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Abstract
Fungal plant pathogens are persistent and global food security threats. To invade their

hosts they often form highly specialized infection structures, known as appressoria. The

cAMP/ PKA- and MAP kinase-signaling cascades have been functionally delineated as

positive-acting pathways required for appressorium development. Negative-acting regulato-

ry pathways that block appressorial development are not known. Here, we present the first

detailed evidence that the conserved Target of Rapamycin (TOR) signaling pathway is a

powerful inhibitor of appressorium formation by the rice blast fungusMagnaporthe oryzae.
We determined TOR signaling was activated in anM. oryzaemutant strain lacking a func-

tional copy of the GATA transcription factor-encoding gene ASD4. Δasd4mutant strains

could not form appressoria and expressed GLN1, a glutamine synthetase-encoding ortholo-

gue silenced in wild type. Inappropriate expression ofGLN1 increased the intracellular

steady-state levels of glutamine in Δasd4mutant strains during axenic growth when com-

pared to wild type. Deleting GLN1 lowered glutamine levels and promoted appressorium

formation by Δasd4 strains. Furthermore, glutamine is an agonist of TOR. Treating Δasd4
mutant strains with the specific TOR kinase inhibitor rapamycin restored appressorium de-

velopment. Rapamycin was also shown to induce appressorium formation by wild type and

Δcpkamutant strains on non-inductive hydrophilic surfaces but had no effect on the MAP ki-

nase mutant Δpmk1. When taken together, we implicate Asd4 in regulating intracellular glu-

tamine levels in order to modulate TOR inhibition of appressorium formation downstream of

cPKA. This study thus provides novel insight into the metabolic mechanisms that underpin

the highly regulated process of appressorium development.

Author Summary

Many fungal pathogens destroy important crops by first gaining entrance to the host using
specialized appressorial cells. Understanding the molecular mechanisms that control ap-
pressorium formation could provide new routes for managing severe plant diseases. Here,
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we describe a previously unknown regulatory pathway that suppresses appressorium for-
mation by the rice pathogenMagnaporthe oryzae. We provide evidence that a mutantM.
oryzae strain, unable to form appressoria, accumulates intracellular glutamine that, in
turn, inappropriately activates a conserved signaling pathway called TOR. Reducing intra-
cellular glutamine levels, or inactivating TOR, restored appressorium formation to the
mutant strain. TOR activation is thus a powerful inhibitor of appressorium formation and
could be leveraged to develop sustainable mitigation practices against recalcitrant
fungal pathogens.

Introduction
Fungal pathogens cause some of the most devastating crop diseases and constitute globe-wide
challenges to socioeconomic growth and food security. To facilitate entry into their hosts,
many filamentous pathogens form highly specialized infection structures, known as appresso-
ria, on the leaf surface [1 – 3]. Appressoria breach the host cuticle and allow access to the un-
derlying epidermal cells. Appressoria have varying morphologies that range from
undifferentiated germ tube swellings to discrete dome-shaped cells separated from the germ
tube tip by septa [1, 4, 5]. In addition to facilitating plant invasion, appressoria can act as sites
of effector delivery and thus mediate the molecular host-pathogen interaction [6, 7]. Despite
their widespread occurrence and long-acknowledged importance to plant health, detailed
mechanistic descriptions of the regulatory pathways necessary for appressorium formation are
limited to two molecular pathways, the cAMP/ PKA- and MAP kinase—signaling cascades [2,
5, 8 – 10].

One filamentous pathogen that has been widely studied as a model to understand the mo-
lecular biology of appressorium development is the rice blast fungusMagnaporthe oryzae [5,
10]. This pathogen is notable for the serious threat it poses to rice production worldwide, de-
stroying 10–30% of the global rice harvest each year. Infection begins when a three-celled spore
ofM. oryzae adheres to the surface of a rice leaf and germinates. At 4 hours post inoculation
(hpi), the germ tube hooks and begins to swell. By 8 hpi the swelling has developed into a
dome-shaped appressorium that becomes melanized, pressurized, and infection competent by
16–24 hpi [3, 5, 11]. The tightly regulated morphological transitions that occur during appres-
sorium development are dependent on a range of external cues, including surface hardness and
hydrophobicity [12, 13], that act to trigger internal regulatory processes such as adenylate cy-
clase activation and cAMP production [5, 8, 9]. cAMP acts by binding the regulatory subunit
of protein kinase A (PKA) to release the protein kinase A catalytic subunit (cPKA). Genetic le-
sions in the cAMP/ PKA signaling pathway significantly reduce appressorium formation and
those that do form are small and non-functional [5, 14, 15]. Appressorium formation can be re-
mediated by the addition of cAMP when pathway mutations occur upstream of PKA. More-
over, activating cPKA by exogenous cAMP can induce appressorium formation in wild type
strains (WT) on non-inductive hydrophilic surfaces [14]. Another internal regulatory process
that has been well documented to control appressorium morphogenesis is the Pmk1 MAP ki-
nase signaling cascade. The MAP kinase orthologue of Fus3/Kss1, Pmk1, is essential for
appressorial formation and works in a MAP kinase cascade instigated by hydrophobicity and
cutin monomer sensing [9, 10, 16]. Disruptions to MAP kinase signaling abolish the initiation
of appressorium formation, and the germ tubes of Δpmk1mutants remain undifferentiated
[17]. Thus, the positive-acting cAMP/ PKA and MAP kinase morphogenetic regulatory cas-
cades are integral to appressorium initiation and development.
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Here, we present genetic and biochemical evidence for a previously unknown, negative-act-
ing regulator that inhibits appressorium formation downstream of cPKA. In a previous study
[18], we showed that the GATA family [19] transcription factor Asd4 was essential for sporula-
tion, optimal growth on undefined complete media (CM) and appressorium formation [18].
Spores of Δasd4mutant strains lacking a functional ASD4 allele due to homologous gene re-
placement produced germ tubes that could not elaborate appressoria at the apical tips. Howev-
er the mechanisms involved, and any relationship of the GATA factor Asd4 to cAMP/ PKA
and MAP kinase signaling, were unknown [18]. Here, we show that Asd4 regulates the expres-
sion of genes involved in nitrogen assimilation and glutaminolysis in order to modulate intra-
cellular glutamine pools. Elevated intracellular pools of glutamine in Δasd4mutant strains
activated the target of rapamycin (TOR) nutrient-sufficiency signaling pathway [20] and pre-
vented appressorium formation. Remediating glutamine levels in Δasd4mutant strains by ge-
netic manipulation, or bypassing the elevated glutamine signal using the specific TOR
inhibitor rapamycin, promoted appressorium formation by Δasd4mutant strains. Rapamycin
treatment also induced appressorium formation in ΔcpkAmutant strains. However, cAMP
treatment did not restore appressorium formation to Δasd4mutant strains, and rapamycin
treatment did not stimulate appressorium formation in Δpmk1mutant strains. When consid-
ered together, the results presented here implicate Asd4, glutamine metabolism and TOR as
fundamental but previously unknown regulators of plant disease that act on the cAMP/ cPKA
signaling pathway to control appressorium formation.

Results

Asd4 is involved in nitrogen metabolism
To investigate the role of Asd4 in appressorium formation, we first turned our attention to the
connection between Asd4 function and optimal axenic growth on plate media. In common
with other fungi,M. oryzae preferentially utilizes glucose and ammonium (NH4

+) over other
carbon and nitrogen sources [21, 22]. When grown on defined minimal media containing 1%
(w/v) glucose (GMM) and 10 mMNH4

+ as the sole carbon and nitrogen source, respectively,
Δasd4mutant strains, compared to the Guy11 wild type (WT) isolate used in our studies, were
reduced for growth (Fig 1A and S1 Table). Reduced growth on GMM with 10 mMNH4

+ was
similarly observed for Δasd4mutant strains generated from theM. oryzae reference isolate 70–
15 (S1A Fig) and, consistent with previous observations, loss of ASD4 function in 70–15 also
abolished appressorium formation (S1B Fig). Reduced growth on NH4

+- media was not ob-
served, however, for a Δasd4 ASD4GFP complementation strain expressing Asd4 fused to GFP
from its native promoter in the Guy11-derived Δasd4mutant background (Fig 1A). The Δasd4
Asd4GFP complementation strain was also restored for appressoria formation on hydrophobic
surfaces (S1C Fig) and Asd4GFP localized, as expected for a transcription factor, to the appres-
sorial nucleus (S1D Fig). Thus, the role of Asd4 in growth and appressorium formation is not
idiosyncratic to the Guy11 isolate (nor does the Δasd4 phenotype result from off-target gene
deletion effects) but is rather a fundamental function of this GATA factor inM. oryzae.

Additional plate testing revealed that Δasd4mutant strains (but not WT or Δasd4 ASD4GFP

complementation strains) were also defective for growth on glucose MM (GMM) regardless of
the nitrogen source, including compounds less preferred than NH4

+ such as amino acids and
nitrate (NO3

-) (Fig 1A and S1 Table). Δasd4 radial growth was not further restricted by low
(< 10 mM) concentrations of NH4

+, amino acids or GABA as sole nitrogen sources (Fig 1B
and S1 Table), suggesting Asd4 is not involved in nitrogen uptake. Asd4 is also not involved in
sugar utilization because we observed poor growth of Δasd4mutant strains on MM with L-glu-
tamine as a sole carbon and nitrogen source (Fig 1C); on MM lacking glucose but containing
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Fig 1. ASD4 is involved in nitrogen assimilation. (A) Δasd4mutant strains were grown for 10 days on minimal media (MM) containing 1% (w/v) glucose
(GMM) and 10 mM of the indicated sole nitrogen sources. L-isomers were used throughout this study. (B) After 10 days, Δasd4 growth was not further
attenuated on GMM containing low concentrations of ammonium as the sole nitrogen. (C) Strains were grown for 10 days on MM containing 10 mM L-
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the less preferred, derepressing sugar xylose with L-glutamine or L-glutamate as a nitrogen
source (S2 Table); and on MM with L-glutamine or L-GABA as sole carbon sources and with
NH4

+ as a nitrogen source (S2 Table). Taken together, these observations indicate Asd4 is not
required for nitrogen uptake (Fig 1B) or sugar metabolism (S2 Table), but is required for ni-
trogen metabolism (Fig 1A) including glutaminolysis (Fig 1C).

Asd4 regulates the expression of genes involved in nitrogen assimilation
and glutaminolysis
Impaired nitrogen assimilation in Δasd4mutant strains could account for its poor growth on
all the nitrogen sources tested regardless of the carbon source (Fig 1A and 1C). Based on se-
quence homology, we identified genes in theM. oryzae genome [23] encoding likely compo-
nents of the nitrogen assimilatory and glutaminolytic pathways [24 – 26], including two
glutamine synthetase-encoding orthologues, GLN1 and GLN2 (Fig 2 and S3 Table). To deter-
mine the expression profiles of these genes we used quantitative real-time PCR (qPCR) to ana-
lyze RNA extracted fromWT and Δasd4mutant strains grown in liquid shake GMMwith 10
mMNH4

+ for 3 and 16 h [21]. Loss of Asd4 function induced the expression of GLN1 and up-
regulated the expression of GLN2, GDH1 andMGD1 compared to WT (Figs 2 and S2). Thus,
genes for assimilating and metabolizing nitrogen are misregulated in Δasd4mutant strains
when compared to WT.

To understand how the gene expression perturbations in Fig 2might affect nitrogen metab-
olism, we measured the steady-state concentrations of amino acids in WT and Δasd4mycelia
following growth in GMMwith 10 mMNH4

+ for 16 h using LC-MS/MS (Table 1). Steady-
state intracellular pools of glutamine were significantly (Student’s t-test p� 0.05) increased in
Δasd4mycelial extracts compared to WT (Table 1). This suggests that defects in glutaminolysis
(Fig 1C) and/ or the misregulation of nitrogen assimilation genes (Fig 2) significantly affected
glutamine biosynthesis and turnover in Δasd4mutant strains. The concentrations of other in-
tracellular amino acids pools were also altered in Δasd4mutant strains under these growth con-
ditions. For instance, Table 1shows that steady-state intracellular pools of aspartate, alanine
and arginine were reduced, while asparagine and valine levels were increased, in Δasd4mycelia
compared to WT. Collectively, these results demonstrate that glutamine turnover and the dis-
tribution of assimilated nitrogen into other nitrogenous compounds is perturbed in Δasd4mu-
tant strains compared to WT. These observations are consistent with our plate tests (Fig 1A,
1B and 1C) showing Δasd4 strains were impaired in nitrogen source utilization
and glutaminolysis.

Asd4-dependent silencing of the glutamine synthetase—Encoding gene
GLN1 is essential for appressorium formation
We hypothesized that the misregulation of GLN1/2,MGD1 and GDH1 gene expression might
account for the accumulation of glutamine in Δasd4mutant strains compared to WT. Of par-
ticular note, GLN1 expression was detected in Δasd4mutant strains on NH4

+ media but not in
WT (Figs 2 and S2). To determine how GLN1 expression might contribute to the observed
Δasd4 phenotypes, we first characterized how GLN1 was expressed under different develop-
mental and growth conditions. We found that, in contrast to GLN2, GLN1 gene expression was
not detected in WT during appressoria development [27] (S3A Fig). Furthermore, our qPCR

glutamine as the sole carbon and nitrogen source. WT = wild type Guy11 isolate, Δasd4 ASD4GFP = Δasd4 complementation strain expressing Asd4 fused
to GFP. Bars are added as a visual aid to the plate images in (B) and (C) to demarcate colony size.

doi:10.1371/journal.ppat.1004851.g001
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transcript analysis showed that, unlike GLN2, GLN1 was not expressed during early in planta
colonization by WT (S3B Fig), or during the growth of WT on a range of nitrogen sources in
addition to NH4

+ (S3C Fig). However, GLN1 was highly expressed in Δasd4mutant strains
compared to WT on all the nitrogen sources tested (S3C Fig). These expression data prompted
us to perform chromatin immunoprecipitation (ChIP) in order to determine whether Asd4 in-
teracted with GLN1DNA in vivo. Using Anti-GFP, we immunoprecipitated chromatin samples
from Δasd4 ASD4GFP strains, and from the WT lacking the ASD4GFP allele, following growth
on 1% GMM with 10 mMNH4

+ as the sole nitrogen source. ChIP-qPCR detected a significant
enrichment (Student’s t-test p� 0.05) of GLN1 DNA in ChIP samples from strains expressing
Asd4GFP compared to WT (Fig 3A). The GLN1 signal/ input ratio for Asd4GFP ChIP was

Fig 2. Proposed pathway of nitrogen assimilation and glutaminolysis inM. oryzae based on sequence
homology. Nitrogen is assimilated and distributed via glutamine synthetase (Gln1 and Gln2) and glutamate
synthase (Glt1) or anabolic NADP-dependent glutamate dehydrogenase (Gdh1) and Gln1-2 [24, 25].
Glutaminolysis [26] involves NAD-dependent glutamate dehydrogenase (Mgd1). Enzymes are depicted as
solid circles with the adjacent bar graphs showing the relative expression levels of the encoding genes in WT
(black bar) and Δasd4mutant strains (red bar) following 3 h and 16 h growth in GMMwith 10 mMNH4

+ as the
sole nitrogen source. Results were normalized against the expression of the β-tubulin gene TUB2. Values are
the average of three results from at least two independent biological replicates. Error bars are
standard deviation.

doi:10.1371/journal.ppat.1004851.g002
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9.6-fold higher than for WT ChIP (ie. the background), thus demonstrating a physical interac-
tion between Asd4GFP and GLN1 DNA that is consistent with the transcriptional data (Figs 2,
S2 and S3). Also, the positioning of the ChIP-qPCR primers used to detect GLN1 suggests
Asd4 binding occurs in the 5 ‘ region of the gene, which might be consistent with the presence
of predicted GATA-binding sequences in the promoter region of GLN1 [23]. Taken together,
we conclude that GLN1 is a cryptic glutamine synthetase-encoding gene normally silenced in
WT by Asd4.

To determine if GLN1 expression in Δasd4mutant strains affected appressorium develop-
ment, we deleted GLN1 from the WT and Δasd4 genomes using targeted homologous gene re-
placement. As expected for a gene that is not normally expressed (S3 Fig), loss of GLN1 in WT
did not affect colony morphology, sporulation, appressorium formation or pathogenicity
(S4A–S4D Fig). However, in the Δasd4 Δgln1 double mutant strain, steady-state intracellular
glutamine pools were restored to WT levels when grown on NH4

+-media (Fig 3B and
Table 1), indicating that inappropriate GLN1 expression in Δasd4mutant strains affects nitro-
gen assimilation and/ or distribution into amino acids. Furthermore, Δasd4 Δgln1 germ tubes
were found to develop melanized appressorium on artificial hydrophobic surfaces (Fig 3C) at a
significantly higher rate (Student’s t-test p� 0.05) than Δasd4mutant strains (Fig 3D). Thus,
Asd4-dependent silencing of GLN1might be required for maintaining intracellular glutamine
pools at levels optimal for promoting appressorium formation in WT.

GLN2 expression is also upregulated in Δasd4mutant strains compared to WT (although
not to the same extend as GLN1; S2 Fig) and deleting GLN2 in Δasd4mutant strains might

Table 1. aTRAQ values for mycelial amino acid concentrations following growth onminimal media with 1% (w/v) glucose and 10mMNH4
+.

Strains WT Δasd4 Δasd4 Δgln1

Amino acids p-value LSDa Mean (μmole/g)b SDc Mean (μmole/g)b SDc Mean (μmole/g)b SDc

Alanine 0.001 12.455 75.53 10.11 47.89 2.86 41.69 2.48

Arginine 0.003 7.113 24.44 5.59 12.31 2.29 7.95 1.22

Asparagine 0.009 1.897 5.15 0.94 8.67 0.95 6.00 0.97

Aspartate 0.031 0.577 1.23 0.38 0.47 0.17 0.53 0.28

Glutamate 0.404 - 6.04 2.70 8.98 0.62 6.13 1.58

Glutamine 0.002 19.398 40.41 10.00 91.6 6.00 56.95 7.72

Glycine 0.030 0.438 2.25 0.24 1.88 0.18 1.60 0.23

Histidine 0.001 0.425 2.51 0.28 1.71 0.19 1.26 0.14

Isoleucine 0.009 0.628 1.52 0.18 2.67 0.17 2.48 0.48

Leucine 0.549 - 1.47 0.17 1.63 0.29 1.74 0.35

Lysine 0.018 0.643 2.40 0.37 2.46 0.08 1.49 0.40

Methionine 0.710 - 0.07 0.02 0.05 0.04 0.07 0.03

Phenylalanine 0.574 - 0.50 0.07 0.52 0.04 0.56 0.09

Proline 0.149 - 2.76 0.47 3.93 0.46 4.07 1.14

Serine 0.114 1.988 4.78 0.54 4.12 0.42 3.81 0.44

Threonine 0.0002 0.587 3.37 0.50 5.65 0.03 4.09 0.06

Tryptophan 0.234 - 0.26 0.04 0.29 0.00 0.31 0.04

Tyrosine 0.848 - 3.98 0.60 4.71 1.11 5.09 3.91

Valine 0.004 0.854 3.89 0.43 5.89 0.48 4.63 0.37

aLSD = Fisher's Least Significant Difference.
bValues correspond to the average of three independent repetitions.
cStandard deviation.

doi:10.1371/journal.ppat.1004851.t001
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also affect glutamine levels and appressorium formation. However, despite numerous attempts,
we were unable to generate Δasd4 Δgln2 double mutant strains in this study, perhaps indicating
that whereas GLN2 functions without GLN1 under a range of developmental conditions (S3
Fig), GLN1 cannot substitute for GLN2 in Δasd4mutant strains. The relationship between
GLN2 and ASD4 requires more articulation but does not affect our central conclusion that al-
tering intracellular glutamine levels in Δasd4mutant strains due to GLN1 expression affects
appressorium formation.

Appressorium formation requires a glutamine-dependent signal
In addition to restoring glutamine levels, deleting GLN1 in the Δasd4 background also restored
intracellular pool levels of asparagine and valine (Table 1).However, three lines of evidence
suggested that the reduction in intracellular glutamine levels (rather than global changes in ni-
trogen assimilation and distribution) was linked to appressorium formation in the Δasd4 Δgln1
double mutant compared to the Δasd4 parental strain. Firstly, Δasd4 Δgln1 strains continued to
grow poorly on NH4

+- media (S4E Fig), and aspartate, alanine and arginine levels were not re-
mediated in the Δasd4 Δgln1 double mutant strain (Table 1). This indicates that nitrogen as-
similation and/ or distribution remained defective in Δasd4 Δgln1 strains but did not prevent
appressorium formation. Secondly, treating Δasd4 spores with the glutamine synthetase inhibi-
tor L-methionine sulphoximine (MSX), shown in yeast to reduce intracellular glutamine levels
[28], significantly improved (Student’s t-test p� 0.05) Δasd4 appressorium formation rates on
artificial surfaces (Fig 3E). Thirdly, in yeast [20, 28, 29] and mammals [30], glutamine
(amongst other metabolites) acts as a signal to activate the conserved target of rapamycin
(TOR) pathway and facilitate growth under nutrient-sufficient conditions. The specific TOR
kinase inhibitor rapamycin inactivates TOR and induces starvation-like responses in yeast and
mammals [20, 31, 32]. Fig 3F shows that treatment of Δasd4 spores with rapamycin signifi-
cantly (Student’s t-test p� 0.05) induced appressorium formation on inductive, artificial hy-
drophobic surfaces compared to untreated controls (Fig 3F). Rapamycin treatment also
induced appressorium formation in Δasd4mutant strains derived from 70–15 (S5 Fig). Intra-
cellular glutamine levels were not affected by treatment with rapamycin and remained elevated
in Δasd4mutant strains compared to the Guy11 WT (Fig 3G), suggesting rapamycin bypasses
the elevated glutamine signal in Δasd4mutant strains to promote appressoria formation. More-
over, whereas WT appressorium formation rates were not affected by rapamycin treatment on
inductive hydrophobic surfaces (Fig 3F), rapamycin treatment significantly (Student’s t-test
p� 0.05) enhanced the rate of appressorial formation for WT and Δasd4mutant strains on
non-inductive hydrophilic surfaces (glass coverslips) (Fig 3H). Taken together, these results
suggest that (i) Asd4-dependent glutamine metabolism and the resulting glutamine pool sizes

Fig 3. A real or perceived reduction in intracellular glutamine levels restores appressorium formation to Δasd4mutant strains. (A) Asd4 physically
interacts with theGLN1 promoter in vivo following growth on GMMwith 10 mMNH4

+ as the sole nitrogen source. ChIP was performed using Anti-GFP. The
elutedGLN1DNA signal, normalized against the input control, was significantly (Student’s t-test p� 0.05) enriched in Δasd4 ASD4GFP ChIP samples
compared to WT controls lacking Asd4GFP. (B) Steady-state intracellular concentrations of glutamine were quantified using LC-MS/MS analysis of amino acid
extracts from dried fungal mycelia of the indicated strains following growth on GMM + 10 mMNH4

+ media. Values are the average of three independent
biological replicates. (C) Appressorial development of WT, Δasd4 and Δasd4 Δgln1 strains on artificial hydrophobic surfaces (coverslips) at 24 hpi. Scale bar
is 10 μm. (D) Appressorial formation rates of WT, Δasd4 and Δasd4 Δgln1mutant strains on artificial hydrophobic surfaces (coverslips). (E) Treatment of
Δasd4 spores with the glutamine synthetase inhibitor 10 mM L-methionine sulphoximine (MSX) partially remediated appressorium formation. (F) Δasd4
mutant strains formed appressoria at 24 hpi on artificial hydrophobic surfaces following treatment with 55 nM rapamycin (Rap). (G) Steady-state intracellular
concentrations of glutamine were quantified following growth of the indicated strains on GMM + 10 mMNH4

+ media with and without 55 nM rapamycin.
Values are the average of three independent biological replicates. (H) Treating spore suspensions with 55 nM rapamycin induced appressorium formation by
WT and Δasd4mutant strains on non-inductive hydrophilic surfaces. NT is untreated. (A-B, D-H) Error bars are standard deviation. Bars with different letters
are significantly different (Student’s t-test p� 0.05). (D-F, H) Values are the average of the number of appressoria formed at 24 hpi from 50 spores per
coverslip, repeated in triplicate.

doi:10.1371/journal.ppat.1004851.g003
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are important determinants of appressorium formation, and (ii) glutamine signaling might reg-
ulate appressorium formation via the TOR signaling pathway.

Evidence for a functional connection between Asd4 and TOR signaling
The previous section suggested that Asd4 might modulate intracellular glutamine levels to con-
trol appressorium formation via TOR. We next sought more evidence for a functional connec-
tion between Asd4 and TOR signaling. Firstly, we intended to confirm that rapamycin could
affect appressorium formation by acting directly on TOR, as opposed to having off-target ef-
fects on unrelated processes. To achieve this goal, we identifiedMoFRP1, theM. oryzae homo-
logue of the yeast FRP1 gene encoding the FK506/rapamycin-binding protein FKBP12. The
FKBP-rapamycin complex physically interacts with TOR to inhibit its activity, and TOR is the
conserved target of FKBP-rapamycin [20]. However, FKBP12 does not interact with TOR in
the absence of rapamycin and consequently in yeast, FRP1 deletion strains are viable but are
not responsive to rapamycin [33]. We generated Δfpr1mutant strains that were indistinguish-
able fromWT on plates (Fig 4A) and formed appressoria on hydrophobic surfaces (Fig 4B).
These results are consistent with previous studies that showed how the Botrytis cinerea
FKBP12 ortholog is not required for plant pathogenicity [34]. However, rapamycin failed to in-
duce appressorium formation by Δfpr1mutant strains on hydrophilic surfaces (Fig 4C). These
results demonstrate that rapamycin treatment requires FKBP12 to affect appressorium forma-
tion and thus, a priori, FKBP-rapamycin must be acting on its conserved target TOR.

Secondly, we sought genetic evidence that TOR inactivation restored appressoria formation
in Δasd4mutant strains in order to corroborate our pharmacological data. We hypothesized
that disrupting the sole copy of the TOR-encoding geneTOR1 in Δasd4mutant strains would
restore appressorium formation. However, we were unable to generate Δtor1mutant deletion
strains in Guy11 or Δasd4 strains, likely due to an essential role for the TOR protein in cell via-
bility. This is consistent with studies in Fusarium graminearum that were also unable to yield
targeted deletions of the single FgTOR gene [35]. Future work might involve gene silencing of
TOR1 rather than deletion, but we did not attempt that here, in part because gene silencing in
M. oryzae has not been developed to the stage where targeted genes can be switched off at spe-
cific stages of development, and in part because we had an alternative strategy involving the
Δrbp35mutant strain. RBP35 encodes anM. oryzae RNA-binding protein involved in process-
ing RNA transcripts essential for rice root colonization [36]. Loss of RBP35 leads to downregu-
lation of the TOR signaling pathway [36, 37]. We hypothesized that deleting ASD4 in the
Δrbp35mutant strain would permit appressorium formation because the downregulation of
TOR signaling resulting from the Δrbp35 allele would counteract the upregulation of the TOR
signaling pathway resulting from intracellular glutamine accumulation in the Δasd4mutant
strain. Fig 4D shows that, as predicted, the Δasd4 Δrbp35 double mutant produced significantly
more appressoria on inductive, hydrophobic surfaces than the Δasd4 single mutant strain. This
provides genetic evidence that TOR signaling lies downstream of Asd4 and is activated in the
Δasd4mutant strains to prevent appressorium formation.

Finally, we sought to demonstrate that TOR signaling was perturbed in Δasd4 strains by an-
alyzing the expression of TOR readout genes in WT and Δasd4mutant strains. RS2 and RS3
encode ribosomal proteins that have been shown previously to be elevated in expression when
TOR is active but reduced in expression when TOR is inactivated following rapamycin treat-
ment [38]. Fig 4E shows that the RS2 and RS3 genes were elevated in expression in Δasd4mu-
tant strains following axenic growth compared to WT, and this expression pattern was
reversed when rapamycin was added to the growth media. Furthermore, ATG8 is an autophagy
gene whose expression is repressed by active TOR. Autophagy is required for appressorium

Asd4 Regulates Appressorium Formation inMagnaporthe oryzae via TOR

PLOS Pathogens | DOI:10.1371/journal.ppat.1004851 April 22, 2015 10 / 24



maturation inM. oryzae [39], and is a processes inhibited by active TOR in yeast and mammals
[40]. Fig 4F shows that ATG8 expression was repressed in Δasd4mutant strains following axe-
nic growth compared to the Δasd4 Δgln1 double mutant.

Fig 4. The TOR signaling pathway is misregulated in Δasd4mutant strains. (A) The colony morphology of Δfpr1mutant strains on complete media was
not altered compared to WT. Strains were grown for 10 days. (B) Appressorial formation rates of Δfpr1mutant strains were not significantly different
(Student’s t-test p > 0.5) fromWT on hydrophobic artificial surfaces. (C) Treating spore suspensions with 55 nM rapamycin (Rap) did not induce
appressorium formation in Δfpr1mutant strains on non-inductive hydrophilic surfaces compared to WT. (D) Appressorial formation rates on artificial
hydrophobic surfaces were significantly elevated in an Δasd4 Δrbp35 double mutant compared to the Δasd4 single mutant. (E) The expression of theM.
oryzae ribosomal protein genes RS2 and RS3 was increased in Δasd4mutant strains compared to WT after growth in 1% GMMwith 10 mMNH4

+ for 16h.
Treatment with 55 nM Rap restored the expression of RS2 and RS3 in Δasd4mutant strains to WT levels. Expression levels were normalized against TUB2
gene expression and are given as relative fold changes. (F) ATG8 gene expression is upregulated in Δasd4 Δgln1mutant strains compared to the Δasd4
mutant when normalized against TUB2 gene expression. (B-D) Error bars are standard deviation. Bars with different letters are significantly different
(Student’s t-test p� 0.05). Values are the average of the number of appressoria formed at 24 hpi from 50 spores per coverslip, repeated in triplicate. NT = no
treatment. (E-F) Values are the mean of three independent replicates. Error bars are SD.

doi:10.1371/journal.ppat.1004851.g004
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When considered together, these results indicate that Asd4 acts upstream of TOR (via gluta-
mine) in order to regulate appressoria formation. Consequently, TOR signaling is perturbed in
Δasd4mutant strains.

TOR activation inhibits appressorium formation downstream of cAMP/
PKA signaling
A previously unknown outcome of this work is the discovery that rapamycin treatment can
generate appressoria on non-inductive hydrophilic surfaces (Fig 3H). cAMP treatment, or mu-
tations that constitutively activate cAMP/ PKA signaling, also enable appressoria to form on
non-inductive hydrophilic surfaces [8]. We next asked if a relationship existed between TOR
and the cAMP/ PKA- and MAP kinase-signaling pathways by first treating Δasd4 spores with
cAMP. cAMP treatment did not restore appressorium formation to Δasd4mutant strains on
either inductive hydrophobic (Fig 5A) or, in contrast to WT, on non-inductive hydrophilic
surfaces (Fig 5B). This indicates that activated TOR in Δasd4mutant strains blocks appressori-
um formation downstream of cPKA. However, although downstream of cAMP/ PKA signal-
ing, Asd4 is not under direct cPKA control because if so, cPKA would be required for Asd4
function and Δcpka strains would be expected to phenocopy Δasd4 strains. However, S6A Fig
shows that Δcpkamutant strains grew better than Δasd4 strains on NH4

+ media. Thus, CPKA
is not likely epistatic to ASD4.

Further evidence that TOR acts downstream of cPKA is shown in Fig 5C and 5D. Spores of
the cAMP/ PKA signaling mutant Δcpka and the MAP kinase mutant Δpmk1 were treated with
rapamycin. In common with previous reports [15], by 24 hpi, Δcpkamutant strains had formed
appressoria on inductive hydrophobic surfaces at the same rate as WT (Fig 5C). On non-in-
ductive hydrophilic surfaces, Δcpka spores treated with rapamycin formed significantly more
(Student’s t-test p� 0.05) appressoria than untreated spores (Fig 5D). In contrast, appressori-
um formation by Δpmk1 strains was not induced by rapamycin treatment on hydrophobic (Fig
5C) or hydrophilic (Fig 5D) surfaces. Thus, inactivating TOR promotes appressorium forma-
tion in a cPKA-independent, Pmk1-dependent manner.

Treatment with cAMP results in germ tube tip differentiation in Δpmk1 strains [16] result-
ing in hooking and swelling but not appressorium formation S6B Fig). This places Pmk1 func-
tion downstream of cAMP/ PKA [16]. In contrast, Δasd4mutant strains treated with 10 mM
cAMP on hydrophilic surfaces did not exhibit hooking or swelling and the germ tube tips re-
mained undifferentiated (S6B Fig). This places Asd4 function upstream of Pmk1.

Together, these results are consistent with the model shown in Fig 5E which shows that ap-
pressorium formation requires both activation of the cAMP/ PKA and MAP kinase signaling
pathways and inactivation of the TOR signaling pathway, the latter via Asd4-dependent gluta-
mine metabolism. Conversely, activated TOR in Δasd4 strains inhibits appressorium formation
downstream of cAMP/ PKA but upstream of Pmk1 (Fig 5E).

Δasd4 appressoria resulting from rapamycin treatment orGLN1 deletion
were not infection-competent
We next sought to determine the physiological relevance of the connection between Asd4 and
TOR under infection conditions. Δasd4 spores that had been treated with rapamycin and ap-
plied to detached rice leaf sheath surfaces formed melanized appressoria (Fig 6A) at rates that
were not significantly different to rapamycin treated WT spores (p = 0.08; Fig 6B). However,
the resulting Δasd4 appressoria were non-functional and unable to penetrate rice leaf surfaces
(Fig 6C and 6D). Similarly, untreated spores of the Δasd4 Δgln1 double mutant, compared to
WT and the Δasd4 parental strain, formed appressoria on leaf sheaths (Fig 6E), but none were
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observed penetrating the host leaf surface (Fig 6D and 6F). These results provide evidence
that, on the one hand, Asd4-dependent TOR inactivation is required for appressorium forma-
tion during rice infection. On the other hand, Asd4 is shown here to have roles in the pre-pene-
tration stage of infection that might be independent of TOR and which are currently unknown.

Discussion
New insights into the molecular pathways that regulate plant invasion by pests could reveal at-
tractive targets for effectively managing a range of diseases. Many fungal pathogens rely on ap-
pressoria to infect host cells [2], and appressorial developmental, at least inM. oryzae, is
dependent on positive-acting cAMP/ PKA- and MAP kinase-signaling pathways [5, 10]. Here,
we undertook the first steps in providing a mechanistic account of a negative-acting regulator
of appressorium formation inM. oryzae. Appressoria form under nutrient-free, hydrophobic
conditions, and we showed here that an activated TOR signaling pathway blocks this process.
TOR signaling was found to be constitutively active in the GATA factor mutant strain Δasd4,
and characterizing Asd4 function provided several unique insights into the biology of infec-
tion-related development. Our results are consistent with a model whereby Asd4 represses the
expression of a glutamine synthetase orthologue, GLN1, and down-regulates the expression of
other structural genes involved in nitrogen assimilation and glutamine turnover. We propose
this maintains intracellular glutamine pools at levels that are not sufficient to activate TOR.
Perturbing glutaminolysis and activating GLN1 expression in Δasd4mutant strains affected the
intracellular steady-state pools of glutamine and activated TOR, resulting in inhibition of the
cAMP/ PKA signaling pathway and loss of appressorium formation. Inactivating TOR restored
appressorium formation by Δasd4mutant strains. This was most evident on host leaf surfaces
where Δasd4 appressoria formed at rates indistinguishable fromWT after rapamycin treat-
ment. When taken together, the key novel features of the work described here include elucidat-
ing a role for TOR in inhibiting appressorial formation; discovering TOR inactivation requires
Asd4; and identifying TOR as a regulator of cAMP/ PKA signaling downstream of cPKA but
upstream of its connection with the MAP kinase pathway.

In yeast, the GATA transcription factors Gln3 and Gat1 are required for utilizing non-pre-
ferred nitrogen sources and are downstream targets of TOR [20, 41]. TOR is activated in re-
sponse to carbon and nitrogen sufficiency cues, including glutamine [20, 28, 29, 42], leading to
the induction of anabolic processes and growth. Under these conditions, Gln3 and Gat1 are
maintained in the cytoplasm. TOR inactivation due to nutrient limitation results in increased
autophagy, reduced protein synthesis and increased nitrogen catabolic gene expression follow-
ing Gln3 and Gat1 nuclear localization [20, 28, 29, 43]. Thus, TOR controls Gln3 and Gat1 ac-
tivity in yeast. In addition to the Gln3 and Gat1 transcriptional activators, Dal80 and Gzf3 are
yeast GATA factors that, like Asd4, act as transcriptional repressors [42]. However, in contrast
to the situation described here (whereby Asd4 is upstream of TOR and mediates its activity by
controlling glutamine metabolism), no comparable roles in controlling TOR signaling have
been described for the yeast Dal80 and Gzf3 GATA factors [20, 44]. Moreover, GATA factors
were not found in a recent screen of yeast genes necessary for TOR inactivation [44]. Thus,

Fig 5. TOR inhibits appressorium formation downstream of cAMP/ PKA signaling. Treating spore suspensions with 10 mM cAMP did not induce
appressorium formation by Δasd4mutant strains on hydrophobic (A) or (unlikeWT) non-inductive hydrophilic surfaces (B). Treatment with 55 nM rapamycin
(C and D) induced appressorium formation by Δcpkamutant strains on non-inductive hydrophilic surfaces but did not induce appressorium formation by
Δpmk1mutant strains on any surface. (A-D) Mean appressorial formation rates were determined at 24 hpi from 50 spores per hydrophilic slide or
hydrophobic coverslip, repeated in triplicate. NT = no treatment. Error bars are the standard deviation. Bars with different letters are significantly different
(Student’s t-test p� 0.05). (E) Appressorium formation requires functional cAMP/ PKA- and MAP kinase-signaling pathways, and Asd4-dependent
inactivation of TOR downstream of cPKA.

doi:10.1371/journal.ppat.1004851.g005
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Asd4 is revealed here as a novel TOR regulator, but whether this role is conserved in other
fungi, or necessitated inM. oryzae due to specific demands for TOR-related processes during
the infection cycle, is not known.

This work has provided new mechanistic insights into the control of TOR during theM.
oryzae-rice interaction. In general, though, the role of TOR in phytopathology is not well un-
derstood, although nonselective macroautophagy- an output of inactive TOR signaling in
yeast—is necessary for the maturation of incipient appressoria inM. oryzae [45]. Evidence of a
role for TOR in root colonization byM. oryzae has also been presented [36] whereby TOR sig-
naling is downregulated in the non-pathogenic RNA processing mutant Δrbp35. In the wheat
pathogen F. graminearum, loss of FgFKBP12 and mutations in FgTOR1 abolished the toxicity
of rapamycin, while downstream components of the TOR pathway—FgSit4, FgPpg and
FgTip41—were shown to have roles in virulence, development and mycotoxin production
[35]. A separate study has characterized the serine/threonine-protein kinase SCH9, an impor-
tant downstream target of yeast TORC1, in F. graminearum andM. oryzae [46]. ΔFgsch9 dele-
tions strains were impaired for conidiation, mycotoxin production and virulence on wheat
heads, and produced smaller spores than the F. graminearum parental strain. ΔMosch9mutant
strains exhibited reduced conidia and appressorial sizes than WT and were defective, though
not abolished, in plant infection [46]. Recently, we have shown how the biotrophic growth of
M. oryzae in rice cells requires a transketolase—dependent metabolic checkpoint involving the
activation of TOR [38]. Loss of transketolase function resulted in Δtkl1mutant strains that
formed functional appressoria, penetrated the rice cuticle and elaborated invasive hyphae.
However, Δtkl1 strains were depleted for ATP, an agonist of TOR, and these strains underwent
mitotic delay and reduced hyphal growth in rice cells due to the inactivation of TOR [38]. How
TOR controls the cell cycle duringM. oryzae biotrophy is not known. Thus, extending these
observations on the roles of TOR signaling during plant pathogenesis, and integrating them
into testable models of phytopathogen growth and development, will be a future challenge.

Our results presented here indicate how nitrogen turnover is an important feature of
appressorial morphogenesis. Because appressoria develop on the nutrient-free surface of the
leaf, internal nitrogen sources that contribute to the glutamine pools affecting TOR must be
generated from the recycling of endogenous proteins during autophagic cell death of the spore.
This would be consistent with previous work that determined ubiquitin-mediated proteolysis
was required for many aspects ofM. oryzae development, including appressorium function
[47]. How protein turnover during appressorium formation integrates with Asd4-dependent
nitrogen assimilation, glutaminolysis and TOR activity is therefore an important question for
rice blast research that could shed light on the relationships between GATA and TOR in
different systems.

Downstream of Asd4, how the TOR pathway intersects and inhibits the cAMP/ PKA signal-
ing pathway is not known. In yeast, controversy has developed regarding how TOR and PKA
signaling pathways regulate common protein targets, with some models suggesting the path-
ways act in parallel, and some models suggesting TOR is upstream of PKA [48]. Both models
are likely valid because recent work has shown that the regulatory subunit of PKA can be a

Fig 6. Δasd4mutant strains treated with rapamycin or lackingGLN1 formedmelanized appressoria on rice leaf surfaces that were not infection-
competent. Rapamycin treated spores of Δasd4mutant strains formed melanized appressoria at 18 hpi on detached leaf sheath surfaces of the susceptible
rice cultivar CO-39 (A) at rates that were not different to WT (B). However, the resulting Δasd4 appressoria were non-functional and had not penetrated the
leaf cuticle (C), or (D) produced primary hyphae in the rice cell (indicated by the asterisk for WT), by 25 hpi. Arrows indicate appressoria on the surface of the
leaf. (E) Like rapamycin treatment, deletingGLN1 in Δasd4mutant strains also promoted appressorium formation on detached leaf surfaces by 18 hpi, but
these Δasd4 Δgln1 appressoria were non-functional and, unlike WT, had not penetrated the leaf surface by 25 hpi (D, F). (B, E) Values are the average
number of appressoria formed from 50 spores per rice leaf sheath, repeated in triplicate. (C, F) Mean penetration rates were calculated from 50 appressoria
per leaf sheath, repeated in triplicate. Error bars are the standard deviation. Bars with different letters are significantly different (Student’s t-test p� 0.05).

doi:10.1371/journal.ppat.1004851.g006
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direct target of TOR in yeast, although PKA phosphorylation by TOR occurs selectively and is
not global [48]. Our study ofM. oryzae places TOR downstream and inhibitory to cAMP/ PKA
signaling during appressorium formation and thus provides an opportunity to uncover new re-
lationships between these two fundamental pathways. This would include identifying common
targets that control appressorium formation. One point of shared control for the two pathways
could be autophagy because Δcpka and Δpmk1mutants are unable to undergo autophagy inM.
oryzae [39], and PKA is necessary for autophagy in yeast [49]. Thus, focusing on TOR, PKA
and autophagy will likely yield important insights into appressorial biology.

Another important area of future study will be uncovering the role of Asd4 in cuticle pene-
tration. Although Δasd4 Δgln1 strains and Δasd4 spores treated with rapamycin could form
melanized, mature appressoria, they were unable to form penetration pegs. This suggests Asd4
might play a TOR-independent role in the late stages of appressorium maturation and/ or the
regulation of penetration peg formation. Successful peg penetration is dependent on the Pmk1
MAP kinase target Mst12 [9, 50], and on NADPH oxidase-dependent control of septin and F-
actin reorganization [51]. Also, in addition to the Pmk1 MAP kinase pathway that is essential
for appressorium formation, another MAP kinase pathway inM. oryzae, involving Mps1, is
not involved in appressorium formation but is required for penetration [52]. Determining if
and how Asd4 intersects with these processes will likely yield important new discoveries about
appressorium function.

In summary, this work demonstrates the utility of performing axenic physiological analyses
to make testable inferences regarding the metabolic strategies underlyingM. oryzae infection
of host plants. This has revealed that TOR inactivation requires Asd4, and that the TOR path-
way is a previously unknown negative-acting regulator of cAMP/ PKA signaling. The results
presented here thus provide mechanistic insights that extend our basic knowledge of regulatory
networks in fungi by revealing novel connections between GATA-, TOR- and PKA-mediated
signaling within the context of appressorium morphogenesis. Given the wealth of knowledge
about the role of TOR in yeast physiology and human pathologies, further explorations of the
function of TOR inM. oryzae and other appressorium-forming phytopathogens could provide
new tools and avenues for alleviating the global burden of plant diseases attributable to fungi.
Conversely, revealing Asd4 as a new TOR regulator might shed light on aspects of developmen-
tal control that could be applicable to a wide range of cellular processes across taxa.

Materials and Methods

Strains and physiological tests
The strains used in this study are listed in Table 2. Strains were grown on complete medium
(CM) containing 1% (W/V) glucose, 0.2% (W/V) peptone, 0.1% (W/V) yeast extract and 0.1%
(W/V) casamino acids, or on minimal medium (MM) containing 1% glucose and 0.6% sodium
nitrate, unless otherwise stated, as described in [18]. For the growth tests, nitrogen sources
were used in MM at 10 mM concentrations, unless otherwise specified. Plate images were
taken with a Sony Cyber-shot digital camera, 14.1 mega pixels. For spore counts, 10 mm2

blocks of mycelium were transferred to the center of each plate, and the strains grown for
12 days at 26 °C with 12 hr light/dark cycles. Spores were harvested in sterile distilled water,
vortexed vigorously and counted on a haemocytometer (Corning). Spores were counted inde-
pendently at least three times.

The spore suspensions were adjusted to a concentration of 1 x 105 spores/ml to perform the
appressoria formation tests. Rapamycin (Rap; LC Laboratories, USA) and monobutyryl cyclic
AMP (cAMP; Sigma-Aldritch, USA) were added to the spore suspensions at a concentration of
55 nM and 10 mM, respectively. Appressorial development was evaluated on inductive,
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hydrophobic plastic coverslips and non-inductive, hydrophilic glass slides. Both substrates
were inoculated with 200 μl of each spore suspension and appressoria were observed 24 hrs
post-inoculation (hpi). Rates were determined by counting the number of appressoria formed
from 50 conidia per coverslip, repeated in triplicate for each strain [53]. Concentrations of
55 nM—1 μM rapamycin could induce appressorial formation of WT on hydrophilic surfaces.

Plant infection assays and live-cell imaging
Rice plant infections were made using a susceptible rice (Oryza sativa) cultivar, CO-39, as de-
scribed previously [18]. Fungal spores were isolated from 12–14 day-old plate cultures and
spray-inoculated onto rice plants of cultivar CO-39 in 0.2% gelatin at a concentration of 1 x
105 spores/ml, and disease symptoms were allowed to develop under conditions of high relative
humidity for 120 hrs.

Live-cell imaging was performed as described previously [53] using 3 cm-long leaf sheath
segments from 3–4 week-old rice plants and injecting one end of the sheath with a spore sus-
pension of 1 x 105 spores/ml in 0.2% gelatin. At the time points indicated, leaf sheaths were
trimmed and observed using a Nikon Eclipse 50i microscope and a Nikon D100 digital net
camera. The average rates of appressorium formation and penetration were determined for
each strain, in triplicate, by analyzing 50 spores or appressoria per rice cuticle [53].

Asd4GFP was imaged as described previously for H1:RFP [38] using 488 nm and 500–550
nm for excitation and emission wavelengths, respectively.

Genetic manipulations
Gene functional analysis was achieved by the split marker method described in [18], using the
oligonucleotide primers shown in S4 Table. GLN1 was replaced in the Δasd4 parental strain
using the hygromycin B resistance selectable marker, hph.MoFPR1 and GLN1 were replaced in
the Guy11 genome using the ILV1 gene conferring resistance to sulphonyl urea [18]. ASD4 was
deleted from the 70–15 background using ILV1. ASD4 was deleted in the Δrbp35 parental
strain using the Bar gene conferring bialaphos resistance [18]. Gene deletions were verified by

Table 2. Magnaporthe oryzae strains used in this study.

Strains Genotype Reference

Guy11 M. oryzae wild type isolate (WT) used throughout this study unless otherwise
specified.

[18]

Δasd4 GATA factor (MGG_06050) deletion mutant of Guy11 and used throughout
this study unless otherwise specified.

[18]

Δasd4
ASD4GFP

Asd4 complementation strain expressing the Asd4::GFP fusion protein under
its native promoter in the Δasd4 mutant background.

This study

Δgln1 Glutamine synthetase (MGG_06888) deletion mutant of Guy11. This study

Δasd4 Δgln1 Glutamine synthetase (MGG_06888) deletion mutant of Δasd4. This study

Δpmk1 Map-kinase deletion mutant of Guy11. [16]

Δcpka cAMP dependent kinase A deletion mutant of Guy11. [15]

Δfpr1 FKBP12 (MGG_06035) deletion mutant of Guy11. This study

Δrbp35 RNA-binding protein (MGG_02741) deletion mutant of Guy11. [36]

Δasd4
Δrbp35

GATA factor (MGG_06050) deletion mutant in the Δrbp35 mutant
background.

This study

70–15 M. oryzae wild type isolate. [23]

Δasd4 [70–
15]

GATA factor (MGG_06050) deletion mutant of 70–15. This study

doi:10.1371/journal.ppat.1004851.t002
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PCR as described previously [18]. The original Δasd4mutant strain [18] was complemented
with ASD4GFP under its native promoter, constructed using the vector pDL2 and the primers
ASD4-G F/R (S4 Table), following the protocol of Zhou et al. [54].

Gene transcript analysis
Strains were grown for 48 h in CM before switching to minimal media for 3 h and 16 h, as indi-
cated. For in planta expression studies, detached rice leaf sheaths were inoculated with WT and
harvested at the indicated timepoints. Mycelia and leaves were frozen in liquid nitrogen, and
lyophilized for 36 hrs. RNA was extracted from fungal mycelium using the RNeasy mini kit
from Qiagen. RNA was converted to cDNA using the qScript reagents from Quantas. Real time
quantitative PCR (qPCR) was performed on an Eppendorf Mastercycler Realplex using the rec-
ommended reagents with primers designed using the netprimer software program (S4 Table).
qPCR data was analyzed using the Realplex software. Thermocycler conditions were: 10 min at
95°C, followed by 40 cycles of 95°C for 30 sec, 63°C for 30 sec and 72°C for 30 sec.

Chromatin immunoprecipitation (ChIP)
ChIP was performed as described in [55]. WT and Δasd4 ASD4GFP complementation strains
were grown in liquid CM for 48 h before switching to 1% GMMwith 10 mMNH4

+ for 16 h.
Three biological replicates were performed per strain. Thirty per cent of each DNA aliquot was
saved prior to ChIP and served as the input controls. Anti-GFP mAB-Agarose (D125-8, MBL)
was used to precipitate Asd4GFP-bound chromatin. A control ChIP was run in parallel using
Mouse IgG-Agarose (A0919, Sigma). The quantification of input and precipitated GLN1 DNA
was performed at least in triplicate using qPCR and the specific GLN1 primers shown in S4
Table. GLN1 DNA enrichment by Asd4GFP ChIP was confirmed by calculating the values of
GLN1 DNA obtained following Anti-GFP immunoprecipitation (the signal) relative to the lev-
els of GLN1 in the input controls, then comparing the GLN1 signal-to-input ratio derived from
the Δasd4 ASD4GFP samples against those of the WT negative control lacking Asd4GFP.

Amino acid quantification
Amino acid analysis was performed by LC-MS/MS using the aTRAQ kit provided by ABSciex
(Framingham, MA). Samples of lyophilized ground mycelia were first washed with water by
suspension and centrifugation at 4 oC. The supernatants were aspirated and the pellets were
used for extraction. The extractions were performed using 90% MeOH with 128 μMNorleu-
cine added as internal standard. After incubation at -55 oC, a 10 μL aliquot was removed and
concentrated by SpeedVac Centrifugation followed by derivatization according to the aTRAQ
protocol. The parameters for the MRM acquisition, chromatography and ion source operation
were also according to the aTRAQ protocol (Curtain gas = 20, CAD =Medium, IS = 1500;
TEM = 600, GS1 = GS2 = 60, heater on) employing a Nova Pak C-18 4 μm 3.9x150mm from
Waters Corp. (Milford, MA) for the separation of the tagged amino acids with a sample injec-
tion volume of 2 μL. Amino acid concentrations were calculated from the ratio of areas (Heavy
aTRAQ/light aTRAQ labeled standards) and corrected for losses for the entire procedure by
means of the Nle Internal Standard area recovery.

Supporting Information
S1 Fig. ASD4 is essential for appressorium formation in Guy11 and 70–15 parental strains.
(A) Deleting ASD4 from the genome of the wild type isolate 70–15, like deleting ASD4 in the
Guy11 background, resulted in Δasd4 (70–15) mutant strains that were reduced in radial
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growth after 10 days on GMMwith 10 mMNH4
+ compared to the 70–15 parental strain. Error

bars are standard deviation. Bars with different letters are significantly different (Student’s t-
test p� 0.05). (B) Conidia of the parental strain 70–15 and the Δasd4 (70–15) mutant strain
were applied to artificial hydrophobic surfaces. At 24 hpi, spores of 70–15 had germinated and
formed melanized appressoria at the germ-tube tips (red arrow). In contrast, Δasd4mutant
spores (like those of Δasd4 in the Guy11 background) had germinated but failed to develop ap-
pressoria by 24 hpi. (C) Complementing the Δasd4mutant strain derived from Guy11 with a
copy of ASD4 fused to GFP and expressed under its native promoter resulted in Δasd4 ASD4GFP

complementation strains that were restored for appressoria formation (red arrows) on artificial
hydrophobic surfaces at 24 hpi. (D) The GATA transcription factor Asd4 fused to GFP local-
izes to the nucleus during appressoria development on artificial hydrophobic surfaces. Scale
bar is 10 μm.
(TIF)

S2 Fig. ASD4 regulates the expression of genes involved in nitrogen assimilation. GLN1,
GLN2, GDH1, GLT1, andMGD1 gene expression was analyzed in strains of WT and Δasd4
after 3 h and 16 h growth in 1% (w/v) glucose MM (GMM) with 10 mMNH4

+ as the sole nitro-
gen source. Results were normalized against the expression of the β-tubulin gene TUB2. Values
are the average of three results from at least two independent biological replicates. Error bars
are standard deviation.
(TIF)

S3 Fig. GLN1 is not expressed in WT under the conditions studied. (A) Mining the genome-
wide transcriptional profiling data generated by the Talbot group using RNAseq and High-
Throughput SuperSage analysis [27]—available at http://cogeme.ex.ac.uk/supersage/ - reveals
how GLN2, GLT1 andMGD1 were expressed during appressorium development but GLN1
and GDH1 expression was not detectable. (B) In planta quantitative real-time PCR (qPCR)
analysis of gene expression, using cDNAs obtained from rice leaf sheaths of the susceptible rice
cultivar CO-39 inoculated with WT, shows GLN1 expression was not detected duringM. ory-
zae infection. Leaf sheaths were inoculated with 1 x 105 spores mL-1. RNA was extracted for
cDNA synthesis and gene expression analysis at the indicated time points. Results were nor-
malized against the expression of theM. oryzae actin-encoding geneMoACT1 and are the aver-
age of three independent replications. Error bars are standard deviation. Hpi = hours post
inoculation. (C) GLN1 gene expression was analyzed in WT and Δasd4mutant strains after 16
h growth in 1% (w/v) glucose MM (GMM) containing the indicated concentrations of sole ni-
trogen sources. GLN1 expression following growth in MM containing glutamine as a sole car-
bon and nitrogen source was also examined. Gene expression results were normalized against
expression of the β-tubulin gene (β-TUB2). Values are the average of three replicates. Error
bars are standard deviation.
(TIF)

S4 Fig. Characterizing GLN1 function in WT and Δasd4 strains. (A) Disrupting GLN1 in
Guy11 does not affect colony morphology on complete media. Strains were grown for 10 days.
(B) Δgln1mutant strains were not affected in sporulation after 12 days growth on complete
media. (C) Δgln1mutant strains formed appressoria at the same rate as WT on hydrophobic
artificial surface. Values are the average of the number of appressoria formed at 24 hpi from 50
spores per coverslip, repeated in triplicate. (D) Δgln1mutant strains were fully pathogenic.
Strains were inoculated onto rice (CO-39) at a rate of 1x105 spores mL-1. (E) Δasd4 and Δasd4
Δgln1mutant strains were reduced in radial growth compared to WT after 10 days on GMM
with 10 mMNH4

+. (B-C) Error bars are standard deviation. Bars with different letters are
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significantly different (Student’s t-test p� 0.05).
(TIF)

S5 Fig. Δasd4 (70–15) mutant strains were restored for appressoria formation following
treatment with Rapamycin. Δasd4mutant strains in the 70–15 parental strain background
formed appressoria at 24 hpi on artificial hydrophobic surfaces (coverlips) following treatment
with 55 nM rapamycin. Bars with different letters are significantly different (Student’s t-test
p� 0.05). Values are the average of the number of appressoria formed at 24 hpi from 50 spores
per coverslip, repeated in triplicate. NT = no treatment.
(TIF)

S6 Fig. Asd4 functions downstream of cAMP/ PKA signaling and upstream of MAP kinase
signaling. (A) Asd4 acts downstream but independently of cAMP/ PKA signaling. Unlike
Δasd4, Δcpkamutant strains were not significantly reduced in growth on GMMwith 10 mM
NH4

+, indicating Asd4 is not under cAMP/ PKA signaling control. (B) Asd4 regulates appres-
sorium formation upstream of Pmk1. Treatment with 10 mM cAMP resulted in appressorium
formation by WT on hydrophilic surfaces. Δpmk1 strains responded to cAMP by differentiat-
ing germ tube tips on hydrophilic surfaces that hooked and swelled but did not form appresso-
ria, indicating Pmk1 functions downstream of cAMP/PKA signaling [16]. Δasd4mutant
strains did not respond to cAMP treatment on hydrophilic surfaces and their germ tube tips
did not differentiate, indicating Asd4 functions upstream of Pmk1. Appressoria are denoted by
black arrow. Red arrow denotes differentiated germ tube tips that do not progress beyond
hooking and swelling. Bar is 10 μm. Images were made at 24 hpi. NT = no treatment.
(TIF)

S1 Table. Colony size (in mm) of Δasd4mutant strains compared to Guy11 (WT) following
ten days growth on defined minimal media with 1% (w/v) glucose as the sole carbon source
and the indicated final concentrations of sole nitrogen sources.
(DOCX)

S2 Table. Colony size (in mm) of Δasd4mutant strains compared to Guy11 (WT) following
ten days growth on defined minimal media with the indicated final concentrations of sole
carbon and nitrogen sources.
(DOCX)

S3 Table. Description ofMagnaporthe oryzae genes analyzed by quantitative RT-PCR in
this study.
(DOCX)

S4 Table. Oligonucleotide primers used in this study.
(DOC)
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