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Introduction
Extracellular vesicle (EV) release in fungi was described for the first time in 2007 in the yeast-
like pathogen Cryptococcus neoformans [1]. Since then, the phenomenon of EV production,
which is present in all domains of life, has been observed in many different fungal species,
including yeast cells and hyphae. Composition of EVs, the impact of their release on fungal
pathogenesis, and their potential use as protective immunogens have been explored in a num-
ber of original studies and comprehensive reviews (see Fig 1 and [2] for a summary). However,
many aspects related to the biological properties of fungal EVs remain obscure. In this manu-
script, we will focus our discussion on three fundamental but still unanswered questions about
fungal EVs.

What Is the Role of Fungal EVs during Infection?
It remains unknown whether fungal EVs are produced in vivo, which is likely linked to the lack
of protocols and molecular markers for isolation of these membranous compartments from
body fluids. Vesicle properties related to their stability in tissues are also obscure. C. neofor-
mans EVs are rapidly disrupted by serum albumin at physiological concentrations [3]. This
observation argues against the stability of EVs in vivo, but not against their potential functions.
EV disruption might result in the release of internal and potentially immunomodulatory com-
pounds into the extracellular space, possibly impacting the physiology of host cells.

Different studies provided indirect evidence supporting the hypothesis that fungal EVs are
produced during infection. Sera from patients with cryptococcosis or histoplasmosis reacted
with EV components [4,5]. In addition, EVs were isolated from plasma of patients withMalas-
sezia sympodialis-associated atopic eczema [6]. In vivo studies with C. neoformans suggested
that EVs are produced during lung infection [1].

The immunobiological activity of fungal EVs and the mechanisms by which they modulate
host cell physiology have been first explored inM. sympodialis, where allergen-containing EVs
induced IL-4 and TNF-α responses [6]. In further studies with C. neoformans and Candida
albicans [7,8], labeling of EVs with DiIC18, a lipophilic and fluorescent stain, allowed observa-
tion of vesicle internalization by murine phagocytes and consequent cytokine production. EVs
co-localized with the lipid raft marker GM1, suggesting the participation of such domains dur-
ing vesicle internalization [7,8]. Apparently, fungal EVs are internalized through phagocytosis,
since DiIC18 labeling was restricted to the cytoplasm after 15 minutes of incubation with
phagocytes. It remains unclear, however, whether fungal EVs also fuse with host cell
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Fig 1. Overview of the functional aspects of fungal EVs. A. Fungal cells release heterogeneous populations of EVs that are immunologically active, as
inferred from experimental models resulting in positive modulation of cytokine and nitric oxide (NO) production after exposure of host cells to EVs. Treatment
of immune effector cells with EVs induces increased expression of CD86 and MHC-II molecules. For details and references, see Table 1. B. Biogenesis of
fungal EVs is illustrated through (I) plasmamembrane remodeling, resulting in cytoplasmic subtractions (inverted macropinocytosis), (II) membrane budding,
resulting in ectosome formation, and (III) multivesicular body (MVB) formation, followed by fusion with the plasmamembrane for the extracellular release of
exosomes. C. The current literature supports the notion that fungal EVs can be lyzed for cargo release (IV). Alternatively, fungal EVs can be either
internalized by (V) or fuse with the plasmamembrane of host cells, likely resulting in the intracellular release of vesicular cargo (VI).

doi:10.1371/journal.ppat.1005240.g001
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membranes, as suggested after interaction of C. neoformans EVs with human brain microvas-
cular endothelial cells (HBMEC) [9]. In this situation, vesicle cargo would be directly delivered
into the cytoplasm of host cells. This mechanism appears to modulate HBMEC permeability
during murine cryptococcosis, facilitating crossing of the blood-brain barrier and brain coloni-
zation by the fungus [9]. More recently, Wolf and colleagues investigated a strain of C. albicans
lacking expression of a phosphatidylserine synthase [10]. EV cargo lacked characteristic viru-
lence factors, including phospholipase Plb3 and adhesin Sim1. These EVs failed to induce
NFκB activation in macrophages [10]. Thus, phospholipid biosynthesis appears to be required
for EV cargo and functions.

The molecules carried by EVs may impact antigen processing and, consequently, the
immune response. C. albicans EVs stimulated dendritic cells (DCs) to produce IL-12p40, IL-
10, and TNF-α, and induced upregulation of CD86 and MHC-II [7]. Treatment of murine
macrophages with EVs from C. neoformans or C. albicans resulted in production of nitric
oxide, IL-12, TGF-β, and IL-10 [7,8]. In addition, EVs from an acapsular strain of C. neofor-
mans induced a high proinflammatory response [8]. The protective effect of EVs on the innate
immune system has been suggested using the insect model Galleria mellonella. Treatment of
larvae with EVs from C. albicans resulted in significant protection against subsequent chal-
lenges with this fungus [7]. These studies suggest that fungal EVs activate the innate immune
response and may also promote, in other models, the development of adaptive responses
(Table 1). A beneficial contribution of fungal EVs to humoral immunity is also expected. Eno-
lase, HSP60, and GlcCer are examples of immunogens carried by EVs that can induce protec-
tive antibodies (reviewed in [11]).

EV Biogenesis: Where Do They Come From?
Exosomes and ectosomes are major EVs produced by eukaryotic cells. Exosomes consist of
small (40–100 nm) vesicles originated by invagination of the endosomal compartments mem-
brane, which is driven by a protein complex named endosomal sorting complex required for
transport (ESCRT) [12]. This complex regulates the release of small vesicles inside the lumen
of the endosome, generating the so-called multivesicular bodies (MVBs). Upon fusion with the
plasma membrane, MVBs release exosomes as EVs to the outer space [12]. Unlike exosomes,
ectosomes are larger (up to 1 μm), ubiquitous vesicles that are assembled at and released from
the plasma membrane [13]. In fungi, mechanisms of vesicle biogenesis and extracellular release
are still obscure. Therefore, these extracellular membranous compartments are still collectively
called EVs.

Table 1. Functional diversity of fungal EVs.

Fungal
pathogen

Reference Induction of host cell responses Influence on infection course

C. neoformans [9] Not determined Enhanced traversal of the blood-brain barrier
and infection of the central nervous system

C. neoformans [8] Tumor necrosis factor (TNF)-α, IL-10, transforming growth factor (TGF)-
β, and nitric oxide (NO). Enhanced antifungal activity (macrophages).

Not determined

Candida
albicans

[10] Nuclear factor (NF) κB activation in macrophages Not determined

C. albicans [7] NO, interleukin (IL)-12, TGF-β, and IL-10 (macrophages); IL-12p40, IL-
10, and TNF-α (dendritic cells); up-regulation of CD86 and MHC-II

Protection in a Galleria mellonella model of
infection

Malassezia
sympodialis

[6] IL-4 and TNF-α Not determined

doi:10.1371/journal.ppat.1005240.t001
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MVB-like structures have been observed in C. neoformans [5]. Saccharomyces cerevisiae
mutants lacking expression of ESCRT machinery proteins still produced EVs, but vesicle cargo
was modified in the absence of ESCRT regulators [14]. Analysis of fungal EVs by electron
microscopy revealed two kinds of populations in the cell wall periphery: large (up to 300 nm),
individualized vesicles and small (up to 100 nm), grouped vesicles [15]. Groups of small EVs in
the periplasm are consistent with exosome formation, as suggested in early studies with C. neo-
formans [16]. Observation of individualized and larger vesicles, however, is suggestive of mem-
brane budding, likely resulting in ectosomes [17]. Membrane budding, in fact, has been
observed more than a decade ago in C. neoformans [18]. EV formation can also include
inverted macropinocytosis, a process by which fractions of the cytoplasm are sequestered by
plasma membrane invaginations, resulting in individualized EV-like structures [19]. All the
mechanisms described above would be consistent with the diversity in EV composition, which
includes a number of cytoplasmic components (reviewed in [11]).

Going Outside: How Do Fungal EVs Traverse the Cell Wall?
The conclusion that fungal EVs are originated either in the cytoplasm or at the plasma mem-
brane levels implies that, to reach the outer space, passage through polysaccharide layers in the
cell wall is required. In C. neoformans, three hypotheses are suggested to explain how fungal
EVs traverse the cell wall [15], including (i) movement through channels, (ii) remodeling of
the wall to facilitate EV transit, and (iii) mechanical pressure to force vesicle passage through
small cell wall pores.

In contrast to plants, trans-cell wall channels have not been observed in fungal cells. In fact,
in C. neoformans, vesicles interacted directly in the cell wall without any obvious trans-cell wall
structures [1,15], which argues against the presence of a channel steering vesicles to the outer
space. Atomic force microscopy studies demonstrated that fungal cell walls contain pores rang-
ing from 1 to 400 nm [20,21], but visual evidence suggesting pore–EV association has not been
provided so far, thus supporting cell wall remodeling as an effective mechanism of EV passage.

In C. neoformans, vesicles were observed next to areas of damaged cell walls [15], indicating
that EVs could be released after cell wall injury. In this context, polysaccharide hydrolases asso-
ciated with vesicles or with other cell wall components could play fundamental roles in cell
wall passage. Compositional studies revealed the presence of glucan and/or chitin-degrading
enzymes in EVs produced by C. albicans, Paracoccidioides brasiliensis,Histoplasma capsula-
tum, S. cerevisiae, and C. neoformans (reviewed in [11]). It is important to highlight, however,
that the presence of EVs in association with damaged cell wall areas could alternatively denote
mechanisms of cell wall repair, as well pointed out by Wolf and colleagues [15]. The detection
of EV-associated enzymes with the ability to synthesize or modify cell wall polysaccharides in
S. cerevisiae [14], C. neoformans [5], P. brasiliensis, [22] andH. capsulatum [4] is in agreement
with this hypothesis. Cell wall remodeling and consequent EV release could be similar in other
organisms. In Staphylococcus aureus, EVs are enriched with surface-associated or extracellular
proteins, including N-acetylmuramoyl-L-alanine amidase [23], a cell wall hydrolase responsible
for catalyzing cleavage of the bond between N-acetylmuramic acid and L-alanine in cell-wall
glycopeptides. This enzyme was also detected inMycobacterium tuberculosis vesicles [24]. In
Streptococcus pneumoniae, EVs contained 1,4-β-N-acetylmuramidase [25], a peptidoglycan-
degrading enzyme. Remarkably, these species andM. tuberculosis contained enzymes required
for cell wall synthesis [24,25], suggesting that EV composition and cell wall remodeling are in
fact associated. This supposition is in agreement with the observation that peptidoglycan-
degrading enzymes create gaps within the peptidoglycan layer large enough to accommodate
structures of high dimensions [26]. These independent observations may suggest that EV
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composition is responsible for the changes in microbial cell walls, resulting in vesicular passage
through still-unknown mechanisms. The above-mentioned mechanisms of extracellular release
would radically differ from those observed in mammalian cells and parasites. In these organ-
isms, the plasma membrane is the most external layer surrounding the cells, implying no need
for trans-cell wall passage [27,28]. Trans-cell wall passage is also unnecessary in Gram-negative
bacteria. In these cells, EVs (namely outer membrane vesicles [OMVs]) correspond to spherical
buds of the outer membrane filled with periplasmic content [29].

Conclusions
Since the first isolation of fungal EVs in 2007, the progress made in the field was unquestion-
able. It is now clear that fungal EVs are part of a general mechanism of macromolecule export
that results in the extracellular release of immunologically active components with the poten-
tial to modulate host responses either in favor of infection control or of fungal dissemination.
Major questions, however, remain unanswered. The currently available literature clearly points
to the need of improvement of protocols supporting the generation of knowledge on the role of
fungal EVs in vivo, as well as on their biogenesis pathways and mechanisms by which they
reach the outer space. The availability of sophisticated microscopy tools and well-established
protocols for genetic manipulation in a number of fungal pathogens supports the notion that,
although still long, the way to understanding the biological roles of fungal EVs can be short-
ened soon.
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