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Abstract

Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium
co-infections occur frequently in endemic areas. However, it is unclear whether Plasmo-
dium infections compromise anti-helminth immunity, contributing to the chronicity of
infection. Immunity to Plasmodium or helminths requires divergent CD4* T cell-driven
responses, dominated by IFNy or IL-4, respectively. Recent literature has indicated that Th
cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage
associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this
study, we observed reduced anti-helminth Th2 cell responses and compromised anti-hel-
minth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection.
Using newly established triple cytokine reporter mice (//[49PIfng"™I117a3%), we demon-
strated that //49%* Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-
infected mice up-regulated IFNy following adoptive transfer into Rag7™~ mice infected with
P. chabaudi. Functionally, Th2 cells that up-regulated IFNy were transcriptionally re-wired
and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and
responsiveness to IL-12 and IFNy, but not type | IFN, was required for optimal IFNy produc-
tion by Th2 cells. Finally, blockade of IL-12 and IFNy during co-infection partially preserved
anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain
substantial plasticity with the ability to produce IFNy during Plasmodium infection. Conse-
quently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth
infection by reducing anti-helminth Th2 cells and converting them into IFNy-secreting cells.
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Author Summary

Approximately a third of the world’s population is burdened with chronic intestinal para-
sitic helminth infections, causing significant morbidities. Identifying the factors that
contribute to the chronicity of infection is therefore essential. Co-infection with other
pathogens, which is extremely common in helminth endemic areas, may contribute to the
chronicity of helminth infections. In this study, we used a mouse model to test whether the
immune responses to an intestinal helminth were impaired following malaria co-infection.
These two pathogens induce very different immune responses, which, until recently, were
thought to be opposing and non-interchangeable. This study identified that the immune
cells required for anti-helminth responses are capable of changing their phenotype and
providing protection against malaria. By identifying and blocking the factors that drive
this change in phenotype, we can preserve anti-helminth immune responses during co-
infection. Our studies provide fresh insight into how immune responses are altered during
helminth and malaria co-infection.

Introduction

Infections with Plasmodium and helminths are extremely common, each contributing to sub-
stantial morbidity in affected populations [1-3]. Additionally, co-infections with Plasmodium
species and intestinal helminths occur frequently in co-endemic areas [4,5]. The impact of co-
infection on disease burden, pathogenesis, resistance to infection and immunity is complex
and poorly understood. The vast majority of reported co-infection studies have focused on the
impact of helminth infection on Plasmodium-associated responses, identifying altered anti-
malarial immune responses or malaria-associated pathology during helminth co-infection [6—
11]. However, the specific impact of Plasmodium infection on anti-helminth immunity has not
been well characterized. Experimental murine models of helminth and Plasmodium co-infec-
tions have been established, however these have also mainly focused on how concomitant hel-
minth infection affects Plasmodium immunity and pathology [11-16], with much less focus on
how Plasmodium infection impacts helminth-associated type 2 responses.

Murine models of intestinal helminth infections have delineated a clear role for Th2-dir-
ected immune responses for proficient immunity. In particular, infection with the natural
murine helminth, Heligmosomoides polygyrus, results in a chronic infection with the induction
of a polarized type 2 response, characterized by IL-4-producing Th2 cells, alternative activation
of macrophages and elevated IgE, closely mimicking human helminthiasis. Following anthel-
mintic treatment, Th2 cell-dependent immunity protects mice from re-infection (reviewed in
[17,18]). In contrast, acute blood-stage infection with the rodent malaria parasite, Plasmodium
chabaudi chabaudi (AS), results in polyclonal lymphocyte activation with a strongly polarized
Th1 response [19]. Disease is associated with a spectrum of immunopathologies including
splenomegaly and anemia [20-22] with peak parasitemia occurring 7-9 days post-infection
[23]. These well-studied experimental systems, modeling human disease, provide appropriate
tools to dissect the immune responses during co-infection.

There is a large body of literature describing the antagonistic relationship between Thl and
Th2 cell differentiation. In vitro-based studies have clearly established that under Th1 and Th2
polarizing conditions, differentiated cells become more fixed in their phenotype with increas-
ing rounds of cell division, losing their ability to convert to alternative phenotypes [24,25].
Mechanistically, T-bet and GATA-3, transcription factors required to promote Th1 and Th2
differentiation, respectively, inhibit differentiation of the opposing phenotype [26,27]. Despite
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this clear antagonistic relationship, IL-4 TFNy" and T-bet" GATA-3" Th cells are readily
observed in vivo [28,29], and several studies have established that Th subsets retain flexibility
in their ability to produce non-lineage-specific cytokines [30-32]. Indeed, recent studies chal-
lenging the fate-lineage dogma demonstrated that antigen-restricted TCR transgenic Th2 cells
co-produced IFNYy and IL-4 following LCMYV infection [33,34].

In light of these new data, it is possible that Th cell conversion occurs during co-infection,
altering immunity to one or both pathogens or contributing to the chronicity of helminth
infection.

In this study, we observed that Plasmodium and helminth co-infection led to a reduction of
helminth-elicited 14¢"* Th2 cells and compromised anti-helminth immunity. We hypothe-
sized that helminth-elicited Th2 cells were being converted into IFNy-secreting Th1 cells dur-
ing Plasmodium co-infection, as pressure to control both pathogens was placed on the Th cell
population. To test this hypothesis, we generated triple cytokine reporter mice to accurately
purify and identify 11497, Ifng””? and I117a"%**-expressing cells to determine whether Th2 cells
had the ability to change their phenotype. We observed that Il4-expressing Th2 cells could
readily produce IFNy following adoptive transfer in Rag™’ “recipients, and these cells reduced
severe parasitemia during acute P. chabaudi infection. Conversion of Th2 cells was dependent
upon IL-12 and IFNy-signaling, and blockade of these cytokines during co-infection preserved
the Th2 response. Overall, this study provides fresh insight into the functional relationship
between IFNy- and IL-4-producing Th cells during co-infection and indicates that limiting
acute Th1 responses may preserve Th2-mediated anti-helminth immunity.

Results

Plasmodium infection compromises Th2-dependent anti-helminth
immunity

To assess the impact of concomitant Plasmodium infection on the development of Th2
responses, we infected mice with H. polygyrus and 6 days later with 10° P. chabaudi-infected
red blood cells (Fig 1A). To accurately identify simultaneous transcription of Th1 (Ifng), Th2
(Il4) and Th17 (Il17a) lineage-defining genes, we generated a triple cytokine reporter mouse
(1145 Ifng”P1117a“*R26™°>°) using existing and new fluorescent cytokine reporter mouse
strains [35-37] (S1 Fig). Following infection with L3 larvae of the intestinal helminth, H. poly-
gyrus, we observed a significant expansion of 1497+ CD4* Th2 cells in the mesenteric lymph
nodes 14 days post-infection. Co-infected mice had significantly reduced numbers of I1497*
CD4" Th2 cells in the mesenteric lymph nodes (Fig 1B) as well as a reduction in serum IgE
(Fig 1C) and decreased expression of the alternative macrophage activation marker, Retnla
(Relma) in the gut (S2 Fig). These data indicated that helminth-elicited Th2 cells and Th2-dri-
ven immune responses were compromised during Plasmodium co-infection. The reduced
114977 cells in the mesenteric lymph nodes correlated with an increase in Ifng”?* cells in the
spleen during co-infection.

Very few I117a"7°%%" cells were induced in this model (S2 Fig). Following the resolution of
acute malarial parasitemia, Th2 cell numbers in the mesenteric lymph nodes and serum IgE
returned to levels observed in mice infected with H. polygyrus only (S2 Fig).

H. polygyrus establishes a chronic infection in wild type C57BL/6 mice. However, treating
mice with anthelmintics kills adult parasites and allows a protective memory Th2 response to
develop. Upon re-infection, mice expel worms in a CD4" T cell- and 1L-4-dependent manner
[38,39]. Following the observation that P. chabaudi infection compromised Th2 cell responses
(Fig 1B), we tested whether P. chabaudi infection would impact Th2-dependent anti-helminth
immunity. We infected wild type mice with H. polygyrus, treated mice with the anthelmintic,
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Fig 1. H. polygyrus/ P. chabaudi co-infection leads to impaired Th2 responses. A-C). Triple reporter mice
were orally infected with 200 H. polygyrus larvae. 6 days post-infection, mice were infected i.p. with 10° P.
chabaudi. At day 8 of P. chabaudi infection (d14 H. polygyrus), mice were harvested. B). Total numbers of
CD4*CD44"149%* cells in the mesenteric lymph nodes. Data are representative of 5 independent experiments
with 2—4 mice per group. C). IgE measured in the serum by ELISA from 3 pooled experiments. D and E).
C57BL/6 mice were infected with 200 H. polygyrus larvae, treated on 2 consecutive days (days 14—15) with
pyrantel pamoate (5 mg), infected with 10° P. chabaudi, and re-infected with H. polygyrus. Adult worms in
intestine were counted on day 51. Data are representative of 4 independent experiments with 6—7 mice per
group. * denotes P<0.05.

doi:10.1371/journal.ppat.1004994.9001

pyrantel pamoate, and then infected mice with P. chabaudi 7-days prior to re-infection with H.
polygyrus (Fig 1D). Although H. polygyrus-specific IgG1 levels were comparable between
groups of mice (S2 Fig), P. chabaudi-infected mice that had been given a secondary H. poly-
gyrus challenge infection had significantly more adult worms in the intestinal lumen (Fig 1E),
indicating that Plasmodium infection compromised proficient anti-helminth immunity.

1149+ Th2 cells can functionally adapt, up-regulating IFNy to control
Plasmodium infection

It has become clear in recent years that lineage-committed CD4" T cells retain a degree of
plasticity, with the ability to convert between phenotypes [30]. Plasmodium infection elicits a
polyclonal expansion of lymphocytes and IFNy-secreting T cells [21,22]. We therefore
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hypothesized that the loss of Il4¥7* Th2 cells in the mesenteric lymph nodes and the increase
in Ifng”** cells in the spleen during H. polygyrus and P. chabaudi co-infection was due to
conversion of Th2 cells to an IFNy-producing Th1-like phenotype. To test whether Th2

cells could produce IFNy during P. chabaudi infection, we FACS-purified CD4*TCRB* 1149+
Ifng”P"1117a"3%°~ Th2 cells from 2-week in vitro cultures (S1 Fig), adoptively transferred them
into Ragl™ mice and infected the recipient mice with P. chabaudi. Cytokine expression in the
transferred cells was analyzed in the spleen at day 8 post-infection (Fig 2A). Transferred Th2
cells (1497 Ifng~1117a™3%°") almost completely lost expression of 114¥% and, comparable to
naive T cells, expanded with approximately 80% of cells expressing Ifng”? (Fig 2B). Il17a""***
cells were barely detectable (<1%) following Plasmodium infection, in line with previous data
[21,22,40]. IFNY protein was also detectable in the serum of mice that received either naive
CD4* T cells or purified Th2 cells, but not in P. chabaudi-infected Ragl™ mice that received
no T cells, indicating that serum IFNy was T cell-dependent (Fig 2C). Thin blood smears from
recipient mice identified that following infection of Ragl ™ mice, very high parasitemia is
observed (Fig 2D). The adoptive transfer of naive T cells to Ragl™ mice significantly reduced
the high parasitemia, confirming an important T cell-dependent role in the control of high
parasitemia during acute infection. This system permitted us to test whether Th2 cells, which
had converted into IFNy™ cells, could also control high parasitemia following acute infection.
Indeed, adoptive transfer of Th2 cells also significantly reduced parasitemia (Fig 2D), suggest-
ing a functional loss of hemoglobin and severe anemia were also prevented in Ragl ™ mice
given Th2 cells (Fig 2E and 2F). Although Th2 cells up-regulated IFNy in uninfected recipient
Ragl™"mice, significantly greater expansion of these converted cells occurred in P. chabaudi
infected recipient mice (S3 Fig). These data demonstrate that purified Il4-expressing Th2 cells
were capable of producing IFNy and could protect mice during acute P. chabaudi infection,
similar to naive CD4" T cells. Finally, to determine whether Th2 cells had the capacity to pro-
duce non-lineage cytokines in another model system, we infected Ragl ™ recipient mice with
Candida albicans (S4 Fig). At day 6 post C. albicans infection, transferred 11497 Th2 cells had
lost 114 expression and up-regulated IFNY, similar to P. chabaudi infection. Interestingly, trans-
terred Th2 cells did not up-regulate IL-17a, unlike naive controls (54 Fig).

Th2 cells that have down-regulated //4 and up-regulated /fng undergo
significant transcriptional re-wiring yet retain the ability to produce IL-5
and IL-13

We next asked whether Th2 cells that had down-regulated I14¢” and expressed Ifng"”? retained
the ability to re-express Th2-associated cytokines. We transferred I149* Th2 cells into Ragl™
“mice and infected recipient mice with P. chabaudi, as in Fig 2A. At day 8 post-infection with
P. chabaudi, we sorted CD4 " TCRB" Ifng"? 1149111 7a""°%~ cells from the spleens of recipient
mice (Fig 2G). Converted cells were then cultured in vitro with IL-4 and TCR stimulation. As
expected, Ifng”?* cells that were previously either naive or Il49P* secreted IFNy protein (Fig
2H), validating the fidelity of the transcriptional reporter system. However, only Ifng”?* cells
that were previously 149" secreted the Th2-associated cytokines IL-13 and IL-5 (Fig 21), indi-
cating that converted cells were indeed plastic, retaining the ability to produce Th2 cytokines.
To identify the degree of transcriptional re-wiring of the converted cells in this model, we
performed RNA sequencing on Th2 cells (1149%%), converted Th2 cells (11497 — Ifng"**114"),
naive CD4" T cells, and Th1 cells (naive — Ifng”?*114¢%"), using the same sorting strategy as in
Fig 2G. Comparing the transcriptome of all significantly differentially regulated genes (p<0.05,
>2-fold relative to naive T cells) between the populations, we identified that converted cells
had adopted a transcriptional profile very similar to Th1 cells (Fig 3A and 3B, S1 Table) with
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Fig 2. In vitro Th2 cells produce IFNy and protect Rag1"mice during Plasmodium infection. A). Experimental set-up: 2-week in vitro polarized Th2
cells were FACS sorted as CD4*1149%*Ifng”"P=1117a"7%3%~ and transferred i.v. to Rag 1™ mice. As a control, a group of Rag?~"mice received naive CD4* T
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cells. A second control group received no T cells. Recipient mice were infected with 10° P. chabaudii.p. on day 14 post-transfer and harvested at day 8 post-
infection. B). Percent and total number of CD4* 149"+ and Ifng”®* cells in the spleen, as determined by FACS. C). Serum IFNy levels determined by ELISA.
D). Percent parasitemia was determined by blinded counting of Giemsa-stained blood smears. E and F). Hemoglobin and eHred blood cell counts were
measured in peripheral blood by Vetscan. Data is representative of at least 3 independent experiments, with 3-5 mice per group. G). Converted
CD4*TCRB*Ifng”P* 11491117235~ cells were sorted from pooled spleens of 3 recipient Rag7~"mice at day 8 post-P. chabaudi infection. H). Sorted Ifng”*
cells were cultured in vitro in Th2 conditions for 5 days. ELISAs for IFNy (H), IL-5 and IL-13 (I) were run on cell supernatants. Error bars represent technical
replicates. Data are representative of 3 independent experiments. * denotes P<0.05.

doi:10.1371/journal.ppat.1004994.9002

the majority of differentially regulated genes common with Th1 cells, while retaining some
transcriptional similarity with their Th2 origin. Converted cells expressed Ifng, Tnf, 1I2 and 1110
and largely lost expression of I/4 and Il6, in comparison to the Th2 controls (Fig 3C). Similarly,
the transcriptional machinery in converted cells resembled Th1 cells with elevated Tbx21
(Tbet) and Eomes and low expression of Th2-associated transcription factors Gata3 and Nfil3
(Fig 3D). To identify putative mechanistic pathways responsible for Th2 cell conversion, we
used an upstream pathways algorithm to predict factors that may contribute to the observed
transcriptional profile (Ingenuity Pathways Analysis). This analysis identified canonical Thl
differentiation factors including IL-12, IFNy and type 1 IFN as potential upstream factors con-
tributing to the observed transcriptional profile in converted cells (Fig 3E). Furthermore, con-
verted cells expressed 1112rb1, 1112rb2, Ifngrl and Ifnarl (Fig 3F). In summary, converted Th2
cells had undergone significant re-wiring, closely resembling Th1 cells.

IFNy production by Th2 cells does not depend on lymphopenia and
requires TCR engagement

When T cells undergo expansion in lymphopenic environments a population of rapidly divid-
ing cells up-regulate CD44 and IFNy [41-43]. To test whether conversion of Th2 cells into
IFNy-expressing cells could occur in a CD4" T cell replete mouse, we transferred purified Th2
cells or naive CD4* T cells into OTII Ragl™ “mice [44], which have CD4" T cells specific only
for OV A peptide. We infected recipient mice with P. chabaudi and analyzed donor and host
cells at day 8 post-infection (Fig 4A). Purified Th2 cells transferred into CD4* OTII Ragl™
“mice, similar to Th2 cells transferred into Ragl ““mice, produced IFNy and down-regulated
IL-4 (Fig 4B and 4C), contributing to elevated levels of serum IFNy (Fig 4D). In contrast, host
OV A-specific CD4™ T cells did not produce IFNY following Plasmodium infection (Fig 4C).
Thus, Th2 cell conversion was not dependent on lymphopenia.

Given that Th cells require both TCR stimulation and cytokine-mediated signaling for dif-
ferentiation, it was conceivable that pre-activated Th2 cells in this system would only require a
second cytokine receptor-mediated signal to up-regulate IFNy, without the need for any addi-
tional TCR stimulation. We took two independent approaches to test whether TCR engage-
ment was required for Th2 cells to produce IFNYy. First, we generated and FACS-purified TCR-
restricted Th2 cells from OTII Ragl ™ mice crossed with I14¥” reporter mice. We then trans-
ferred these OV A-specific 497" Th2 cells into Ragl ™ recipients (devoid of OVA) and infected
recipient mice with P. chabaudi (Fig 5A). Unlike polyclonal I14¢7* Th2 cells that lost expression
of 1149 and produced IFNy, antigen-restricted OTII 149" Th2 cells retained expression of
1149 and failed to produce IFNy (Fig 5B). Furthermore, IENy was not detectable in the serum
of mice that received OV A-specific I147* Th2 cells (Fig 5C). Functionally, the failure to pro-
duce IFNYy correlated with significantly higher parasitemia, comparable to mice that received
no T cells (Fig 5D). These data indicate that TCR signaling was required for the functional con-
version of Th2 cells into IFNy-secreting cells. To verify the requirement of TCR-signaling for
conversion, we transferred purified I1457* Ifng?"1117a"*%*~ Th2 cells into Ragl ™ recipient
mice which were also deficient in MHC Class II and therefore unable to present antigens to
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Fig 3. Converted Th2 cells are transcriptionally similar to Th1 cells. Purified in vitro Th2 cells (CD4*TCRB 149 *Ifng”™®"1117a"7%%") or naive CD4* T cells
were sorted for RNA or transferred to Rag 7~ mice. Recipients were then infected with 10° P. chabaudi, as in Fig 2. CD4*TCRB*Ifng"®* 1149111727635 cells
were then sorted from spleens of recipient mice at day 8 post-infection for RNA. RNA sequencing and IPA analysis was performed on the four cell
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populations. Data were expressed relative to naive in A and B. A and B). Venn diagram and heatmap generated from differentially regulated genes (P<0.05,
2-fold relative to naive T cells) of Th2 cells and Th1 cells, highlighting 1899 genes commonly expressed, which were not changed in Th2 cells. Th2 cells and
converted Th2 cells shared 117 differentially regulated genes, which were not expressed in Th1 cells. C, D, and F). Normalized RNA-Seq reads of indicated
genes. E). Upstream pathways analysis in Ingenuity Pathways Analysis (IPA) identified IL-12, type 1 IFN, and IFNy as potential upstream regulators of
converted Th2 cells. Samples were generated from 3 biological replicates (each sample representing cells from a single donor mouse).

doi:10.1371/journal.ppat.1004994.9003

11487 Th2 cells. Recipient mice were infected with P. chabaudi, and transferred cells were ana-
lyzed at day 8 post-infection (Fig 5E). As before, I1457* Th2 cells transferred into MHC Class
I-sufficient Ragl ™ “recipient mice down-regulated I14¢% and up-regulated Ifng”?. However,
1149%* Th2 cells transferred to MHC Class II-deficient Ragl ™ recipient mice remained I149F*,
did not express Ifng”? (Fig 5F) and failed to reduce severe parasitemia (Fig 5H). IFNy was also
undetectable in the serum (Fig 5G). Taken together, these two experimental systems demon-
strate that conversion of Th2 cells in this model requires TCR engagement.

IL-12 and IFNy, but not type I IFN, promote IFNy expression by
transferred Th2 cells

It has been shown previously that type I IFN signaling was required for IFNy production from
LCMV-specific TCR transgenic Th2 cells [34]. We had also observed that type 1 IFN was a
candidate cytokine that could contribute to the transcriptional profile of converted Th2 cells
(Fig 3E). We therefore tested the requirement for type 1 IFN signaling by crossing Ifnar” mice
with I14%P reporter mice. FACS purified I14%7* Ifnar™”~or 11497 Ifnar*’* Th2 cells were trans-
ferred to Ragl ™ recipient mice, subsequently infected with P. chabaudi and analyzed at day 8
post-infection (Fig 6A). Both type I IFN responsive and unresponsive Th2 cells were capable of
up-regulating IFNy (Fig 6B and 6C), contributing to serum IFNy levels (Fig 6D). Furthermore,
type I IFN responsive and unresponsive Th2 cells afforded similar protection from high parasi-
temia (Fig 6E), and prevented a loss in hemoglobin and red blood cells (Fig 6F). Thus, type I
IFN signaling was dispensable for IFNYy production from ex-Th2 cells and for controlling high
parasitemia.

From our RNA-Seq analysis we also identified that the canonical Th1 differentiating cyto-
kines, IL-12 and IFNY, may be responsible for the transcriptional profile observed in our con-
verted cells (Fig 3E). We first tested whether Th2 cells were responsive to IL-12 by measuring
the phosphorylation of STAT4 following exposure to IL-12. Supporting previous studies [45-
47), neither naive CD4" T cells nor sorted 11497+ Th2 cells phosphorylated STAT4 in response
to IL-12 (Fig 7A and 7B; Pre- transfer). We then sorted transferred cells from naive CD4" T
cell or 149" Th2 cell recipient Ragl~~mice 2 weeks post-transfer and found that both popula-
tions were responsive to IL-12 (Fig 7A and 7B; Post-transfer). Thus, it was possible that IL-12
was promoting IFNy expression in Th2 cells following P. chabaudi infection. We tested the
role of IL-12 by transferring naive or I/49"* Th2 cells to Ragl™” mice and blocking IL-12 prior
to and after P. chabaudi infection (Fig 7C). Blocking IL-12 reduced expression of Ifng”? in
naive T cells (reduced from 78.9% to 52.61%); however, IL-12 blockade did not substantially
alter the frequency of Ifng”?* cells derived from Th2 cells. Instead, IL-12 blockade maintained
expression of I1497* in the Th2 population, with significantly larger I14%7* and 11457* I[fngP*
populations (Fig 7D-7F). These data indicate that in this system IL-12 down-regulated 1/4¢%
expression, but was not required for IFNy from Th2 cells. Furthermore, neutralization of IL-12
did not impact parasitemia (Fig 7G).

We next tested whether IFNYy, which contributes to Th1 differentiation [48], was required
for IFNy expression by Th2 cells. To do this, we blocked IFNy, IL-12, or both IFNy and IL-12
throughout the experiment (Fig 8A). Blockade of IFNY or IL-12 alone did not have a major

PLOS Pathogens | DOI:10.1371/journal.ppat.1004994  July 6, 2015 9/29



@'PLOS | PATHOGENS

Th2 Cells Produce IFNy during Plasmodium Infection

A.

OTll Rag1~-

CD45.1+ T,;2 (/1497+)

Pc.

(Day 2) (Day 10)

or
CD45.1* Naive T (nT) cells
(Day 0)
B. nT T,2
] PNy
= -4+
Hl 'FNyIL-4
1 FNyIL-4-
C.
Donor Host
(CD45.1%) (CD45.1°)
. 100 « 100
= 80 w80
. == =8
Z>8 60 EP 60
E;r 40 o3 40
X A o
o 20 o 204 .. .. .
5 0 . . 5 0 <1% <1% <1%
nT T2 - nT Ty2
+  2.57
o 20 +
n .U
+ < D-
8 157
§+§ ;.g- 500- %
qc_) OC T T f"\ 400-
nT T2 EE 800
25, > & 2004
4 20 — @ 1004 =
23 157 - 0
(@] 1 1 T
25 107 - nT T2
LA
x (@] 05'
5 0.0 —11-
nT  Ty2

Fig 4. IFNy production by Th2 cells does not depend on lymphopenia. A). Th2 cells generated from 1149
mice were polarized in vitro for 2 weeks, sorted as CD4*TCRB+II49“”, and 2.5x10° were transferred to OTII
Ragf/’recipient mice. Control groups received no T cells or sorted naive T cells. 2 days post-transfer, mice
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doi:10.1371/journal.ppat.1004994.9g004
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day 14, and mice were harvested at day 8 post-infection. Representative of 2 independent experiments with 5 mice per group. F). Cytokine reporter
expression in transferred cells in the spleen. G). IFNy protein in serum, measured by ELISA. H). Percent parasitemia, determined by blinded counting of
Giemsa-stained blood smears. * denotes P<0.05.

doi:10.1371/journal.ppat.1004994.9005

impact on IFNy production by Th2 cells (Fig 8B). As above, IL-12 blockade preserved 1497
expression in a population of Th2 cells (Fig 8C). However, blockade of both IFNy and IL-12
led to a >50% reduction in IFNy-expressing cells deriving from Th2 cells (from 66.7%+1.5%
IFNy" cells to 31.6%+3.4% IFNY™ cells, Fig 8B), indicating that both IL-12 and IFNy were
required for optimal conversion of Th2 cells into IFNy-secreting cells during Plasmodium
infection. Despite a 50% reduction in IFNYy-secreting cells following IL-12 and IFNYy blockade,
the remaining ~30% of IFNY" cells were sufficient to prevent high parasitemia (S5 Fig).

Blockade of IL-12 and IFNy during helminth and Plasmodium co-
infection preserves Th2 responses

Finally, we translated these new observations back into a co-infection scenario, as presented in
Fig 1, and tested whether helminth-induced Th2 cells had the capacity to up-regulate IFNy in a
co-infection scenario. First, we purified ex vivo 147" Ifng?"1117a"%%*~ Th2 cells from d14 H.
polygyrus-infected mice and transferred them into day 14 H. polygyrus-infected Ragl” mice.
Recipient mice were then co-infected with P. chabaudi and the transferred cells were analyzed
at day 8 post P. chabaudi infection (Fig 9A). Similar to in vitro-derived Th2 cells, H. polygyrus-
derived Th2 cells down-regulated 11497 and up-regulated Ifng"?, albeit to a slightly lesser extent
than naive T cells (Fig 9B).

Re-stimulation of lymph node cells with H. polygyrus antigen and IL-4 led to the secretion
of IL-5 and IL-13 from mice given H. polygyrus Th2 cells, but not from mice given naive T cells
(Fig 9C). These data suggested that despite a high degree of conversion to IFNy-secreting cells,
cells retained antigen-associated cytokine secretion. To more accurately determine whether
converted cells retained the capacity to produce Th2 cytokines in an antigen-specific manner,
we sorted Th2 cells, or naive cells, that had converted into Iﬁ1g"fp " cells from recipient mice
and restimulated them in vitro with H. polygyrus antigen or P. chabaudi infected red blood
cells (iRBC). Ifng”"* cells, which were previously naive or 149"* Th2 cells, produced IFNy
when co-cultured with irradiated APCs, supporting the cytokine reporter expression (Fig 9D).
iRBCs further stimulated more IFNy from naive T cells, but not from Th2 cells, suggesting that
either ex vivo Th2 cells were not responding to malarial antigens, or that they were already
secreting IFNYy at capacity. In addition, ex vivo H. polygyrus elicited Th2 cells which had down-
regulated I145% and up-regulated Ifng”? produced IL-5 in response to H. polygyrus antigen, sug-
gesting that converted cells retained antigen specificity and plasticity in this model (Fig 9D).

Finally, we tested whether the factors promoting IFNy in the adoptive transfer model, IL-12
and IFNy (Fig 8B), were responsible for the loss of Th2 cells and type-2 immunity during H.
polygyrus and P. chabaudi co-infection. To do this, we infected wild type mice with H. poly-
gyrus and at six days post-infection, mice were co-infected with P. chabaudi with or without
blocking antibodies to IL-12 and IFNy (Fig 10A). Blockade of IL-12 and IFNY preserved 11497+
Th2 cells in co-infected mice (Fig 10B) and maintained elevated levels of helminth-induced
type-2-associated IgE (Fig 10C). However, despite preserving Th2 cells and IgE, proficient
anti-helminth immunity was not fully restored in mice given blocking antibodies (S6 Fig).
Thus, IL-12 and IFNy play a major role compromising Th2 responses during helminth/ Plas-
modium co-infection, but additional factors also contribute to compromised anti-helminth
immunity during co-infection.
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~Th2 cells were transferred to Rag7~”"mice. Recipient mice were infected with 10° P. chabaudi 14 days later
and mice were harvested at day 8 post-infection. B and C). Cytokine expression in transferred cells in the
spleen (ICS). D). IFNy protein in serum, measured by ELISA. E). Percent parasitemia, determined by blinded
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counting of Giemsa-stained blood smears. F). Hemoglobin and red blood cell counts determined by Vetscan.
Data are representative of 2 independent experiments with 5-6 mice per group. * denotes P<0.05.

doi:10.1371/journal.ppat.1004994.9g006

Discussion

In this study, we identified that Plasmodium infection significantly reduced CD4" Th2 cells
during co-infection with H. polygyrus and that anti-helminth immunity was compromised dur-
ing co-infection. Mechanistically, we found that II497* Ifng”?"1117a"%3*~ Th2 cells, purified
from novel triple cytokine reporter mice, converted to IFNy-secreting cells, contributing signif-
icantly to anti-Plasmodium immunity. IFNy production by Th2 cells was dependent on TCR,
IL-12, and IFNY signaling, all of which contributed to the transcriptional re-programming of
Th2 cells. Finally, we found that blockade of IL-12 and IFNYy during Plasmodium and helminth
co-infection preserved Th2 responses and IgE production, but was insufficient to fully restore
anti-helminth immunity.

There is a large body of literature describing the prevalence of helminth and Plasmodium
co-infection in human populations [4,5,8,11,49,50], and mouse models [16,51], with the major-
ity of studies focusing on the impact of helminth infections on anti-Plasmodium responses.
Relatively few have focused on how parasite-elicited Th2 responses are affected during Plasmo-
dium co-infection. Our data show that IL-4-expressing Th2 cells, serum IgE, and functional
parasite expulsion are reduced during co-infection (Fig 1). This is in line with previous reports,
including reduced schistosome-specific IL-4 and IL-5 in Plasmodium and schistosome co-
infected individuals [52] and suppressed IL-4 responses during H. polygyrus and Plasmodium
yeolii co-infection [53]. Reduced type-2 responses [54] and Th2-mediated immunopathology
have also been observed in schistosome and Plasmodium co-infected mice [55], consistent with
the notion that anti-helminth associated Th2 responses are compromised during Plasmodium
co-infection. However, these studies did not offer mechanistic insight as to how this reduction
in type-2 immunity might occur and importantly how type-2 immunity might be preserved
during co-infection.

In this study, we focused on the impact of co-infection on CD4" T cells, which are a critical
cell type for immunity to H. polygyrus and contribute significantly to anti-malarial immunity
[56]. For our studies, we developed a triple cytokine reporter mouse (149 Ifng"?1117a"%%, S1
Fig), which had several important advantages. These mice allowed the determination of T cell
phenotype ex vivo without the need for re-stimulation, as well as the ability to obtain highly
purified populations of 11497 Jrlfngyfp “1117a""5%~ Th2 cells, which were not expressing other
lineage-associated cytokines[29]. Adoptive transfer of these cells allowed us to accurately deter-
mine whether purified Th2 cells changed their phenotype, and finally, simultaneous cytokine
reporters allowed us to test whether any conversion was reversible and truly plastic. To this
end, we observed that highly-purified II497* Ifng"?~1117a™°%°~ Th2 cells, either generated in
vitro for two weeks (Fig 2) or isolated ex vivo from H. polygyrus-infected mice (Fig 9), were able
to produce IFNy during Plasmodium infection in Ragl™ "mice. This phenomenon is in line
with several previous observations 1) identifying that in vitro generated LCMV -specific TCR
transgenic Th2 cells could express both IFNy and IL-4 [34], 2) a ‘bi-functional’ population of
Tbet” GATA3" cells are generated following H. polygyrus infection [29] and 3) the Tbx21 locus
(encoding T-bet) has bivalent epigenetic histone modifications in Th2 cells [57] suggesting
Th2 cells retain some flexibility. We observed expression of Ifng, Tbx21, Klrgl, Gzmb, Gzmc in
converted Th2 cells, while maintaining low levels of I/4 transcription (Fig 3, S1 Table) and the
ability to produce IL-5 and IL-13 (Fig 2). This suggested that converted cells were possibly
poly-functional. Whether they are similar to ‘bi-functional’ cells [29] is unclear. Helmby
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without anti-IL-12 treatment. G). Percent parasitemia, determined by blinded counting of Giemsa-stained blood smears. Data are representative of 2
independent experiments with 3—6 mice per group. * denotes P<0.05.

doi:10.1371/journal.ppat.1004994.g007

observed exacerbated liver pathology with significantly increased IFNy and mortality during
H. polygyrus and Plasmodium co-infection [58]. Whether Th2 cells converted to IFNy-secret-
ing cells, contributing to aggravated liver pathology in their study was unclear. Similarly, Th2
cells that up-regulate IL-17 during airway allergen challenge in mice contribute to more severe
airway pathology [59], and allergic patients have a greater frequency of IFNy-secreting cells
[60]. Indeed, polyfunctional T cells, which secrete multiple cytokines, correlate with greater
protection following vaccination [61], contribute to severe inflammatory syndromes in
humans [62] and mice [37] and have greater anti-tumor activity [63]. Thus, understanding the
mechanisms of Th cell conversion and the generation of polyfunctional T cells may provide
important insight into immunity and immunopathology. Interestingly, in our model of C.
albicans, in vitro polarized Th2 cells were unable to produce IL-17a, unlike naive cells (54 Fig),
suggesting that there is either an important relationship between Th2 and Th1 cells, or that the
transcriptional machinery required for IL-17 production is more tightly regulated than for
IFNy.

To identify mechanistic pathways contributing to Th2 cell conversion, we employed RNA-
Seq analysis of Th1 cells (Ifng”?*), Th2 cells (Il49P*) and Th2 cells that had up-regulated IFNy
(IfngP* 1149%7). We identified a high degree of transcriptional similarity between Th1 cells and
converted cells, extending significantly beyond cytokine expression. For example, Th1 and con-
verted Ifng”P* 11497~ cells, but not Th2 cells, had similar transcript abundance encoding for sev-
eral enzymes (Bace2, Cdc25c, Cd38 Chst11, Dusp5, Gzmb, Gzmc and Gzmk, Gsttl, Pdcdl,
Ptpn5, Spag5, Troap), chemokine receptors (Cxcr3, Cmkirl, Cx3crl and Ccr5), ion channels
(Cacnall and Ttyh2), kinases (Stk32c, Ttbkl, Ttk, Ltk, Cdk1, Pbk, Ccnbl in addition to many
other kinases), nuclear receptors (Nr4a2, Ahr), miRNAs (miR-142, miR-155 and miR-Let7d)
and transcriptional regulators (Rail4, E2f7, Gas7, Cdkn2b, E2f8, KIf12, Runx2 and Eomes). Sig-
nificantly, Th1 cells use a feed-forward regulatory circuit involving Tbx21 (Tbet) and Runx3
for maximal IFNy production and silencing of I/4 [64]. In our study, both Th1 cells and con-
verted Th2 cells which had lost Il4 and up-regulated Ifng, had elevated Runx3 and Tbet, sug-
gesting that this feed-forward loop was transcriptionally active, supporting optimal IFNy
production in converted cells. Whether the epigenetic landscape of converted cells matched
that of their Th1 counterparts is of great interest, as converted Th2 cells retained the capacity
to produce Th2-associated IL-5 and IL-13 (Fig 2) in an antigen-specific manner (Fig 9D). Pre-
vious studies have indicated that Th1 cells have the capacity to up-regulate Th2-associated fea-
tures in vivo following helminth infection [65]. In our hands, naive T cells which had up-
regulated IFNY" in vivo following Plasmodium infection did not have the capacity to secrete
IL-5 or IL-13 when re-stimulated in vitro with anti-CD3/28 and IL-4. Whether there are spe-
cific in vivo factors which more readily support T cell plasticity is currently unclear. We would
hypothesize that in vitro generated or ex vivo H. polygyrus Th2 cells had bivalent methylation
marks in the II5 and I/13 locus allowing re-expression of these genes following the appropriate
activating signal. Supporting this, converted Th2 cells retained some Th2-associated features,
including elevated expression of Gfil, Il4 and II33r, which may provide the appropriate
machinery to re-activate Th2-associated genes, reminiscent of their Th2 past (Fig 3 and
S1 Table).

Using an upstream analysis algorithm (Ingenuity Pathways Analysis) with our transcrip-
tional data sets we identified IL-12, IFNYy and to a lesser extent type 1 IFN, as putative factors
that could contribute to the observed transcriptional profile of converted cells. This supports a
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doi:10.1371/journal.ppat.1004994.9008
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cells were transferred to d14 H. polygyrus-infected Ragf/’recipient mice. Mice were infected with P.
chabaudi and analyzed at day 8 post-infection. B). Cytokine reporter expression in transferred cells from
spleens and mesenteric lymph nodes of recipient mice. Data representative of 2 separate experiments, with 4
mice per group. C). Ex vivo Th2 or naive cells were transferred to recipient Rag7”~ mice, as in 9A. Atday 8
post-infection with P. chabaudi, 2x10° mesenteric lymph nodes cells were stimulated with 10 ug/mL H.
polygyrus antigen and 10 ng/mL IL-4. ELISAs were performed on cell supernatants after 5 days. Data are
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representative of 2 separate experiments. Lymph nodes were pooled from 2 recipient mice per group. Error
bars represent technical replicates. D). Ex vivo Th2 or naive cells were transferred to recipient Rag?”~ mice,
as in 9A. At day 8 post-infection with P. chabaudi, CD4*TCRB™Ifng’P* 1149 1117a7%°" cells were sorted from
pooled spleens of 2 recipient mice per group (following the sorting strategy as in Fig 2G). 9.6x10* purified
converted CD4*TCRB*Ifng”™* 1149%117a"7%3% cells from a naive or Th2 past were then cultured with 4x10°
irradiated CD4*—depleted splenocytes and one of the following: 3x10° red blood cells from a P. chabaudi-
infected donor mouse (day 8 post-infection) or 10 uyg/mL H. polygyrus antigen. ELISAs were performed on
cell supernatants after 5 days. Error bars represent technical replicates. Data are representative of 2
independent experiments.

doi:10.1371/journal.ppat.1004994.9g009

recent study that identified the requirement of Tbet and Stat4 for IFNy expression in memory
Th2 cells [66]. In our study, unlike previous studies, type I IFN signalling in Th2 cells was dis-
pensable for IFNYy production from converted Th2 cells in vivo (Fig 6) [34]. Blocking IL-12 or
IFNy alone did not impact the frequency of converted IFNy" cells from transferred Th2 cells
(Figs 7 and 8). These data are in agreement with a previous study that found restoring IL-12
responsiveness in Th2 cells, through ectopic expression of IL-12RB2, was insufficient to convert
Th2 cells into IFNY-secreting cells [67]. However, in our model, anti-IL-12 treatment alone pre-
served IL-4 expression in a sub-population of transferred cells (Figs 7 and 8). Blockade of both
IFNy and IL-12 substantially reduced IFNy" cells deriving from Th2 cells, suggesting that an IL-
12-STAT4 signaling pathway down-regulated IL-4, while an IFNy / STAT-1/ T-bet pathway was
required for optimal IFNy expression, in accordance with canonical Th1-inducing conditions for
naive T cells [68]. While we found that blockade of these cytokines reduced IFNy" cells, there
was no change in control of parasitemia (S5 Fig). We speculate that this is due to the incomplete
loss of conversion, with the remaining IFNYy being sufficient to control levels of parasitemia.

TCR stimulation was essential for in vitro-derived Th2 cells to produce IFNy (Fig 5) and ex
vivo H. polygyrus-elicited Th2 cells required H. polygyrus-infected recipient mice to survive and
up-regulate IFNy. Thus, with sufficient TCR signaling, a change in the local cytokine milieu
may be sufficient to re-program Th cells. During helminth and Plasmodium co-infection, either
cross-reactive antigens or microflora-derived signals may provide the necessary first TCR sig-
nal [69-71]. Alternatively the broad polyclonal activation of non-specific T cells during Plas-
modium infection may be sufficient [21,22,72]. Although TCR engagement, IL-12 and IFNy
were required for optimal conversion of Th2 cells into IFNy-secreting cells, it is possible that
other factors also contribute to conversion, including IL-27, which can induce expression of
Tbet, and IL-18, which can induce IFNYy production [73,74].

In conclusion, we have shown that IL-12 and IFNy suppressed Th2 responses during H.
polygyrus and P. chabaudi co-infection. Mechanistically, we identified that TCR engagement
with IL-12 and IFNY signaling converted in vitro-generated Th2 cells into IFNy-producing
cells during P. chabaudi infection. Importantly, although blocking IL-12 and IFNYy during co-
infection did not retain fulminant anti-helminth immunity, it did preserve Th2 cell numbers
and serum IgE, highlighting a novel mechanistic pathway of how Plasmodium infection nega-
tively impacts anti-helminth Th2 responses. Overall, our studies indicate that Plasmodium
infection can negatively impact anti-helminth responses, that Th2 cells retain substantial plas-
ticity in the context of Plasmodium infection, and that this plasticity may play a role in the
reduced Th2 response during co-infection.

Materials and Methods
Animals

All mice were bred and maintained under specific pathogen-free conditions at the National
Institute for Medical Research. Strains used included: C57BL/6, Ifngyfp [36], 1145%[35], C57BL/6
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Fig 10. Blockade of IL-12 and IFNy during co-infection preserves Th2 responses. A-C). C57BL/6 mice
were orally infected with 200 H. polygyrus larvae. 6 days post-infection, mice were infected with 10° P.
chabaudi. At day 8-post infection with P. chabaudi (d14 H. polygyrus), mice were harvested. Mice were treated
with 0.5 mg of anti-IL-12 and anti-IFNy i.p. at days 0, 5, and 11. B). Total numbers of CD4*CD44"/I49* cells in
the mesenteric lymph nodes. C). IgE measured in the serum by ELISA. Data are representative of 2
independent experiments with 6 mice per group. * denotes P<0.05.

doi:10.1371/journal.ppat.1004994.9010

Ragl™"[75], MhcIT~(B6.129-H-2<dlAb1-Ea)[76] crossed with Ragl™~at NIMR [77], OTII
Ragl™~(B6.Cg (Tcrop)425Cbn/J) [78], OTII 11457 Ragl™(OTII Ragl™~crossed with 1145 at
NIMR), and Ifnar™ 1149 (Ifnar”~[79] crossed with 1145 at NIMR). Triple cytokine reporter
mice (II49P 11177 Ifng”PR26"7*) were established by crossing 114877111 7°/"*[37] mice with
Ifng"P"*R26"P3FP635 mice, producing 11497 11177+ Ifng?'*R26™%*'* The generation of
R26""5% reporter mice will be presented in detail elsewhere (JB and AP, manuscript in prepara-
tion). Briefly, R26"7%*° mice were generated by inserting the coding sequences of the red fluo-
rescent protein FP635 [80] into the pPROSA26 targeting vector downstream of a loxP-flanked
neomycin resistance cassette containing three transcriptional stop signals by homologous
recombination. R26""%* reporter mice in this study were backcrossed to C57BL/6 for more

than 8 generations.

Infections

Mice were infected by oral gavage with 200 infective stage 3 (L3) Heligmosomoides polygyrus
larvae, diluted in water. The anthelmintic drug pyrantel pamoate (Sigma, 5mg/dose in water)
was given orally on two consecutive days. Infections with Plasmodium chabaudi chabaudi (AS)
were performed by i.p. injection of 10° parasitized red blood cells. Parasitemia was measured
by blinded counting of Giemsa-stained blood smears. Anemia and hemoglobin were measured
by diluting blood in Krebs buffered saline with 0.2% glucose and with 100 IU/mL heparin and
measured using Vetscan (Abaxis-VetScan HM5 Hematology). Infections with Candida albi-
cans were performed by i.v. injection of 10° yeast forms.

Cell sorting and flow cytometry

Cell sorting was performed using a FACS Aria II (BD Biosciences), MoFlo XDP (Beckman
Coulter), or Influx (BD Biosciences) cell sorter. To prepare cells for sorting, CD4™ cells were
first positively selected using MACS CD4 beads and magnetic columns (Miltenyi Biotec). Cell
suspensions were then stained for 25 minutes with antibodies in PBS with 1% FCS. To prepare
for sorting, stained cells were diluted in phenol-red free IMDM (Gibco) (with 1% FCS, 2mM
EDTA (Invitrogen), 100 U/mL Penicillin and 100 ug/mL Streptomycin (Gibco), 8 mM L-gluta-
mine (Gibco), and 0.05 mM 2-mercaptoethanol (Gibco)). Propidium iodide (PI) was used to
determine cell viability in sorting experiments. Intracellular cytokine staining (ICS) was per-
formed following 6 hours of re-stimulation with 50ng/mL phorbol 12-myristate 13-acetate
(PMA, Promega) and 1 pg/mL ionomycin (Sigma) and BD Golgi Stop and BD Golgi Plug
(diluted 1:1000, BD Biosciences). Following surface stain, cells were incubated with eBioscience
Fixation/Permeabilization buffer for 25 minutes followed by 25 minutes in Permeabilization
buffer (eBioscience), and incubation with antibodies in Permeabilization buffer for a further 30
minutes. For flow cytometry analysis, cells were analyzed using a BD LSRII (BD Biosciences)
and data were analyzed using Flow]o software (Version 7.6.5, Treestar Inc). In all cases using
triple cytokine reporter mice, cells from wild type, Ifng"? or 1149 single cytokine reporter mice
were used as controls to set gates to differentiate yfp and gfp. Antibodies used include: CD4
(efluor450 and PE-Cy7, RM4-5, eBioscience), CD25 (Fitc, 7D4, BD Pharmingen), CD44 (Fitc,
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Percpcy5.5, and APC, IM7, eBioscience), CD45.1 (PE-Cy7 and APC, A20, eBioscience), IFNy
(Pacific Blue, XMG1.2, Biolegend), IL4 (PE, 11B11, eBioscience), pSTAT4 (Alexa Fluor 647,
BDPhosflow), TCRB (APC, H57-597, eBioscience) and GFP (Alexafluor647, FM264G, BioLe-
gend). Staining was performed in presence of FcR Blocking Reagent (Miltenyi Biotec). In anal-
ysis experiments, viability was determined using the Molecular Probes Live/Dead Fixable Blue
Dead Cell Stain Kit (Life Technologies). For phospho-STAT staining, sorted cells were resus-
pended into serum-free media and incubated at 37 degrees for 20 minutes, followed by incuba-
tion with 10 ng/mL IL-12 (R&D) for 15 minutes. Cells were then fixed for 10 minutes at 37
degrees with prewarmed BD Phosflow Lyse/Fix Buffer, washed, permeabilized with BD Phos-
flow Perm Buffer III for 30 minutes on ice, washed, and stained for 1 hour with antibodies in
PBS for FACS analysis.

Adoptive cell transfer

Naive CD4" T cells were sorted from spleens as CD4 " TCRB*CD44 CD25 11487 P1 (1149
reporter) or CD4"TCRB"CD44 CD25 11447 'Ifngyfp “1117a""5%>PI" (triple reporter). Th2 cells
were cultured for 2 weeks from splenic CD4" cells in vitro with 10 ng/mL IL-4 (R&D), 5 ng/mL
IL-2 (R&D), 10 pg/mL anti-IFNy (XMGL1.2, BioXcell), and Mouse T-Activator CD3/CD28
Dynabeads (Life Technologies) in IMDM with 10% FCS. Th2 cells were sorted as CD4"TCRB"
11487 PI™ (114 reporter) or CD4"TCRp' 114 *Ifng”fp “1117a"73*"PI " (triple reporter). For each
experiment, 0.2x10° to 1x10° cells were adoptively transferred i.v. into recipient C57BL/6
Ragl™" mice. Blocking antibodies diluted in PBS (anti-IFNy, XMG1.2, anti-IL12p40 C17.8,
BioXcell) were used at 0.4 or 0.5 mg/ dose.

Cell restimulation and ELISA

Sorted cells were cultured in 96 well round bottom plates in various conditions. Where indi-
cated, antigen presenting cells were spleens depleted of CD4" cells by MACS magnetic separa-
tion (Miltenyi Biotec) and irradiated (3000 rads). H. polygyrus antigen was isolated by
homogenization of cleaned adult worms in PBS. IFNY, IL-5, and IL-13 were measured using
DuoSet ELISA kits, according to the manufacturer’s instructions (R&D). Total IgE ELISA was
performed by coating with Purified Rat Anti-Mouse IgE (R35-72, BD Pharmingen) at 2 ug/mL
overnight, followed by overnight incubation with serum and standard (Purified Mouse IgE k
isotype Standard, BD Pharmingen), and detection with Biotin Rat Anti-Mouse IgE at 1 ug/mL
(R35-118, BD Pharmingen), Streptavidin HRP at 1:000 (BD Pharmingen) and ABTS One
Component HRP Microwell Substrate (SurModics). H. polygyrus-specific IgG1 was detected by
coating plates with 5 ug/mL H. polygyrus antigen overnight, followed by overnight incubation
with serially diluted serum and detection with Biotin Rat Anti-Mouse IgG1 (Invitrogen) and
streptavidin and ABTS, as above.

RNA extraction, qRT-PCR, RNA-Seq and IPA analysis

RNA was isolated from cells or tissue using RNeasy Mini Kit according to manufacturer’s
instructions (Qiagen). For qRT-PCR of small intestine-derived RNA, 1 cm sections of tissue
were harvested and stored in RN Alater (Sigma) before homogenisation and RNA extraction
using RNeasy Mini Kit (Qiagen). cDNA was reverse transcribed from RNA using QuantiTect
Reverse Transcription Kit (Qiagen) according to the manufacturer’s instructions. qRT-PCR
analysis was performed using Power SYBR Green PCR master mix (Applied Biosystems) on an
ABI Prism 7900HT Sequence Detection System (Applied Biosystems). Relative quantities of
mRNA were determined by the comparative threshold cycle method as described by Applied
Biosystems for the ABI Prism 7700/7900HT Sequence Detection Systems using the following

PLOS Pathogens | DOI:10.1371/journal.ppat.1004994  July 6, 2015 22/29



@’PLOS | PATHOGENS

Th2 Cells Produce IFNy during Plasmodium Infection

primers; Hprt Fwd: 5-GCCCTTGACTATAATGAGTACTTCAGG-3’ and Rvs: 5-TTCAACTT
GCGCTCATCTTAGG-3’; Retnla Fwd: 5-CCCTCCACTGTAACGAAGACTC-3

and Rvs: 5’-CACACCCAGTAGCAGTCATCC-3’; Chil3: Fwd: 5- CATGAGCAAGACTT
GCGTGAC-3’ and Rvs: 5-GGTCCAAACTTCCATCCTCCA-3’; Argl Fwd: 5- GGAAAGC
CAATGAAGAGCTG -3’ and Rvs: 5- GCTTCCAACTGCCAGACTGT -3’. RNA-seq libraries
were constructed using the TruSeq RNA Sample Preparation Kit V2 according to manufactur-
er’s instructions (Illumina). Libraries were sequenced using the HiSeq 2500 System (Illumina).
The raw Illumina reads were analyzed as follows. First, the data quality was analyzed using
FastQC (www.bioinformatics.babraham.ac.uk/projects/fastqc). Low quality bases were
trimmed using Trimmomatic [81], and the read pairs which passed the trimming quality filters
were aligned to mm10 (Ensembl version 75) using Tophat2 [82]. Counts were determined
using htseq_count [83]. Normalisation and statistical analysis was performed using edgeR [84].
Statistically significant genes with FDR < 0.05 are reported. Significantly differentially
expressed genes were uploaded into Ingenuity Pathways Analysis (IPA) and subjected to
upstream analysis to identify factors that could have contributed to the transcriptional profile
observed in converted Th2 cells.

Statistical analysis

Data sets were compared by Mann Whitney test using GraphPad Prism (V.5.0). Differences
were considered significant at *P < 0.05.

Ethics statement

All animal experiments were carried out following United Kingdom Home Office regulations
(project license 80/2506) and were approved by UK National Institute for Medical Research
Ethical Review Panel.

Supporting Information

S1 Fig. Generation of triple cytokine reporter mouse (I4¥7Ifng"?1117a""%%). A). Triple
cytokine reporter mice were established by crossing 11457711174/ mice with Ifng”?"*
R26'763°/FP635 mice, producing 11497 1117a"* Ifng?*R26™***'* genotypes, where * denotes
wild type. B). CD4™ T cells from triple cytokine reporter mice were differentiated in vitro under
Th2 conditions, as described in materials and methods. I 148+ 111 70" 635"Ifngyﬁ’ “cells were
FACS-purified for adoptive transfer, as described.

(TTF)

S2 Fig. A). Wild type mice were co-infected with H. polygyrus and P. chabaudi as in Fig 1A.
RNA was extracted from the small intestine and analyzed for expression of the macrophage
alternative activation markers Retnla (Relma/Fizz1), Argl, and Chil3 (Ym1) by real time PCR.
Data represent 2 independent experiments with 2-5 mice per group. B and C). Triple reporter
mice were co-infected with H. polygyrus and P. chabaudi as in Fig 1A. Total numbers of CD4"
CD44" Ifng”?* and 1117a""*** cells in the mesenteric lymph nodes and spleen are shown. Data
are representative of at least 2 experiments with 2—-4 mice per group. D). Experimental set-up:
114 reporter mice were orally infected with 200 H. polygyrus larvae followed by 10° P. cha-
baudi-infected red blood cells at day 6 post-infection. Mice were harvested at day 28 post-infec-
tion. E). Total numbers of CD4*CD44" 149" cells in the mesenteric lymph nodes. F). IgE
measured in the serum by ELISA. Data is representative of 2 independent experiments with 5
mice per group. G). Wild type mice were taken through the secondary co-infection model, as
shown in Fig 1D. At day 15 post-infection, H. polygyrus-specific IgG1 in the serum was
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assessed by ELISA. Representative of 3 separate experiments, with 6 mice per group.
(TIF)

$3 Fig. In vitro Th2 cells express Ifng”? in the absence of P. chabaudi infection. A).
Experimental set-up: 2-week in vitro polarized Th2 cells were FACS sorted as CD4" 11497+
Ifng”P"1117a"%%~ and transferred i.v. to Ragl ™ “mice. Recipient mice were infected with 10° P.
chabaudi i.p. on day 14 post-transfer or left uninfected. Mice were harvested at day 8 post-
infection. B). Percent of CD4"TCRB" Il497* and Ifng"?" cells in the spleen, as determined by
FACS. C). Total numbers of CD4"TCRB" Il4%7* and Ifng”?* cells in the spleen, as determined
by FACS. Data are representative of 2 separate experiments, with 4-6 mice per group.

(TTF)

S4 Fig. In vitro Th2 cells produce IFNYy but not IL-17a following infection with C. albicans.
A). Experimental set-up: 2 week in vitro polarized Th2 cells were FACS sorted as CD4 *[149P*
and transferred i.v. to Ragl” “mice. As a control, a group of Ragl ™ “mice received naive CD4" T
cells. Recipient mice were infected with 10° C. albicans yeast forms i.v. on day 14 post-transfer
and harvested at day 6 post-infection. B). Percent of CD4"TCRB" cells producing IFNy, IL-17a,
or GFP (IL-4) in the spleen, as determined by intracellular cytokine staining. Data are represen-
tative of 4 separate experiments, with 3-5 mice per group.

(TIF)

S5 Fig. Blockade of IL-12 and IFNYy does not alter control of parasitemia in Th2 cell recipi-
ent mice. In vitro Th2 (CD4*"TCRB* [14%7*) cells were transferred to Ragl ™ recipient mice for
14 days. Mice were infected with P. chabaudi and harvested at d8 post-infection. Mice were
treated i.p. with 0.5mg anti-IL12 and anti-IFNy at days -1, 6, 13, and 19, as shown in Fig 8A.
Percent parasitemia was determined by blinded counting of Giemsa-stained blood smears.
Data representative of 2 independent experiments with 3-5 mice per group. * denotes P<0.05.
(TIF)

S6 Fig. Blockade of IL-12 and IFNYy during co-infection does not fully restore anti-helminth
immunity. A). C57BL/6 mice were infected with 200 H. polygyrus larvae, treated on 2 consecu-
tive days (days 16 and 17) with pyrantel embonate (5 mg), infected with 10° P. chabaudi (day
31) and re-infected with H. polygyrus (day 38). Mice were treated with 0.5 mg of anti-IL-12 and
anti-IFNy i.p. at days 30, 36 and 40. B). Adult worms in intestine were counted on day 53. Data
are representative of 2 independent experiments with 5-7 mice per group. * denotes P<0.05.
(TIF)

$1 Table. Differentially expressed genes in Th1 (Ifng”?*), Th2 (I1457*) and Th2->Ifng"?*
cells. Normalized reads from RNA-Seq data were converted into fold-change values for analy-
sis. Data are expressed relative to naive T cells, with the mean fold change derived from 3 bio-
logical replicates.

(PDF)
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