retroviral mutation rate by
16-fold (5.4 × 10−4/bp/cycle). However, the distribution of GA-to-AA mutations/genome in
patients (Fig 4F) suggests that none of the hypermutated genomes had an optimal number of
mutations (30–35; Fig 4D). The average 197 GA-to-AA mutations/genome is predicted to con-
tribute 5 × 10−5 mutations/bp/replication cycle (Fig 4D), which is similar to the retroviral
mutation rate (3.4 × 10−5/bp/cycle). It is worth noting that the simulations above are based on
copackaging of the mutated RNA with wild-type RNA. However, since the frequency of
copackaging wild-type and hypermutated genomes is extremely low [44, 45, 76, 77] we con-
clude that A3F-induced hypermutations also contribute very little to the viral variation com-
pared to mutations that are generated during reverse transcription.

Estimation of the frequency of sublethal mutagenesis by A3G and A3F
To determine the frequency of sublethal mutagenesis by A3 proteins, we analyzed hypermu-
tated proviral DNA sequences reported in three previous studies. Eyzaguire and colleagues
reported 11 near-full-length sequences that were hypermutated throughout the proviral
genomes [69]. For 10 of the 11 proviruses, the majority of the G-to-A mutations were in the
GG context (A3G type); for one provirus, the majority of the mutations were in the GA dinu-
cleotide context (A3F type) and were likely mutated by A3F, A3D or A3H. Gandhi and col-
leagues reported 166 hypermutated proviral DNA sequences, of which 161 had a majority of
the mutations in the GG context (A3G type) and 5 had mutations primarily in the GA context
(A3F type) [43]. Ho and colleagues reported 34 hypermutated proviral DNA sequences, three
of which were near-full-length and others were from various regions of the genome [78]. Of
these, 23 were predominantly mutated in the GG context (A3G type) and 11 were predomi-
nantly mutated in the GA context (A3F type).

We estimated the number of G-to-A changes that arose in each proviral genome, taking
into account the lengths of the sequences analyzed as well as their locations in the genome. Fur-
thermore, the sequences analyzed were from patients from whom a consensus sequence for the
patient could be derived to further verify that the sequence was indeed hypermutated. For our
analysis, proviruses with less than 18 G-to-A mutations would not be identified as hypermu-
tants (Table A in S1 File). It is well known that there is a twin-gradient of hypermutation in the
viral genome, which reflects the amount of time the minus-strand DNA is available as a sub-
strate for cytidine deamination by A3 proteins [49, 79–81]. We used the 11 near-full-length
hypermutated genomes reported by Eyzaguire et al. [69] to estimate the relative frequency of
hypermutation for each region of the genome to adjust for the hypermutation gradient. The
average number of GG-to-AG mutations estimated per proviral genome was 231 (Table 4 and
Tables A and C in S1 File); the sequences that were predominantly hypermutated at GG sites
also had an average of 37 mutations at GA sites/genome.

Since 19.3% of the GG sites generated stop codons in NL4-3, we estimated that mutations at
GG sites generated an average of 45 stop codons/genome; since 4.8% of the GA sites in NL4-3
generated stop codons, we estimated that an average of 2 stop codons/genome were generated
by GA-to-AA mutations, resulting in an average of 47 stop codons/genome. Assuming a Pois-
son distribution, we estimated that the probability of generating a provirus without stop codons
is 4 × 10−21. Thus, we conclude that the contribution of A3G-induced sublethally mutated pro-
viruses to viral genetic variation is negligible.

Similarly, proviruses that were predominantly mutated at GA sites had an average of 197
GA-to-AA mutations/genome, and 80 GG-to-AG mutations/genome with an average of 25
stop codons/genome (Table 5 and Tables B and D in S1 File); assuming a Poisson distribution,
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the probability of generating a sublethally mutated provirus is 1 × 10−11. Thus, we conclude
that while sublethal mutagenesis can occur, there is a simultaneous overwhelming reduction in
the size of the replicating viral population. In the absence of A3F-induced hypermutation, RT
and RNA polymerase II would generate 3 × 1010 mutations in 1 × 1011 proviruses, whereas
A3F hypermutation would generate 277 mutations in a sublethally mutated provirus.

Discussion
In addition to error-prone reverse transcription and high rates of recombination, G-to-A
hypermutation by A3 proteins could increase genetic variation in HIV-1 populations by two
mechanisms (Fig 5). First, lethal mutagenesis could generate dead proviruses that cannot
increase genetic variation of the replicating viral population; however, parts of such genomes
may be rescued when a replication-competent virus infects the same cell through copackaging
and recombination. If the resulting recombinants contain portions of hypermutated genomes
without lethal mutations, these G-to-A hypermutations can enter the replicating viral popula-
tion. Second, sublethally mutated viruses can on their own increase genetic variation of the rep-
licating viral population, and through recombination with wild-type genomes, further increase
genetic variation. However, hypermutation could also decrease genetic variation by reducing
the rate of recombination due to decreased homology between the co-packaged RNAs.

Effect of hypermutation on recombination
To our knowledge, this is the first study to directly examine the effects of hypermutation on
the frequency of retroviral recombination and quantify the extent to which recombination
can rescue portions of hypermutated genomes without lethal mutations. In our system, hyper-
mutation by A3G or A3F did not affect the efficiency of RNA copackaging or the frequency of
recombination as determined by the rate of gfp reconstitution. We also did not observe a
decrease in the frequency of recombination in the A3G or A3F hypermutated regions of the

Fig 5. Flow chart of potential contribution of hypermutation and recombination to HIV-1 genetic
diversity.

doi:10.1371/journal.ppat.1005646.g005
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pol gene (Table 2 and Fig 2). Our previously proposed dynamic copy-choice mechanism of
recombination and results from other studies predict that a decrease in homology between co-
packaged RNAs would reduce the frequency of recombination [82–86]. The recombination
rate was similar in the absence or presence of hypermutation, which decreased the sequence
identity in RT to 92–97%. It is possible that more extensive hypermutation (> 64 mutations/
1320 nt of RT) would lead to a reduction in the recombination rate. However, hypermutated
full-length patient sequences had on average 42 G-to-A mutations in RT [69], compared to 64
for N-A3Ghigh, suggesting that the majority of hypermutated genomes will not affect the rate
of recombination.

Effect of hypermutation on increasing genetic variation through
recombination
Our results show that within the population of viruses containing a wild-type and a A3G- or
A3F-hypermutated genome, recombination contributed to the retroviral mutation rate to
the same extent as mutations during error-prone viral replication (3.9 × 10−5 versus
3.4 × 10−5 mutations/bp/replication cycle, respectively). However, we expect that because of
purifying selection on hypermutated genomes, only a small proportion of hypermutated
genomes will be packaged into virions [68]. Additionally, it was recently found that, contrary
to a previous report [87], >90% of HIV-1 infected CD4+ T cells in lymph nodes of patients
contained only one proviral DNA [88], implying that the frequency of copackaging of RNAs
from two different proviruses, including RNAs from a wild-type and a hypermutated
genome, is likely to be very low [89]. Consistent with purifying selection, Kieffer et al.
observed that>9% of the proviral DNAs were hypermutated by A3G or A3F but none of the
2024 viral RNAs isolated from plasma were hypermutated [45]. Since the frequency of
copackaging and recombination between hypermutated and wild-type genomes in patients
appears to be extremely low (<1/100 –<1/2024; [44, 45, 76, 77]), we conclude that the con-
tribution of hypermutation to viral genetic variation through recombination is far less than
mutations that occur during retroviral replication.

Mulder et al. reported that recombination between hypermutated and wild-type genomes
resulted in increased resistance to antiviral drug 3TC through acquisition of M184I mutation
in RT [65]. In this study, the proviral DNAs underwent one round of DNA transfection (plas-
mids containing hypermutated genomes and wild-type genomes were co-transfected into
cells). DNA recombination is known to occur frequently during co-transfection and has been
shown to be sufficient to reconstitute replication-competent retroviruses from defective
genomes even in the absence of retroviral recombination [89, 90]. Kim et al. also reported that
hypermutation in a T cell line can contribute to selection of M184I mutations and 3TC resis-
tance [66]. It is not clear whether the observed frequencies of M184I mutations (0 of 4 for
A3G- cells vs. 3 of 4 for A3G+ cells) are significantly different from each other. It is also possi-
ble that, in an experimental system when a limited number of cells and high titers of infectious
virus are used, coinfection and recombination occurs at a much higher frequency than in
patients, resulting in an increase in 3TC resistance in the presence of A3G. In our studies, we
ruled out potential contribution of DNA recombination, and observed the effect of A3G and
A3F hypermutation on the viral mutation rate in the absence of selection, which could explain
the modest two-fold contribution of hypermutation to the retroviral mutation rate in the prog-
eny from heterozygous viruses.

A recent study determined the HIV-1 mutation rate in vivo by determining the frequency of
stop-codon mutations in proviral DNAs in patients [91]. As expected, their analysis included
all G-to-A mutations induced by A3 proteins, and concluded that the HIV-1 mutation rate in
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proviral DNA is extremely high (4.1 x 10−3/bp/cell), and most of the mutations are due to cyti-
dine deaminase activity of A3 proteins. As our analysis points out, most of the hypermutated
proviruses are lethally mutated and cannot contribute to the genetic variation of the replicating
viral population. Therefore, we have focused our analysis on the potential contribution of
hypermutation to genetic variation on which selective forces can act to shape viral evolution.

Our in silicomodeling indicated that the number of template-switching events did not affect
the contribution of A3G or A3F hypermutation to the retroviral mutation rate. The modeling
results indicated that for A3G and A3F, the optimal number of G-to-A mutations (10–15 and
30–35, respectively) would increase the retroviral mutation rate by 3- or 16-fold, respectively,
in the population of heterozygous virions. The average numbers of mutations at GG and GA
sites in patients (231 and 197, respectively) are much higher than the optimal number of muta-
tions, and their contribution to the retroviral mutation rates are 200-fold lower (7.8 × 10−7

mutations/bp/cycle) or about the same (5 × 10−5/bp/cycle) as the retroviral mutation rate
(3.4 × 10−5/bp/cycle), respectively. Even with the optimal number of mutations, given the low
frequency of copackaging and recombination (<1/100–<1/2000; [44, 45, 76, 77]), the contri-
bution of hypermutation to the retroviral mutation rate is likely to be far less than the mutation
rate during error-prone replication.

Sublethal hypermutation and its effect on HIV-1 genetic variation
Our analysis of hypermutated proviruses reported in three independent studies [43, 69, 78]
predicted that proviruses hypermutated predominantly at GG sites or predominantly at GA
sites have on average 47 and 25 stop codons, respectively. Based on a Poisson distribution, the
frequency of sublethally mutated proviruses predominantly mutated at GG sites (A3G type)
and GA sites (A3F type) is predicted to be 4 × 10−21 and 1 × 10−11, respectively. Thus, the vast
majority of hypermutation events result in lethal mutagenesis, and very few result in sublethal
mutagenesis that can potentially increase genetic variation in the replicating viral population.
It is important to point out that these are conservative estimates of sublethal mutagenesis, since
nonsynonymous G-to-A mutations, as well as some mutations in the cis-acting viral sequences,
also likely result in loss of fitness. Even in the absence of stop codons, the hypermutated viruses
with many non-synonymous G-to-A mutations are likely to be highly attenuated in their repli-
cation potential, further reducing their capacity to contribute to genetic variation. Therefore,
the recombinant viruses containing sublethal mutations are also unlikely to outgrow the non-
hypermutated parental viruses, and their contribution to genetic variation will likely diminish
with each successive replication cycle.

Simon et al. found Vif alleles in patients that were defective in inducing degradation of A3G
or A3F proteins, suggesting that incomplete degradation of A3 proteins could lead to sublethal
mutagenesis [92]. Sadler et al. observed that expression of lower amounts of A3G resulted in
sublethal mutagenesis in a cell culture system, indicating that sublethal mutagenesis can occur
in an ex vivo assay [58]. On the other hand, Armitage et al. found that packaging of single
active A3G protein in virions results in substantial levels of hypermutation, and concluded that
hypermutation by A3G is typically an all-or-nothing phenomenon [64].

Our analysis does not exclude the possibility of sublethal mutagenesis, but implies that such
low levels of hypermutation are likely to be rare. One caveat to our studies is that proviral
genomes that are identified as hypermutated genomes requires that the regions sequenced
need to have at least two G-to-A mutations in order to be defined as hypermutants; sequences
with one G-to-A mutation/~450 nt (the length of env sequence analyzed in [43]) will not be
defined as hypermutants, suggesting a lower limit for detection of hypermutation as ~18 G-to-
A mutations/proviral genome (Table A in S1 File).
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Potential contribution of hypermutation to viral genetic variation and
evolution
Many previous studies have concluded that A3 proteins contribute to viral genetic variation
and evolution [58, 65, 66, 92–96], while others have concluded that hypermutation by A3 pro-
teins does not increase genetic diversity or contribute to viral evolution [60, 62, 64, 97].

A few studies have analyzed the context in which A3-proteins induce mutations and sought
to determine whether mutations in these contexts may have provided a selective advantage to
the virus, and thereby contributed to viral evolution [60, 66, 94, 98]. One confounding factor in
these analyses is that the contexts in which RT and RNA polymerase II induce mutations are
not well defined, and the extent to which error-prone viral replication can induce errors in
A3-favored contexts is unknown. HIV-1 RT has a strong bias for inducing G-to-A mutations
during replication, with nearly 40% of the substitutions occurring in GA context and GG con-
texts [2, 4]. Additional studies to define the nucleotide contexts of mutations induced by RT
and RNA polymerase II are needed to facilitate these analyses.

In summary, we found that A3G or A3F hypermutation did not affect the rate of recombi-
nation and the contribution of A3G and A3F hypermutation to the genetic variation of HIV-1
was significantly less than the rate of mutations induced during error-prone viral replication.
Thus, while hypermutation can alter sequences in some proviruses, its contribution to viral
variation and evolution is small compared to mutations induced by RT and/or RNA polymer-
ase II.

Material and Methods

Construction of plasmids containing wild-type and hypermutated RT
sequences
The names of all plasmids in this study start with ‘p” while the names of viruses and proviruses
generated from these plasmids do not. pHCMV-G that expresses the G glycoprotein of vesticu-
lar stomatitis virus (VSV-G) [99], pSYNGP that expresses a codon-optimized HIV-1 Gag/Gag-
Pol [100], and pIIINL(AD8)env that expresses the HIV-1 CCR5-tropic envelope [70] have
been described previously.

To create plasmid pWTHXB2 containing a wild-type pol sequence from the subtype B HXB2
isolate, the region between BamHI and XhoI restriction sites in plasmid pHG(BHXB) [86] was
replaced with a corresponding region from plasmid pON-H0 [13]. The resulting construct
pWTHXB2 contains all cis-acting elements necessary for virus expression and production, func-
tional gag-pol, as well as hsa and inactivated gfp in the nef gene [13].

The four constructs containing NL4-3-based RT sequences were created as follows. First,
SphI and MscI was used to digest NL4-3-based plasmid pON-T6 [13], which in nef contains
thy1.2 and IRES followed by an inactivated gfp gene. The distance between the inactivating
mutations in the two gfp genes is 588 bp. To create construct pN-A3Ghigh, the SphI-MscI
digested pON-T6 backbone was ligated to a synthesized SphI to MscI fragment (GENEWIZ)
that contains the following modifications to NL4-3 sequence: 1) a frameshift and a stop codon
was introduced to destroy SpeI site in gag; 2) the natural MscI in gag was destroyed by a silent
mutation; 3) unique enzyme sites SgrAI, SnaBI, and XbaI flanking the start of RT, RNase H and
IN, respectively, were introduced via silent mutations; and 4) RT region contained 64 G-to-A
hypermutations by A3G that were previously isolated from an infected cell clone. To create
pWTNL43, pN-A3Glow, and pN-A3F, plasmid pN-A3Ghigh was digested with SgrAI and SnaBI,
and ligated with a synthesized insert (GENEWIZ) containing either a wild-type RT sequence
from pNL4-3 isolate, an NL4-3 RT sequence with 27 G-to-A changes introduced by A3G, or an
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NL4-3 RT sequence with 27 G-to-A changes introduced by A3F, respectively. All plasmids were
verified by sequencing (Macrogen).

Generation, maintenance, and flow cytometry analyses of cell lines
Human embryonic kidney 293T cells and derivatives (American Type Culture Collection)
were maintained in Dulbecco’s modified Eagle’s medium (CellGro) supplemented with 10%
fetal calf serum (HyClone), and 1% penicillin-streptomycin stock (penicillin 50 U/ml and
streptomycin 50 μg/ml, final concentration; Gibco). Hut/CCR5 cells, a human T cell line
derived from Hut78 cells to express CCR5 chemokine receptor [101], were maintained in
RPMI medium (CellGro) supplemented with 10% fetal calf serum (HyClone), 1% penicillin-
streptomycin stock (penicillin 50 U/ml and streptomycin 50 μg/ml final concentration; Gibco),
1 μg/ml of puromycin (Gibco) and 500 μg/ml G418 (ThermoFisher Scientific). All cultured
cells were maintained in humidified 37°C incubators with 5% CO2. All transfections were per-
formed using LT1 reagent (Mirus) according to manufacturer’s instructions.

To detect marker gene expression, cells were stained with phycoerythrin-conjugated α-HSA
antibody (Becton Dickinson Biosciences) and allophycocyanin-conjugated α-Thy1.2 antibody
(eBioscience) at 0.4 μg/ml and 2.0 μg/ml, respectively. Flow cytometry analyses were performed
on a FACSCalibur system (BD Biosciences) whereas cell sorting was performed on an ARIA II
system (BD Biosciences). Flow cytometry data was analyzed using FlowJo software (Tree Star).

Producer cell lines containing two different proviruses were generated as follows. To gener-
ate stock viruses for infection, 293T cells were transfected with viral construct along with plas-
mids pSYNGP and pHCMV-G that express codon-optimized Gag/GagPol and VSV-G
envelope, respectively. Viruses were harvested 48 hours later, filtered with 0.45- μM filters, and
used immediately or stored at –80°C. To make producer cell lines, stock virus WTHXB2 was
used to infect fresh 293T cells at a multiplicity of infection (MOI) of 0.1. Cells were stained 72
hours post-infection and infected cells expressing HSA surface marker were enriched by multi-
ple rounds of cell sorting until more than 80% of the cells were HSA+. These cells were then
infected at an MOI of<0.1 with a second virus, and underwent multiple rounds of cell sorting
until>97% of cells were HSA+ and Thy+. Four cell lines were created containing the following
pairs of proviruses: WTHXB2/WTNL43, WTHXB2/N-A3Ghigh, WTHXB2/N-A3Glow, and
WTHXB2/N-A3F.

Recombination experiments and sorting of recombinants
Producer cell lines WTHXB2/WTNL43, WTHXB2/N-A3Ghigh, WTHXB2/N-A3Glow, and
WTHXB2/N-A3F were transfected with pIIINL(AD8)env [70]; 48 hours later viruses were har-
vested, filtered through 0.45-μM filters, and used to infect 12 × 106 Hut/CCR5 target cells at a
low MOI (<0.08) to minimize dual infection. Target cells were stained 72 hours post-infection
for marker expression and flow cytometry analysis was used to determine the percentage of
HSA, Thy and GFP expressing cells. Target cells expressing GFP were enriched by sorting until
87% of the cells were GFP+.

Viral DNA isolation, single genome sequencing and sequence analysis
Genomic DNA was isolated from the sorted GFP+ cell pools using QIAamp DNA blood kit
(Qiagen). Single genome amplification was achieved by serially diluting genomic DNA in
96-well plates to identify a dilution in which PCR-positive wells constituted less than 30% of
the total number of reactions. At this dilution, most wells contain amplicons derived from a
single DNA molecule. PCR amplification was performed in a 20-μl reaction containing 1×
High Fidelity Platinum PCR buffer, 2 mMMgSO4, 0.2 mM of each deoxynucleoside
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triphosphate, 0.2 μM of each primer, and 0.025 U/μl Platinum Taq High Fidelity polymerase
(Invitrogen). For the first round of PCR, sense primer HIV-A GagF1 50- GTG GCA AAG AAG
GAC ACC TAG-30 and antisense primer HIV-A VifR1 50-GTC GAC ACC CAA TTC TGA
AAT G-30 were used. PCR was performed with the following parameters: 1 cycle of 94°C for 2
min, 35 cycles of a denaturing step of 94°C for 15 s, an annealing step of 55°C for 30 s, and an
extension step of 68°C for 4 min, followed by a final extension of 68°C for 10 min. For the sec-
ond round of PCR, we used 1 μl of first-round PCR product along with sense primer HIV-A
GagF2 50- GGC TGT TGG AAA TGT GGA AAGG-30 and antisense primer HIV-A VifR2 50-
ATG GCT TCC AAT CCC ATA TGA TG-30. The second-round PCR reaction was performed
under the same conditions used for first-round PCR, but with a total of 45 cycles. All PCR pro-
cedures were performed under PCR clean room conditions with additional procedural safe-
guards against sample contamination, such as prealiquoting of all reagents, use of dedicated
equipment, and physical separation of sample processing from pre- and post-PCR amplifica-
tion steps. Correctly sized amplicons from the second round of PCR were sequenced directly
by cycle-sequencing using BigDye terminator chemistry according to the manufacturer’s rec-
ommendations (Applied Biosystems). Individual sequence fragments for each amplicon were
assembled and edited using Sequencher (Gene Codes). Individual chromatograms were
inspected for the absence of mixed bases at each nucleotide position throughout the entire
amplicon; this quality control measure confirmed that the amplicons analyzed were derived
from SGS amplification of a single viral template and allowed us to exclude from the analysis
amplicons that resulted from PCR-generated in vitro recombination events or Taq polymerase
errors. Therefore, the collection of individual sequences obtained via SGS proportionately rep-
resents those found in the infected cells.

In order to identify crossover events, we aligned the nucleotide sequences of each genome in
a recombinant pair (WTHXB2/WTNL43, WTHXB2/A3Ghigh, WTHXB2/A3Glow, or WTHXB2/
A3F). Using the polymorphic differences between two parental sequences, we identified the
locations of crossover events for each recombinant sequence.

Computer modeling and simulation
A custom in-house MATLAB program was used to estimate the contribution of hypermutation
and recombination to the HIV-1 mutation rate in a population of heterozygous virions con-
taining a wild-type genome and a hypermutated genome. The NL4-3 genome was used as the
reference (WT) sequence, and the input variables were 1) the number of template switches, 2)
the number of G-to-A mutations in the mutated genome, and 3) the number of heterozygous
virions containing a wild-type and a mutated genome simulated to undergo one cycle of repli-
cation. All GG and GA sites in NL4-3 (GenBank AF324493.2) were identified and the GG-to-
AG and GA-to-AA mutations that would generate stop codons in the appropriate open reading
frames were determined. NL4-3 has 616 GG sites, of which 119 (19.3%) are predicted to gener-
ate stop codons upon mutation to AG. NL4-3 also has 756 GA sites, of which 37 (4.8%) are pre-
dicted to generate stop codons upon mutation to AA. The locations of the template switches
and G-to-A mutations were randomly selected. For an A3G-mutated genome, we simulated
90% of the mutations at GG sites and 10% at GA sites, and for an A3F-mutated genome we
simulated 86% of the mutations at GA sites and 14% at GG sites; these ratios were based on
our previously published [68] observations of the G-to-A mutations induced by A3G and A3F
in ex vivo experiments. The viable recombinants, defined by the absence of mutation-induced
stop codons, were identified. The mutation rate was calculated as the total number of muta-
tions in viable recombinants divided by the total number of nucleotides from the viable and
nonviable recombinants.
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