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Abstract

Viral fulminant hepatitis (FH) is a severe disease with high mortality resulting from excessive
inflammation in the infected liver. Clinical interventions have been inefficient due to the lack
of knowledge for inflammatory pathogenesis in the virus-infected liver. We show that wild-
type mice infected with murine hepatitis virus strain-3 (MHV-3), a model for viral FH, mani-
fest with severe disease and high mortality in association with a significant elevation in IL-
1B expression in the serum and liver. Whereas, the viral infection in IL-1(3 receptor-I defi-
cient (IL-1R17") or IL-1R antagonist (IL-1Ra) treated mice, show reductions in virus replica-
tion, disease progress and mortality. IL-1R1 deficiency appears to debilitate the virus-
induced fibrinogen-like protein-2 (FGL2) production in macrophages and CD45*Gr-1"9"
neutrophil infiltration in the liver. The quick release of reactive oxygen species (ROS) by the
infected macrophages suggests a plausible viral initiation of NLRP3 inflammasome activa-
tion. Further experiments show that mice deficient of p47°"°%, a nicotinamide adenine dinu-
cleotide phosphate (NADPH) oxidase subunit that controls acute ROS production, present
with reductions in NLRP3 inflammasome activation and subsequent IL-1( secretion during
viral infection, which appears to be responsible for acquiring resilience to viral FH. More-
over, viral infected animals in deficiencies of NLRP3 and Caspase-1, two essential compo-
nents of the inflammasome complex, also have reduced IL-1(3 induction along with
ameliorated hepatitis. Our results demonstrate that the ROS/NLRP3/IL-1( axis institutes an
essential signaling pathway, which is over activated and directly causes the severe liver dis-
ease during viral infection, which sheds light on development of efficient treatments for
human viral FH and other severe inflammatory diseases.
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Author Summary

The NLRP3 inflammasome and IL-1p play essential roles in mediating the primary
inflammatory responses against pathogen invasions in the host. Hyperactivation of this
signaling pathway can lead to life-threatening diseases under certain circumstances. How-
ever, it is not clear if NLRP3 inflammasome activation participates in the pathogenesis of
viral fulminant hepatitis (FH), a clinical severe syndrome characterized by acute inflam-
mation in the liver along with massive necrosis of hepatocytes and hepatic encephalopathy
during viral infection. Using a mouse viral FH model by infection with murine hepatitis
virus strain-3 (MHV-3), we observed a significant macrophage induction and the serum
and liver massive accumulation of IL-1B. Conversely, interruption of IL-1f signals results
in attenuation of the MHV-3-induced hepatitis and mortality. Blocking IL-1p activity
reduces the virus-induced expression of fibrinogen-like protein-2 (FGL2) in macrophages,
and limits the liver recruitment of CD45"Gr-1"8" neutrophils upon the virus infection.
We further show that proIL-1p is bioprocessed by NLRP3 inflammasome. Deletion of the
components in the inflammasome complex, including NLRP3 and Caspase-1, leads to
reduction in the virus-induced IL-1B production and lessening of disease progression. Fur-
ther studies show that macrophages in deficiency of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase subunit p47°"°%, a protein that controls acute ROS produc-
tion, prevents NLRP3 inflammasome activation and IL-1f secretion, suggesting that the
virus-induced ROS production can directly initiate NLRP3 inflammasome activation.
Therefore, p47°"°*”" mice exhibited certain degrees of MHV-3 resistance. Taken together,
these results demonstrate that ROS/NLRP3/IL-1 is the key pathway signaling exacerbated
inflammatory responses that cause viral FH in mice, suggesting that mediation of this sig-
nal cascade may benefit on the disease treatment.

Introduction

Viral fulminant hepatitis (FH) is a clinical syndrome characterized by massive necrosis of
hepatocytes along with hepatic encephalopathy during the infections [1]. Despite advances in
the development of antiviral drugs, a poor understanding of the immune mechanisms underly-
ing viral FH has largely stalled the identification of effective clinical interventions. Fortunately,
the recent development of an animal model of FH using murine hepatitis virus strain-3
(MHYV-3) infection has provided insights in understanding the pathogenesis and developing
novel therapeutics for the disease [2].

MHYV-3 is a single-stranded, positive-sense RNA virus belonging to the coronavirus family
[3]. The hallmarks of MHV-3-induced FH in susceptible BALB/c] and C57BL/6 mice include
the appearance of liver sinusoidal thrombosis and hepatocellular necrosis, resulting from over
expression of a virus-induced, monocyte/macrophage-specific procoagulant, fibrinogen-like
protein-2 (FGL2). Liver accumulation of FGL2 directly activates the coagulation cascades, a
phenomenon known as virus induced procoagulant activity [3]. MHV-3-induced FH exhibits a
syndrome that is very similar to the clinical manifestations of patients with viral FH, making it
a good animal model for exploring mechanisms underlying the pathogenesis of human viral
FH.

In addition to FGL2, pro-inflammatory mediators such as TNF-a, IFN-y and complement
C5a have been proposed to accelerate viral FH pathogenesis [4, 5]. Nevertheless, the mecha-
nisms on how the inflammatory signaling events that regulate the disease progression are not
well understood. Recently, it has been shown that dysregulated NLRP3 (also known as NALP3
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and cryopyrin) inflammasome in macrophages causes the pathogenesis of inflammatory dis-
eases, which highlights the importance of inflammasome in regulating immune-mediated tis-
sue damages [6]. The generation of biologically active IL-1p requires cleavage of the inactive
precursor prolL-1p by the NLRP3 inflammasome, a protein-scaffolding complex consisting of
NLRP3, Caspase-1, and the adaptor molecule ASC (apoptosis-associated peck-like protein
with CARD domain, Pycard) [6, 7]. NLRP3 inflammasome and IL-1f mediate the host protec-
tion against pathogen invasions, whereas, the hyperactivation of NLRP3 inflammasome con-
tributes to the pathogenesis of certain inflammatory syndromes, including liver injuries such as
nonalcoholic/alcoholic steatohepatitis [8, 9], liver fibrosis [10], and immune mediated liver
injuries [11]. However, the role of NLRP3 inflammasome signaling pathway participates in the
pathogenesis of viral FH is still unclear.

A variety of danger-associated molecular patterns (DAMPs) and pathogen-associated
molecular patterns (PAMPs), including virus RNA, nigericin, ATP, silica crystals, mitochon-
drial DNA, and aluminum hydroxide, appear to be capable of activating the NLRP3 inflamma-
some [12]. Nevertheless, the reactive oxygen species (ROS) generated by nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase are considered to be one of the major factors that
activate NLRP3 inflammasome [13]. It has been shown that pharmacological inhibition of the
NADPH oxidase complex (NOX) or the down regulation of the NOX subunit p22° hox elimi-
nates NLRP3 inflammasome activation by preventing ROS secretion [13, 14]. However, recent
studies have also illustrated that mitochondria-originated ROS (MitoSOX) rather than NOX-
derived ROS drive NLRP3 inflammasome activation [15, 16]. Various stress condition, includ-
ing increased metabolic rates, hypoxia, or membrane damage, all significantly induce MitoSOX
secretion [17]. Conversely, it remains uncertain for which of the NOX-derived ROS or Mito-
SOX is responsible for causing NLRP3 inflammasome- dependent pathology in viral FH
development.

Here, we showed that C57BL/6 wild type (WT) mice infected with MHV-3 manifest with
high levels of IL-1p in the serum and liver. Conversely, the virus infected IL-1R1”" mice present
with much attenuated pathologies, showing with a significant reduction in macrophage-
derived FGL2 expression and less liver infiltration of CD45*Gr-1"sh neutrophils. Furthermore,
we showed that the in vivo bioactivation of proIL-1B during MHV-3 infection is mediated by
NLRP3 inflammasome activation, thereafter, both the NLRP3”" mice and the Caspase-1"" mice
display substantial resistance to MHV-3-induced IL-1f production. Mechanistically, MHV-3
infection triggers an acute release of NOX-derived ROS. Blocking ROS with Diphenyleneiodo-
nium chloride (DPI) inhibits Caspase-1 activation and IL-1B maturation in vitro. Furthermore,
NOX subunit p47°"°*- deficient mice also exhibited a delayed and moderate viral pathogenesis
due to reduction in NLRP3 inflammasome activation in vivo. These results reveal that the
ROS/NLRP3/IL-1p axis is a critical signaling pathway leading to the pathogenesis of viral FH.

Results
Excessive IL-1[3 production in viral fulminant hepatitis

To examine the status of IL-1p activation in macrophages in response to MHV-3 infection, pri-
mary peritoneal exudative macrophages (PEMs) and the macrophage line-RAW?264.7 cells
were infected with the virus in vitro. A time course data showed a significant induction of the
activated form of IL-1B (IL-1P p17) within 12 hours, sustaining to 48h (Fig 1 A). Assessment of
the PEMs isolated from the 24h of virus infected C57BL/6 W'T mice also revealed a significant
increase in proIL-18 mRNA expression (Fig 1B). Moreover, proIL-13 mRNA expression in the
infected livers appeared to be markedly augmented at 48h (p = 0.0231), sustaining to 72h

(p =0.0356, Fig 1B). In accordance, western-blotting showed with increases in proIL-1f and
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Fig 1. Augmented IL-1B expression during viral FH. (A) Cultured peritoneal exudative macrophages (PEMs) and RAW264.7 cells were infected with
MHV-3 (MOI = 1) in vitro, and IL-1B p17 protein levels were detected in the indicated time points by western-blotting. C57BL/6 WT mice were infected with
MHV-3 (100PFU), (B) PEMs and livers were isolated and the transcription of prolL-18 mRNA was measured by gPCR. *p<0.05, NS: no significant
difference. (C) The expression of prolL-18 and IL-1B p17 in virus-infected liver tissues was detected by western-blotting. Three representative samples per
group are shown. (D) The prolL-18 protein in PEMs isolated from MHV-3 infected mice at the indicated time points was detected by flow cytometry. The up
panels are gate strategies and number indicates the percentage of positive cells in the gate. One representative sample from five mice per group is showed.
(E) Serum IL-1B and (F) IL-1a levels in virus-infected mice were detected by ELISA. N = 5~10 per group,*p<0.05, NS: no significant difference.

doi:10.1371/journal.ppat.1005155.9001

IL-1B p17 protein expression at corresponding time points in the infected livers (Fig 1C). Flow
cytometry further validated the patterns of prolL-1 protein induction in the PEMs isolated
from the virus-infected mice (Fig 1D). In agreement, the infected mice also showed significant
accumulation of serum IL-1f during the infection (Fig 1E). In contrast, serum IL-10 concen-
tration exhibited little change in MHV-3 infected mice (Fig 1F). These results suggest that IL-
1B significantly elevate in the liver and periphery during viral FH.

Intervention of IL-1[3 signaling reduces MHV-3-mediated hepatitis

IL-1p amplifies the pro-inflammatory response via the type-I of IL-1 receptor (IL-1R1) [18].
To further investigate whether IL-1p signaling affects the pathogenesis of viral FH, we infected

IL-1R17”"

mice with MHV-3 (100 PFU) via intraperitoneal (i.p.) injection. Interestingly, IL-

IRI”" mice displayed with a significant increase in survival rate with 60% staying alive for 20
days, as compared to a 100% death of the WT littermates within 5 days of the viral infection
(Fig 2A). IL-IR1”" mice manifested a significant reduction in hepatocellular damage and a
decrease in serum ALT/AST levels during the infection (Fig 2B). The expression of biliary gly-
coprotein-1 (Bgpl), the receptor for MHV-3 [19], appeared to be significantly lower in the

virus infected IL-1R17”"

livers comparing to that in the WT controls (Fig 2C), concurring with

the plaque assay data showing with limited virus entrance and amplification in the livers 72h
post-infection (Fig 2D). In support, the MHV-3 infection efficiency in IL-1R1”~ PEMs dropped
more significantly than in the WT counterparts in vivo (Fig 2E). Obviously, recombinant
mouse IL-1p protein (20 ng/ml) is able to significantly induce Bgp1 expression in PEMs and
RAW?264.7 cells in vitro (Fig 2F), and in concurrence, IL-1f treated RAW264.7 cells appear to
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Fig 2. IL-1R1 deficiency attenuates MHV-3-induced hepatitis. /L-7R71”~ mice and their C57BL/6 wild-type (WT) littermates were infected with MHV-3 (100
PFU), (A) The survival rate was monitored for a total of 20 days. One representative of three experiments with similar results is shown. *p<0.05. (B) The liver
architecture was analyzed by H&E staining (left), and serum ALT/AST levels were determined with an AU5400 automatic biochemistry analyzer (right). Scale
bar 20 ym, n =5 per group, *p<0.05 and **p<0.001, NS: no significant difference. (C) The expression of Bgp1 in MHV-3-infected livers was compared by
western-blotting. Three representative samples per group are shown. (D) The virus titers in livers at 72h post-infection were analyzed by plaque assay (up),
and results were compared by statistical analysis (down). *p<0.05. (E) Peritoneal exudative macrophages (PEMs) were isolated from virus infected mice at
24h and the virions were detected by electron microscopy. Arrows indicate spherical virions. (F) The expression of Bgp1 in PEMs and RAW264.7 cells that
treated with IL-183 (20 ng/ml) at the indicated time points was detected by western-blotting (up panel). RAW264.7 cells were treated with IL-1(3 (20 ng/ml) and
PBS for a total 48h firstly, cells were further infected with MHV-3 and virus titers were detected by plaque assay at the indicated time points (down panel).
*p<0.05 compared to PBS-treated counterparts.

doi:10.1371/journal.ppat.1005155.9002

produce more virus than the PBS treated controls post-infection (Fig 2F). In validation, we
injected the virus-infected WT mice with IL-1R antagonist (IL-1Ra, 10 mg/kg/day), a naturally
occurring cytokine that blocks IL-1f biologic response [18], and observed a significant limita-
tion of IL-1p secretion (p = 0.0007, S1A Fig), inhibition of Bgp1 expression (S1B Fig) and
reduction of virus titers (S1C Fig), suggesting the existence of an IL-1R-dependent positive reg-
ulation on the virus receptor that directly associate with virus propagation in the host. These
combined data clearly demonstrate that IL-18 promotes viral amplification and exacerbates the
progression of hepatitis.

MHV-3 fails to induce FGL2 production and liver neutrophil infiltration in
IL-1R7” mice

FGL2 plays an essential role in inducing hepatocellular necrosis following MHV-3 infection
[3]. We firstly examined FGL2 expression in PEMs isolated from MHV-3 infected IL-1R1”"
mice and observed substantial lower levels of FGL2 as compared to the WT controls (Fig 3A).
The limited FGL2 expression in macrophages correlates with the low concentrations of FGL2
observed in the virus infected IL-1R1”" liver and serum (Fig 3B and 3C). Therefore, in response
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Fig 3. MHV-3 fails to induce FGL2 production and neutrophil infiltration in the livers of IL-1RT”~ mice. IL-1R1’ mice and their C57BL/6 WT littermates
were infected with MHV-3 (100 PFU). (A) Peritoneal exudative macrophages (PEMs) were isolated and the expression of FGL2 was detected by western-
blotting. (B) The expression of FGL2 in liver at 48h and 72h post-infection was analyzed by western-blotting. Four representative samples per group are
shown. (C) Serum FGL2 levels in virus infected mice were measured by ELISA.*p<0.05 and **p<0.0001, NS: no significant difference, n = 5 per group. (D)
The liver fibrinogen deposition post-infection was analyzed by immunohistochemistry. Scale bar 20 um, n = 6~8 per group. (E) Liver recruitment of CD45*Gr-
119" heutrophils after MHV-3 infection was measured by flow cytometry. The left panels are gate strategies, and number indicates the percentage of positive
cells in the gate. One representative sample from five mice per group is showed. (F) Statistical analysis of liver CD45*Gr-19" neutrophil infiltration. *p<0.05
compared to WT littermates in each group, n =5 per group.

doi:10.1371/journal.ppat.1005155.9g003

to MHV-3 viral infection, IL-1RI”" mice responded with limited fibrinogen formation, leading
to a down modulation of liver coagulation and necrosis (Fig 3D). Similarly, IL-1Ra-treated WT
mice displayed with reduction of FGL2 and fibrinogen deposition in liver tissues, which was
followed with decrease in liver damages and enhance the survival time (S1B, SID and SIE Fig).

Neutrophils and CD4"Foxp3" regulatory T cells (Tregs) have been well recognized as
important players in viral FH [20, 21]. To determine the role of IL-1f in regulating these cells
during viral FH, we firstly examined liver neutrophil infiltration status. Flow cytometry showed
that in the liver-tissue samples from 48 and 72h post MHV-3 infection, the infiltration of
CD45*Gr-1"8" neutrophils was substantially higher in the WT livers than that in the IL-1R1”"
littermates (Fig 3E and 3F). The number of CD4"Foxp3 ™ Treg in the virus-infected livers
appeared to increase significantly after MHV- 3 infection, nevertheless, little difference was
observed between IL-1R1”" mice and their WT controls (S2 Fig). Similarly, serum concentra-
tion of C5a, a cytokine that deteriorates the pathogenesis of MHV-3-mediated FH [5], was not
changed dramatically between virus infected IL-1RI”" mice and their WT controls (S3A Fig).
These results suggest that attenuation of viral FH by IL-1R1 deficiency could be the conse-
quence of both ineffective FGL2 production by macrophages and limited CD45*Gr-1"8" neu-
trophil infiltration in the affected liver.

PLOS Pathogens | DOI:10.1371/journal.ppat.1005155 September 14,2015 6/21



@’PLOS | PATHOGENS

NLRP3 Inflammasome Promotes Viral Fulminant Hepatitis

IL-18 and TNF-a synergistically activate NF-kB for FGL2 induction in
macrophages

A reduction of FGL2 expression was observed in IL-1R1”" mice in response to MHV-3 infec-
tion, together with IL-1P and FGL2 were co-expression in PEMs (Fig 4A), implying that IL-1p/
IL-1R1 interactions may directly regulate FGL2 expression in macrophages. To address the
issue, we treated RAW264.7 cells, a macrophage line capable of expressing FGL2, with the
recombinant mouse IL-1p protein (20 ng/ml) in vitro. qPCR and western-blotting data showed
that IL-1f alone is incapable of stimulating FLG2 expression, nevertheless, it synergistically
enhances TNF-a-induced FGL2 levels (Fig 4B and 4C).

The expression of FGL2 has been proposed to be mediated through the activation of NF-xB
and mitogen-activated protein kinase (MAPK) signaling pathways under inflammatory condi-
tions [5, 22]. To further investigate the molecular mechanisms through which IL-18 promotes
FGL2 production, we examined these signaling pathways in IL-1B-treated RAW264.7 cells.
Results showed that either IL-1B or TNF-a treatment alone, had a minimum stimulation on
phosphorylation of the NF-«xB chaperone IkBa. (p-IxBa) and the NF-kB subunit p65 (p-p65),
appearing only at extended incubation time point (12h). However, synergistic effects of IL-13
and TNF-o (IL-1B+TNF-0) seemed to be significant for which substantial increases in phos-
phorylation of IkBo and p65 can be detected as early as 3h post infection (Fig 4C). Further-
more, the inhibition of NF-«B activation by Pyrrolidinedithiocarbamic Acid (PDTC)
successfully prevented FGL2 upregulation after IL-1B+TNF-o treatment (Fig 4D). The combi-
nation of IL-1p and TNF-a. is capable of potently stimulation the phosphorylation of MAPKs,
including extracellular signal-related kinase (p-ERK1/2) and p38 (pp38) (Fig 4C). Nevertheless,
the ERK inhibitor-PD98059 and the p38-MAPK inhibitor-SB203580 seemed to be incapable of
blocking FGL2 upregulation. Moreover, blocking all of these three pathways did not show
additive effect on inhibition of FGL2 expression (Fig 4D). These results suggest that NF-xB
rather than the MAPK pathways is responsible for IL-13+TNF-a-mediated FGL2 upregulation
in viral infected macrophages.

MHV-3 stimulates NLRP3 inflammasome-dependent IL-1 activation

It has been established that the Caspase-1-mediated bio-activation of proIL-1f is under the
control of NLRP3 inflammasome [6]. MHV-3 infected PEMs and RAW264.7 cells exhibited
with a significantly enhanced NLRP3, ASC, pro-Caspase-1 and its activated form (Caspase-1
p20) within 12h of MHV-3 infection (Fig 5A). In accordance, qPCR analyses illustrated that
the mRNAs for Nirp3 and proCaspase-1 were significantly higher in the virus infected livers,
this correlates with observation that these virus infected livers also manifest with higher expres-
sion of the respective protein (Fig 5B). Next, we infected NIrp3”" mice and Caspase-17" mice
with MHV-3 to address the importance of NLRP3 inflammasome in the causing the virus-
induced liver injuries. Remarkably, a 72h viral infection largely failed to induce IL-1p expres-
sion in the livers, which was associated with significant reductions in liver FGL2 accumulation
(Fig 5C), fibrinogen deposition and local tissue damages, along with significant decreases in
serum ALT/AST enzymes as compared with the infected WT mice (Fig 5D). In agreement with
these results, we also observed that Bgp1 expression was significantly lower in NLRP3”" and
Caspase-1"" livers during infection (Fig 5C). Meanwhile, NLRP3”~ mice and Caspase-1"" mice
appeared to produce much less viruses at 72h of infection as compared to the WT controls (Fig
5E). Finally, NLRP3"" and Caspase-1"" mice presented with considerably prolonged survival
rates toward MHV-3 infection in comparing to the WT controls (Fig 5F). The serum C5a in
the viral infected NLRP3”" and Caspase-1"" animals was also significantly increased but no dif-
ferent from the WT control mice (S3B Fig), indicating that C5a up-regulation during the viral
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against NF-kB (PDTC), ERK (PD98059) and p38-MAPK (SB203580) in the last 6h, the expression of FGL2 was detected by western-blotting. One of three
experiments with similar results is shown.

doi:10.1371/journal.ppat.1005155.9004

infection, appears to either additively or synergistically work with other inflammatory factors
to cause viral FH. Together these observations further validate that the NLRP3/Caspase-
1-inflammasome regulates the bio-processing of proIL-1f for causing the MHV-3 mediated
viral FH.

Assembly and activation NLRP3 inflammasome, being critical for bio-processing and acti-
vation of IL-1B, has been suggested to also involve in the bio-activation of IL-18, another mem-
ber of the IL-1 superfamily [23]. The MHV-3-infected mice showed a significant up-regulation
of proIL-18 mRNA in PEMs and livers (Fig 6A), as well as enhanced IL-18 protein in serum
(Fig 6B). However, the recombinant mouse IL-18 protein (50 ng/ml) alone, or in the combina-
tion with TNF-o and INF-y, was unable to stimulate fgI2 mRNA transcription in RAW264.7
cells or SVE-10 endothelial cells in vitro (Fig 6C). Moreover, MHV-3 induced liver FGL2 pro-
duction remained high in IL-18"" mice (Fig 6D), showing with consequentially high levels of
fibrinogen deposition, liver damages and hepatocyte necrosis (Fig 6E). Additionally, liver tis-
sues isolated from IL-18"" mice appear to up-regulate Bgp1 expression after MHV-3 infection.
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doi:10.1371/journal.ppat.1005155.9005

In accordance, these mice also manifested with high virus duplication (Fig 6F). Overall, IL-18""
mice are still sensitive to MHV-3 infection (Fig 6G), suggesting that IL-18 is not essential in
MHV-3-mediated fulminant hepatitis.

NADPH oxidases-derived ROS triggers NLRP3 inflammasome
hyperactivation in MHV-3 infected macrophages

Many factors contribute to activating the NLRP3 inflammasome and among which, ROS is
lately gaining particular attentions [13]. In order to examine the role of ROS in NLRP3 inflam-
masome hyperactivation, we first detected the release of NADPH oxidase-derived ROS by
using a permeable dichlorohydrofluorescein (DCFH) upon MHV-3 infection. Flow cytometry
showed that the releasing of DCFH from MHV-3 infected PEMs and RAW264.7 cells signifi-
cantly increased, especially at 12h and 24h post-infection (Fig 7A). This result correlates with
the up-regulation of gp91P"°%, p47P"** and NOX4, the subunits that are essential for acute ROS
secretion in RAW264.7 cells (Fig 7B). However, the DCFH level dropped dramatically at 48h
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doi:10.1371/journal.ppat.1005155.9006

and 72h post the viral infection (Fig 7A), most likely owing to death of cells under these condi-
tions (54 Fig).

In addition to NADPH oxidase-derived ROS, mitochondria may provide an alternate source
of ROS [15]. We therefore assessed the functional mitochondrial pool in MHV-3 infected cells.
The viral infection in PEMs and RAW264.7 cells caused an increase in mitochondrial damage,
especially at 48h and 72h post-infection, as detected by MitoTracker Green FM, a dye that
stains mitochondria with no influence on their membrane potentials (Fig 7A). Similarly, elec-
tron microscopy showed with swollen mitochondria in the MHV-3 infected Raw264.7 cells at
48h and 72h (Fig 7C). This sign of mitochondrial damage seemed to strongly correlate with the
increase in MitoSOX release within the same time frame (Fig 7A).

To further elucidate the role of ROS in NLRP3 inflammasome hyperactivation, we treated
MHV-3 infected RAW264.7 cells with a ROS inhibitor Diphenyliodonium chloride (DPI),
which is capable of preventing both NOX-dependent ROS and MitoXOS secretion [16]. NOX-
originated DCFH was successfully inhibited by DPI in a dose dependent manner (Fig 7D).
However, MitoXOS release was not prevented by the DPI treatment, even at a very high dose
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doi:10.1371/journal.ppat.1005155.9g007

(50uM) (Fig 7D). The efficiency of NOX-originated ROS inhibition by DPI appeared to corre-
late with the reduction in IL-1p activation in the infected RAW264.7 cells and PEMs in dose
dependent manners (Fig 7E). Together, these results suggest that the hyperactivation of
NLRP3 inflammasome in macrophage is partially mediated by MHV-3 induced, NOX-derived
ROS.

p47°"°*~ mice are resistance to MHV-3 induced FH by limiting NLRP3
inflammasome hyperactivation

Cells in deficiency of p47°"°* exhibit a reduced capacity in generating ROS [24]. To further
investigate the role of NOX-originated ROS in regulating NLRP3 inflammasome
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hyperactivation, we infected p47°"**’~ mice with MHV-3 and examined the severity of liver
pathology. As anticipated, PEMs isolated from MHV-3 infected p47°"°/~ mice showed with
limited DCFH (Fig 8A). Interestingly, the p47°"*”~ mice also displayed considerable resistance
to MHV-3 infection, presenting with reduced disease severity within the prolonged survival
time as compared with the WT controls (p = 0.0175, Fig 8B). The lack of virus-induced ROS
response, which leads to prohibition of NLRP3/caspase-1 activation and thus reduction in IL-
1B production, seems to be responsible for this effect (Fig 8C and 8D). As a result, the virus
infection is unable to generate significant FGL2 accumulation in the liver and serum (Fig 8C
and 8D). Therefore, these mice manifested with less severe fibrinogen deposition, liver injury
and hepatocyte necrosis, accompanying with low levels of AST/ALT enzymes released by the
liver (Fig 8E). However, the limitation of IL-1p secretion in these p47 X/ mice only slightly
affected liver Bgp1 expression (Fig 8C), and therefore live virus titers were still high at 72h of
infection (Fig 8F). Conversely, the administration of IL-1f (100 ng/mouse/day) in MHV-3
infected p47°"°~ mice was able to reinstate all aspects of disease severity typical in viral FH
(Figs 8G and S5). Taken together, these results clearly indicate that the ROS/NLRP3/IL-1 axis
plays a critical role in the pathogenesis of viral FH.

Discussion

In the present work, we report that mice infected with MHV-3, an animal model for viral FH,
have significantly elevated levels of IL-1f in the serum and liver. The accumulation of IL-1
accelerated liver pathology through synergistically acting with TNF-o, one of the key inflam-
matory cytokines that has been previously shown to be essential for causing viral FH [4, 18],
IL-1RI signaling is responsible for stimulation of FGL2 expression in macrophages and
enhancing infiltration of the inflammatory CD45*Gr-1"8" neutrophils in the livers. Interest-
ingly, MHV-3 infection in IL-1R1”" mice, or in WT mice treated with IL-1P signaling inhibi-
tors, such as using IL-1Ra, rescue the otherwise susceptible animals from the viral FH status,
presenting with limited virus replication, attenuated disease progression and reduced mortality.
We have also shown that the bioprocess of IL-1B maturation is under the control of a key sig-
naling pathway, involving a MHV-3 virus inducible, ROS-dependent NLRP3 inflammasome
activation. Animals lacking of NLRP3, Caspase-1 or NADPH oxidase subunit p47°"°* that con-
trols acute ROS secretion, all exhibited with reduced IL-1p bio-processing that results in pre-
vention of the MHV-3 mediated disease severity. To the best of our knowledge, these data
provide evidence for the first time showing that the ROS/NLRP3/IL-1p axis is an essential con-
tributor for the virus-induced FH.

Although macrophage-mediated inflammation has been speculated to be critical for gauging
the pathological susceptibility of viral FH caused by MHV-3 infection [25], the mechanisms
underlying the pathogenesis are not well understood. IL-1p and IL-18 are two key inflamma-
tory cytokines produced by macrophages which play a pivotal role in antimicrobial immunity
[7, 23]. Previous studies have showed that IL-1RI”" mice appear to have markedly reduced
inflammatory pathology in the lung, presumably due to the impaired neutrophil recruitment
upon influenza virus infection [26]. Conversely, Ramos et al. reported that IL-1R1” mice
exhibited with a higher accumulation of the West Nile virus (WNYV) in the central nervous sys-
tem due to a restrained activation of the virus-specific effector CD8" T cells [27]. Similarly, IL-
187" mice are more susceptible to herpes simplex virus 1 (HSV1)- mediated encephalitis due to
an increase in viral load [28]. We here further explored the role of IL-1p in MHV-3 mediated
FH. Interestingly, IL-1R1”" animals display a significant reduction in viral duplication, amelio-
ration of liver damage and a prolonged survival rate against MHV-3 infection (Fig 2A and 2B).
These effects are probably due to IL-1R1 deficiency lead to limit liver recruitment of CD45"Gr-
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doi:10.1371/journal.ppat.1005155.9008

18" neutrophils and decrease in production of the macrophage-derived FGL2, which mediates
sinusoidal fibrin deposition and hepatocellular necrosis in response to MHV-3 infection [3].
Bgp1 (also called carcinoembryonic cell adhesion antigen 1a,CEACAM1a) is the specific recep-
tor for the mouse hepatitis virus (MHV), and down-regulation of Bgp1 by IFN-v is related to
the antiviral state and resistance to mouse hepatitis virus 3 infection [29]. However, Bgp1 does
not appear to be involved in IL-6 and TNF-o. secretion from MHV-3 infected macrophages
[30]. In contrast to IFN-y treatment, we here showed that the expression of Bgp1 drops signifi-
cantly in the IL-1R1”" liver during the viral infection, suggesting Bgp1 expression in macro-
phages is induced by IL-1B/IL-1R1 signaling, and lacking the pathway may compromise virus
entrance and amplification. These unpredicted data implies that IL-1f has double-edge effects
on the immune system, in which proper balancing with its signaling extent becomes essential
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for the host in protection against various invading viruses and meanwhile, in prevention of the
potential collateral damage.

The molecular mechanisms that are responsible for triggering the expression of FGL2 pro-
thrombinase, which plays a critical role in the development of MHV-3 mediated FH, are still
unclear. McGilvray et al. found that both ERK and p38-MAPK proteins are activated in MHV-
3 infected PEMs, and only inhibition of p38-MAPK can abolish FGL2 induction and its func-
tional activity [31]. Jia et al. have illustrated that TNF-o upregulates FGL2 expression via acti-
vation of NF-kB and p38-MAPK in cardiac microvascular endothelial cells [22]. Our recent
work also have showed that the inhibition of ERK1/2 and p38-MAPK efficiently block C5a-
mediated FGL2 upregulation [5]. Ning et al., have demonstrated that the hepatocyte nuclear
factor-4 (HNF4) cis-elements and its cognate transcription factor, HNF4o, are necessary for
MHV-3-induced fgl2 gene transcription [32]. Based on these studies, we further examined the
molecular mechanisms underlying IL-13-mediated FGL2 expression. The results show that IL-
1B and TNF-o. synergistically induce NF-kB, ERK and p38-MAPK tyrosine-phosphorylation
(Fig 4C). However, the inhibition NF-kB pathway, but not the ERK, or p38-MAPK signals,
markedly prevented FGL2 expression (Fig 4D), suggesting that the NF-xB pathways are
responsible for IL-1p+TNF-o-mediated FGL2 augmentation.

The NLRP3, RIG-I and the AIM2 are three main types of inflammasome complexes that
have been shown to control caspase-1 activity and IL-1B maturation. It seems that AIM?2 is
responsible for detecting DNA viruses, while both NLRP3 and RIG-I associate with recognition
of RNA viruses by cells [33, 34]. Recent evidences suggest that the host protective immunity
requires the NLRP3 inflammasome for fighting against various kinds of viruses, including
Influenza A virus, modified Vaccinia virus Ankara, Sendai virus, Respiratory Syncytial virus,
Encephalomyocarditis viruses, as well as Adenoviruses [35]. Our study shows that the MHV-3
triggered NLRP3, ASC and Caspase-1 mRNA as well as protein expression in PEMs and
RAW264.7 cells in vitro (Fig 5A). Nevertheless, loss of either NLRP3 or Caspase-1 in macro-
phages reduces IL-1p secretion upon MHV-3 challenge (Fig 5C). Additionally, NLRP3”" and
Caspase-1"" mice essentially pheno-copied the manifestations of IL-1R1” mice in response to
MHYV-3 infections, these mice evidenced with reduction in MHV -3 virus-induced IL-1p pro-
duction and lessening of disease progression (Fig 5C-5F). These combined data suggest that
NLRP3-inflammasome acts as a predominant pathway for triggering IL-1p maturation by
MHV-3, and probably also by other corona viruses. Previous study showed that RAW264.7
cells do not release mature IL-1p because they do not express ASC [36]. Conversely, we here
show that MHV-3 promotes IL-1f secretion from virus infected RAW264.7 cells through
inducing ASC expression. Together with the recent work demonstrated that NLRP3/ASC/cas-
pase-1 axis participates in the regulation of the generation of IL-1p in RAW264.7 cells, indicat-
ing that ASC is inducible in the macrophage line RAW264.7 cells under circumstances,
especially during MHV-3 infection [37].

ROS plays an essential role in mediating NLRP3 inflammasome activation [13]. Many dif-
ferent viruses, such as Influenza virus, Respiratory Syncytial virus, and Hepatitis C virus, trig-
ger NLRP3 inflammasome activation through ROS-dependent mechanisms [38-40]. NOX is
an enzymatic complex consisting mainly of five subunits (p22P"°%, p40P"°¥, p47PPox, pe7Phox
and gp91P"*) and two GTP-binding proteins (RACI/RAC2). We here show that MHV-3 trig-
gers NOX-derived ROS secretion in macrophages by inducing NOX-subunits, including
GP91P"%, pa7P"** and NOX-4 expression in the very early stages of the viral infection (Fig 7A
and 7C). Additionally, preventing NOX-derived ROS through DPI appeared to successfully
down modulate NLRP3 hyperactivation and IL-1f maturation in vitro (Fig 7F). Furthermore,
virus infected p47°"°*""
leading to the control of NLRP3 hyperactivation, which results in attenuation in severity of the

macrophages manifested with significant reduction in ROS secretion,
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viral FH (Fig 8). These results are inconsistent with previous reports that have shown that
NADPH oxidase-derived ROS are not involved in activating NLRP3 inflammasome [41, 42].
One of the discrepancies is the different cell models are used in studies. Silica crystals, LPS, and
uric acid crystals act as the stimulators in these studies, while MHV-3 virus is the activator in
our research. Conversely, it is worth mentioning that not all p47°"**’* mice are completely
resistant to MHV-3, and these animals eventually still died from the infections (Fig 8B),
together with some virus infected mice still produce high levels of IL-1 and virus titers, sug-
gesting the presence of other mediators that in response to the virus challenge, are capable of
activating NLRP3 inflammasome in vivo. One of the potential activators is MitoSOX [43, 44].
We have also observed a very high level of the MitoSOX production in the MHV-3 infected
RAW264.7 cells at 48h and 72h post-infection in vitro, along with high frequency damage and
destruction of mitochondria might simultaneously occur. However, the release of MitoSOX
was unable to be successfully blocked by ROS inhibitor- DPI (50 uM) (Fig 7). Additionally,
DPI is harmful to animals and unsuitable in vivo experiments [45]. The incapable of completely
blocking ROS production by using high dose of DPI in vitro suggests the existence of other
sources of ROS for activating NLRP3 inflammasome. Interestingly, reduced mortality and
pathology were seen in MHV-3 infected p47° hox/- mice compared to WT littermates despite a
lack of significant reduction in virus replication, suggesting that MHV-3-mediated pathology is
due to inflammation and not direct virus infection. Recent studies by Warner Greene’s group
demonstrate that HIV can trigger caspase-1 activation and pyroptosis, a highly inflammatory
form of programmed cell death in which dying cells release their cytoplasmic contents, includ-
ing inflammatory cytokines into the extracellular space where the virus infected CD4" T-cells
recite [46]. A similar environment might also explain for the MHV-3 induced FH status.

IL-18 is another member of the IL-1 superfamily that has been indicated to be important in
the pathogenesis of mouse models of Influenza virus, HBV, Rhinovirus and Vaccinia virus
infection [47]. For example, IL-18R”" mice appeared to be protected from Influenza viral initi-
ated inflammatory lung damages [48]. Consistent with previous reports, we have detected sig-
nificantly high levels of matured IL-18 in the serum of MHV-3 infected WT mice. However,
IL-18 deficiency does not prevent Bgp1 expression, virus amplification and FGL2 accumulation
in the liver following MHV-3 infection, and as the consequence, these mice stay high with
fibrinogen deposition, liver damage and hepatocyte necrosis (Fig 6). These results suggest that
IL-18 is not essential for causing MHV -3 mediated acute hepatitis.

In conclusion, our study elucidates that NLRP3 inflammasome-dependent IL-1 produc-
tion, a primary inflammatory signaling pathway of the host for mounting conventional immu-
nity against pathogen invasions, plays a double-edged role in the host immune system.
Hepatotropic virus, like MHV-3 infection in mice, can induce exaggerated inflammation in the
liver and cause life-threatening viral FH. These results shed lights on a novel strategy, for
which the properly modulation of the IL-1f signaling pathway, in combination with blocking
other inflammatory factors, might benefit the treatment of viral FH and other severe inflamma-
tory diseases in human.

Materials and Methods

Mice

The p47°"°*-deficient (p47°"°*"", #004742), NLRP3”" (#017970), Caspase-1"" (#016621), IL-
187 (#004130), IL-1RI”" (#003245) and wild type (WT) mice were on C57BL/6 background
and were purchased from the Jackson Laboratory (Bar Harbor, Maine, USA). Mice were main-

tained in micro-isolator cages, fed with standard laboratory chow diet and water, and housed
in the animal colony at the animal center of the Third Military Medical University (TMMU).
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Mice approximately 12 weeks of age were used for these experiments. All animals received
humane care according to the criteria outlined in the "Guide for the Care and Use of Labora-
tory Animals" prepared by the National Academy of Sciences and published by the National
Institutes of Health (NIH publication 86-23 revised 1985).

Cells

RAW264.7 cells were provided by the Cell Institute of the Chinese Academy of Sciences
(Shanghai, China). Peritoneal exudative macrophages (PEMs) were harvested as described pre-
viously [5]. Cells were cultured in 6-well plates and propagated in DMEM supplemented with
10% FBS, 100 U/ml penicillin, and 100 ug/ml streptomycin.

Virus and infection

MHV-3 viruses were expanded in murine 17CL1 cells to a concentration of 1x10” plaque form-
ing unit (PFU)/ml. The virus-containing supernatants were stored at -80°C until use. Macro-
phages were infected with MHV-3 (multiplicity of infection, MOI = 1) in vitro and mice were
injected with 100 PFU of MHV-3 via i.p. In some experiments, the virus infected mice were
treated with IL-1R antagonist (IL-1Ra, 10 mg/kg/day) or recombinant mouse IL-1p protein
(100 ng/day/mouse) every day. Mice were euthanized on the indicated days and the virus titers
in liver were determined by plaque assay as described previously [25]. The sources of antibod-
ies and other reagents are detailed in S1 Text.

Tissue morphology detection and immunohistochemistry

Paraffin-embedded liver tissue blocks were cut into 3 pm slices and mounted onto poly-lysine-
charged glass slides, and tissue injury was stained by hematoxylin and eosin (H&E). Cellular
apoptosis was measured by TUNEL staining according to the manufacturer's instructions
(Roche, Berlin, Germany). The expression of fibrinogen and FGL2 was detected by immuno-
histochemistry as described previously [25]. Sections were scored in a blinded fashion for histo-
logical diagnosis.

Real-time quantitative RT-PCR

Total RNA was extracted from cultured cells or liver tissues with TRIzol reagent according to
the manufacturer's instructions (Invitrogen, NY, USA). First-strand cDNA was synthesized
with the PrimeScript RT-PCR Kit (Takara, Dalian, China). The expression of mRNA encoding
for NLRP3, Caspase-1, proIL-1f3 and prolL-18 was quantified by real-time quantitative PCR
with the SYBR Premix ExTaq kit (Takara) and was normalized to the expression of B-actin.
Sequences of the primers are provided in S1 Table. Results were calculated and compared by
the 2744 method.

ELISA and western-blotting

Serum C5a, FGL2, IL-18 and IL-1f levels were measured by ELISA. The expression of FGL2,
proCaspase-1, Caspase-1-p20, NLRP-3, p47°"%, p90P"~, p67P"°%, Nox-4, Bgp1, prolL-1B and
IL-1B-p17 in MHV-3 infected livers or macrophages was detected by western-blotting
described previously [25].

Flow cytometry

The release of IL-1B/ROS from virus infected macrophages, liver infiltration of CD45"GR-1
neutrophil and CD4"Foxp3™ regulatory T cells (Treg), all were detected by flow cytometry

high

PLOS Pathogens | DOI:10.1371/journal.ppat.1005155 September 14,2015 16/21



@’PLOS | PATHOGENS

NLRP3 Inflammasome Promotes Viral Fulminant Hepatitis

(FACsAria cytometer, BD, Franklin Lakes, NJ, USA). The death cells were excluded firstly by
staining with LIVE/DEATH Fixable Near-IR Ded Cell Stain Kit (Life technologies, Eugene,
Oregon, USA). The secretion of NOX-derived ROS was detected by means of an oxidation-sen-
sitive fluorescent probe-DCFH according to the manufacturer's instructions (Beyotime, Shang-
hai, China). Moreover, the mitochondria-derived ROS was measured in cells stained with
MitoSOX (5 puM, Invitrogen) for 20 min. To measure mitochondrial damage, cells were stained
for 20 min with MitoTracker Green FM (20 nM) and MitoTracker Deep Red FM (20 nM), two
kinds of dye that stain mitochondria with no influence on their membrane potentials (Invitro-
gen). A total of 10,000 live cells were analyzed. All the FACs data were analyzed using Cell-
Quest Pro software.

Electron microscopy

RAW264.7 cells or primary PEM:s isolated from MHV-3 infected mice were fixed with 4% (v/
v) glutaraldehyde. Sample preparation was conducted as described previously [49]. Mitochon-
drial morphology and virion was observed with JEOL JEM2100HC transmission electron
microscopy.

Statistical analysis

All data were analyzed using GraphPad Prism 4.03 software. An unpaired Student’s ¢-test
(two-tailed) was used to assess comparisons between two groups when the data met the
assumptions of the t-test. Survival curves were generated by log-rank test. p<0.05 was consid-
ered a significant difference.

Ethics statement

All animal experiments were performed in strict accordance with the Guide for the Care and
Use of Laboratory Animals issued by the Ministry of Science and Technology of the People's
Republic of China. The protocol was approved by the Third Military Medical University Insti-
tutional Animal Care and Use Committee.

Supporting Information

S1 Text. Reagents and antibodies.
(DOCX)

S§1 Table. The primer sequences for qPCR of the indicated genes.
(DOCX)

S1 Fig. IL-1R antagonist (IL-1Ra) protected MHV-3-mediated hepatitis. C57BL/6 WT mice
were infected with MHV-3 (100 PFU) and treated with IL-1R antagonist (IL-1Ra, 10 mg/kg/
day) or PBS at the same time. (A) Serum IL-1P concentration at 72h post MHV-3 infection
was measured by ELISA. **p<0.001. (B) Liver Bgpl and FGL2 expression at 72h post-infection
was detected by western-blotting. (C) The virus titers in livers at 72h post-infection were ana-
lyzed by plaque assay, and their levels were compared by statistical analysis. *p<0.05, n = 5 per
group. (D) Liver architecture was analyzed by H&E-staining, the FGL2 expression and fibrino-
gen deposition was analyzed by immunohistochemistry. N = 5 per group, scale bar = 20 um.
(E) The survival rate was monitored for a total of 20 days. One representative of three experi-
ments with similar results is shown.*p<0.05 compared to MHV-3+PBS group.

(TTF)
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$2 Fig. Liver infiltration of CD4"Foxp3* Tregs was not affected in IL-1RI” mice. [L-1RI”
mice and their C57BL/6 WT littermates were infected with MHV-3 (100 PFU). (A) The per-
centage of CD4 " Foxp3™ Tregs in liver tissue was detected by flow cytometry. One representa-
tive of five mice per group is shown. The number indicates the percentage of positive cells in
the indicated gate. (B) The number of CD4"Foxp3™ Tregs in liver tissues was counted and
compared. “p < 0.05. NS: no significant difference.

(TIF)

$3 Fig. Serum C5a concentration was not affected by IL-1p and NLRP3 inflamasome. IL-
IRI”", NLRP37, Caspase-l'/ “mice and their C57BL/6 WT littermates were infected with
MHV-3 (100 PFU). (A) Serum complement C5a concentration between IL-1RI” and WT
mice was measured by ELISA and statistically compared. N = 6 per group. N = 6 per group,
**p < 0.001. NS: no significant difference. (B) Serum complement C5a concentration among
NLRP3”", Caspase-1"" mice and their WT littermates was measured by ELISA and statistically
analyzed. N = 6 per group,”*p < 0.05. NS: no significant difference.

(TIF)

S4 Fig. MHV-3 promotes RAW264.7 cell apoptosis. RAW?264.7 cells were infected with
MHV-3 (MOI = 1), and cellular apoptosis was analyzed using TUNEL staining at the indicated
time points. Scale bar 20 um; arrow indicates positive cells; blue color indicates nuclear staining
with DAPL

(TIF)

S5 Fig. Restoration of IL-1p exacerbates MHV-3-mediated hepatitis in p47°"°*” mice.
MHV-3-infected p477"°*" mice were treated with mouse recombinant IL-1p protein (100 ng/
day/mouse) or PBS, respectively. (A) Serum FGL2 levels post-infection were measured by
ELISA (n =5 per group). *p<0.05. NS: no significant difference. (B) Liver fibrinogen (FB)
deposition at 72h post-infection was detected by immunohistochemistry and the architecture
was analyzed by H&E-staining. N = 5 per group, scale bar 20 pm, arrow indicates positive cells.
(TIF)
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