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Abstract
Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of

how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited.

Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute

the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils
and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal

growth. However, the mechanism of neutrophil and macrophage recruitment to the respira-

tory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we

show that A. fumigatus pulmonary challenge induces expression of the inflammasome-

dependent cytokines IL-1β and IL-18 within the first 12 hours, while IL-1α expression

continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are high-

ly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal prolifera-

tion in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with

defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1β

was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of

CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1

expression in the lungs, as selective depletion of these cells resulted in their diminished ex-

pression, which in turn regulated the early accumulation of neutrophils in the lung after A.
fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activ-

ity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast

to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1β were only essential

for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice

are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-

redundant roles for IL-1α and IL-1β in controlling A. fumigatus infection in the murine lung.
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Author Summary

Aspergillus spp. are ubiquitous in the environment, and even though individuals are
regularly exposed to fungal spores clinical invasive disease is a rare manifestation. In con-
trast, individuals with weakened immune systems develop severe disease, such as invasive
pulmonary aspergillosis (IPA). IPA is associated with extremely poor prognoses and
unacceptably high mortality rates. Knowledge gained from understanding how immuno-
competent mammals control Aspergillus challenge will help develop new immunomodula-
tory strategies aimed at improving patient outcomes. It is well known that neutrophils
and monocytes are crucial immune cells that act to limit fungal growth. Our work demon-
strates a central role for the cytokine IL-1α in orchestrating the optimal recruitment of
neutrophils and monocytes, whereas IL-1β and the inflammasome are more important
in activation of anti-fungal activity of the monocytes. Moreover, our studies indicate that
CCR2+ monocytes are required for optimal production of IL-1α in the lungs of A.
fumigatus challenged mice. Thus, our data highlight a crucial role of the IL-1 cytokine in
mediating anti-fungal immunity which might be harnessed to treat clinical cases of IPA.

Introduction
The mold Aspergillus fumigatus is one of the leading causes of invasive fungal infections. It is
the causative agent of severe pulmonary infections such as invasive pulmonary aspergillosis
(IPA), a disease of high morbidity and mortality which affects immunocompromised individu-
als [1]. IPA has been a disease of growing concern over recent decades due to an increase in the
immunocompromised population, specifically caused by advances in immunosuppressive
drugs and organ transplantation methods as well as chemotherapy treatments in cancer pa-
tients [2]. In addition, there is increasing evidence that IPA can sporadically develop in certain
immunocompetent populations [3]. Currently there are no available vaccines for A. fumigatus
and anti-fungal drugs have a modest rate of success in limiting high mortality rates typically
due to late diagnosis of IPA [1,2,4]. Moreover, the recent emergence of drug resistance has fur-
ther limited treatment options in certain clinical cases and geographic areas [5,6,7].

The concentration of Aspergillus conidia in air samples ranges from 0.2–15 conidia/m3

and on a daily basis an individual can inhale hundreds of conidia [8]. In most immunocom-
petent individuals the conidia are typically removed from the body by physical barriers en-
countered within the respiratory tract. However, if the conidia escape this primary immune
barrier and enter the lung, they will be removed by alveolar macrophages and other resident
leukocytes, such as CCR2+ monocytes. Conversely, in an individual lacking a sufficient im-
mune response, Aspergillus conidia are able to swell, germinate, and form hyphae, invading
pulmonary tissue with the potential to disseminate systemically [9,10]. Our understanding of
the inflammatory pathways necessary for an immunocompetent individual to maintain con-
trol of A. fumigatus while constantly being exposed to conidia is an ongoing area
of investigation.

Control of A. fumigatus growth in the lung during invasive infection is highly dependent on
rapid recruitment and activation of innate immune cells, including neutrophils [11], inflamma-
tory monocytes [10,12], NKT cells [13], and plasmacytoid dendritic cells [14]. The importance
of appropriate activation of leukocytes in the control of A. fumigatus is highlighted by patients
and mice with chronic granulomatous disease or lacking NADPH oxidase subunits, being
highly susceptible to developing IPA after A. fumigatus challenge [15,16,17]. Furthermore, pa-
tients who become neutropenic after chemotherapy for a bone marrow transplant are at a
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higher risk for developing IPA [18,19,20,21]. In the murine model of A. fumigatus infection,
CXCR2 and its ligands are important signaling components for neutrophil recruitment
[22,23,24]. In the absence of CXCR2 signaling during pulmonary A. fumigatus infection, there
is a decrease in neutrophil recruitment along with a higher fungal burden and increased mor-
tality rate, similar to a neutropenic model [23]. Additionally, a role for CCR2 signaling has
been shown to be necessary to promote recruitment and differentiation of inflammatory
monocytes from the bone marrow into CD11b+ dendritic cells upon A. fumigatus infection
[10,12]. However, the exact sequence of events necessary for the expression of chemotactic
molecules for optimal leukocyte recruitment has not been well elucidated.

In addition, it has been shown that polymorphisms in the Interleukin (IL)-1 gene cluster
may be important in determining the susceptibility or resistance to IPA in humans [25,26].
The IL-1 gene cluster codes for two pro-inflammatory cytokines, IL-1α and IL-1β, as well as
the IL-1 receptor antagonist (IL-1Ra) [27]. All three of these IL-1 family members bind to the
IL-1 receptor, type I (IL-1RI). IL-1α and IL-1β enhance the immune response while IL-1Ra
competitively binds to IL-1RI, thereby preventing the binding of IL-1α and IL-1β [27]. Al-
though IL-1α and IL-1β are both pro-inflammatory cytokines within the same IL-1 cytokine
family, they differ in their maturation processes. IL-1α can be released as pro-IL-1α or mature
IL-1α after calpain cleavage. In either form it can actively bind to IL-1RI and mediate down-
stream signaling [27,28]. Conversely, IL-1β is first produced as inactive pro-IL-1β which must
be cleaved by a caspase-1 containing inflammasome to yield the mature biologically active cy-
tokine [29]. After fungal exposure, IL-1β production has been linked to activation of the
NLRP3 inflammasome [30,31,32,33,34,35,36,37]. Mice lacking the NLRP3 inflammasome are
highly susceptible to disseminated candidiasis [30,36,37]. However, the role of inflammasome
activation by A. fumigatus in vivo is unknown.

The role of IL-1α in regulating the pulmonary inflammatory response after infectious
challenge is much less understood and is an active area of research. Importantly, several
studies have shown that IL-1α and IL-1β can have non-redundant roles in infection and in-
flammation. Specifically, it has been demonstrated that an increase of IL-1α correlated with
early neutrophil recruitment, while IL-1β correlated with macrophage recruitment during
later time points in a model of sterile inflammation [38,39]. During pulmonary Legionella
pneumophila infection IL-1α is essential for early neutrophil responses [40]. In a systemic
candidiasis model, IL-1α and IL-1β played non-redundant roles in anti-fungal immunity by
enhancing anti-fungal activity of leukocytes and recruitment of neutrophils, respectively
[41]. However, the role(s) of IL-1 cytokines after challenge with the mold A. fumigatus re-
mains to be fully defined.

Here, we delineate the differential roles of IL-1α and IL-1β after in vivo challenge with A.
fumigatus and further define the sequence of events required for leukocyte recruitment after A.
fumigatus challenge. Specifically, we observed, unlike the diseases caused by the yeast Candida
albicans [30,36,37], that the inflammasome is not essential for preventing severe invasive pul-
monary aspergillosis, but does participate in initiating the full anti-fungal activity of leukocytes.
In stark contrast, IL-1α signaling through IL-1RI is crucial for the control of pulmonary A.
fumigatus infection through optimal leukocyte recruitment, which correlated with CXCL1 ex-
pression. CCR2+ monocytes regulated the early expression of IL-1α and CXCL1, and promoted
early neutrophil accumulation in the airways. Treatment of Il1r1-deficient mice with a chemo-
kine known to enhance neutrophil recruitment enhanced immunity against pulmonary A.
fumigatus infection. Thus, our studies define the specific sequence of events regulated by both
IL-1α and IL-1β necessary for control of A. fumigatus growth and lung damage within the
respiratory tract.
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Results

Differential temporal expression kinetics of IL-1 cytokine family members
after Aspergillus fumigatus challenge
To examine the early pulmonary inflammatory milieu induced after A. fumigatus challenge,
bronchoalveolar lavage fluid (BALF) was collected 6, 12, 24, and 48 h after intratracheal (i.t.)
instillation of*5×107 conidia of the CEA10 strain of A. fumigatus. Of note, both the inflam-
masome-dependent cytokines IL-1β (Fig. 1A) and IL-18 (Fig. 1B) were expressed within ap-
proximately 6 h after A. fumigatus challenge. In contrast, IL-1α (Fig. 1C) and IL-1Ra (Fig. 1D)
were expressed in a linearly increasing manner during the first 48 h. Thus, A. fumigatus chal-
lenge results in temporally distinct expression of IL-1 cytokine family members.

Il1r1-deficient mice are highly susceptible to pulmonary Aspergillus
fumigatus infection
In one cohort of human patients it has been shown that a complex polymorphism in the Il1a,
Il1b, and Il1rn genes, which was associated with decreased IL-1 dependent inflammatory
events, resulted in increased risk for the development of IPA [25]. Because of this prior clinical
observation plus our finding that both IL-1α and IL-1β are produced in the lungs after A.
fumigatus challenge (Fig. 1), we questioned whether IL-1RI signaling was critical in the clear-
ance of A. fumigatus from the lung. To globally test the role of IL-1 signaling in limiting A.
fumigatus growth in the respiratory tract of mice, we challenged C57BL/6 and Il1r1-deficient
mice with*5×107 conidia of A. fumigatus CEA10 delivered via the i.t. route. Subsequently,
control of A. fumigatus in the respiratory tract was assessed by histological analysis at 24, 48,
and 72 h after instillation. Strikingly, Grocott-Gomori methenamine silver (GMS) staining of

Figure 1. C57BL/6 mice show differential expression of IL-1α and IL-1ß after A. fumigatus infection.
Mice were infected i.t. with 5×107 CEA10 conidia and at indicated time-points, mice were euthanized,
bronchoalveolar lavage fluid (BALF) collected, and lung tissue homogenized. IL-1β (A), IL-18 (B), IL-1α (C),
and IL-1Ra (D) levels in lung homogenate (IL-1α) and BALF (IL-1β, IL-18, and IL-1Ra) were measured using
ProcartaPlex Mouse Cytokine & Chemokine 36-plex Immunoassay or ELISA. Data are representative of four
mice per time point and two independent experiments. Each dot represents the mean ± one SEM.

doi:10.1371/journal.ppat.1004625.g001
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lung tissue from Il1r1-deficient mice revealed the presence of a significant fraction of germinat-
ing A. fumigatus conidia at 48 h that was not observed in C57BL/6 mice (Fig. 2A). When the
presence of germinating A. fumigatus conidia was quantified over the first 72 h, C57BL/6 mice
displayed minimal germination that was*4% at 48 h before resolving (Fig. 2B); in contrast,
Il1r1-deficient mice displayed a significant impairment in controlling A. fumigatus germina-
tion within 24 h (Fig. 2B). By 48 h, the majority of fungal conidia in Il1r1-deficient mice were
germinated (Fig. 2B). High levels of germination were observed in the majority of Il1r1-deficient
mice and this was associated with significant mortality in those mice (Fig. 2C). To strengthen our
conclusion that IL-1RI signaling was crucial for controlling A. fumigatus germination in the
lungs rather than a development issue in the Il1r1-deficient mice, we treated C57BL/6 mice intra-
peritoneally (i.p.) with 200 μg of hIL1ra, which antagonizes IL-1α and IL-1β, or placebo every
24 h starting one day prior to challenging mice with*5×107 conidia of A. fumigatus. Lung tissue
from hIL1ra-treated C57BL/6 mice revealed the presence of a significant fraction of germinating
A. fumigatus conidia at 48 h, which was not observed in placebo treated C57BL/6 mice (S1 Fig.).
Taken together, these results strongly support the conclusion that IL-1RI signaling is critical for
prevention of A. fumigatus strain CEA10 pulmonary proliferation and host damage.

Neutrophils and macrophages are widely acknowledged to be critical effector cells for clear-
ing A. fumigatus from the lungs [42]. Assessing cellular recruitment via differential microscop-
ic counting of cytospins stained with Diff-Quik from the bronchoalveolar lavage fluid at 12, 24,
and 48 h post-challenge demonstrated a significant impairment in neutrophil recruitment at
each time point analyzed, while macrophage recruitment was similar between C57BL/6 and

Figure 2. Il1r1-deficient mice are highly susceptible to Aspergillus fumigatus infection. Age-matched C57BL/6 or Il1r1-deficient mice were infected i.t.
with 5×107 CEA10 conidia and at indicated time-points, mice were euthanized, BALF collected, and lungs saved for histological analysis. (A) Formalin-fixed
lungs were paraffin embedded, sectioned, and stained with H&E (top) or GMS (bottom) for analysis by microscopy. Representative lung sections from
C57BL/6 and Il1r1-deficient mice infected with CEA10 for 48 h are shown using either the 4× (left) or 20× (right) objectives. (B) A. fumigatus germination rates
were assessed over the first 72 h of infection by microscopically counting both the number of conidia and number of germlings in GMS-stained section. (C)
Survival of C57BL/6, Pycard−/−, and Il1r1−/− mice challenged i.t. with 1.5×107 A. fumigatus (CEA10) conidia was then monitored for survival over the first 96 h
(Mantel-Cox log-rank test, p = 0.0002). Data are representative of 2 independent experiments at each time point consisting of at least 5 mice per group. (D)
Total macrophage (left panel) and neutrophil (right panel) recruitment in the BALF was measured at 12, 24, and 48 h post-infection. Data are representative
of at least 2 independent experiments at each time point consisting of 3–5 mice per group. Bar graphs show the group mean ± one SEM. Statistically
significant differences were determined using Student’s t-test (*p< 0.05; **p< 0.01).

doi:10.1371/journal.ppat.1004625.g002

Role of IL-1 Cytokines after Aspergillus fumigatusChallenge

PLOS Pathogens | DOI:10.1371/journal.ppat.1004625 January 28, 2015 5 / 25



Il1r1-deficient mice at early time points after A. fumigatus challenge, but were decreased by
48 h (Fig. 2D). When inflammatory infiltrates within the BALF and lung parenchyma were
assessed at 12, 24, and 36 h by flow cytometry a similar decrease in neutrophils in both com-
partments was observed in the Il1r1-deficient mice (S2A-S2B Fig.), while CD11b+ macrophages
(S2C Fig.), CD11c+ alveolar macrophages (S2D Fig.), and CD103+ dendritic cells (S2E Fig.)
were found at similar levels as observed in C57BL/6 mice. We next questioned whether leuko-
cyte recruitment was diminished inMyd88-deficient mice because it is the key signaling adapt-
er for IL-1RI, as well as TLRs [27,43], andMyd88-deficient mice have an impaired ability to
control pulmonary A. fumigatus growth [44]. Indeed,Myd88-deficient mice exhibited defective
neutrophil recruitment 12 and 24 h after A. fumigatus instillation, but normal macrophage re-
cruitment at these early time points (S3 Fig.). Thus, mice deficient in Il1r1 andMyd88 are high-
ly impaired in their ability to clear A. fumigatus from the lungs, which correlates with defects
in early neutrophil recruitment to the lungs.

Pycard-deficient mice are only mildly susceptible to pulmonary
Aspergillus fumigatus exposure
It is well documented that IL-1β secretion requires the function of the inflammasome [29] and
that both the inflammasome and IL-1β are important in limiting systemic fungal infections
[30,33,35,36,37,41,45]. Recent in vitro studies have shown that the NLRP3-ASC-Capase1
inflammasome can be triggered by A. fumigatus [31], but the in vivo relevance of this triggering
during A. fumigatus infection remains unknown. Multiple inflammasome complexes exist, but
ASC (Pycard) is a central adapter protein needed for maturation of IL-1β and IL-18 [29]. Thus,
to determine the role of the inflammasome after A. fumigatus challenge, we challenged C57BL/
6 and Pycard-deficient mice with*5×107 conidia of A. fumigatus CEA10 i.t.; subsequently,
control of A. fumigatus in the respiratory tract was assessed by histological analysis at 24, 48,
and 72 h after instillation. GMS staining of lung tissue from Pycard-deficient mice revealed the
presence of germinating A. fumigatus conidia at elevated frequencies compared to C57BL/6
mice at 48 h (Fig. 3A-B), but this phenotype was less severe than what was observed in Il1r1-
deficient mice and did not result in murine mortality (Fig. 2). When the presence of germinat-
ing A. fumigatus conidia was quantified over the first 72 h, C57BL/6 mice display minimal ger-
mination that was*3% at 48 h (Fig. 3B). Pycard-deficient mice displayed normal control of A.
fumigatus germination at 24 h. However, by 48 h impaired control of A. fumigatus germination
(*22%) was observed, but these mice were ultimately able to resolve the A. fumigatus chal-
lenge (Fig. 3B). Because, neutrophils and macrophages are widely acknowledged to be critical
effector cells for clearing A. fumigatus from the lungs [42] and were diminished in the absence
of IL-1RI signaling (Fig. 2C), we next assessed inflammatory cell recruitment in BALF via dif-
ferential microscopic counting of cytospins stained with Diff-Quik from the bronchoalveolar
lavage fluid at 12, 24, and 48 h after instillation. Interestingly, C57BL/6 and Pycard-deficient
mice demonstrated equivalent neutrophil and macrophage recruitment at each time point ana-
lyzed (Fig. 3C). Moreover, when the inflammatory infiltrates within the BALF and lung paren-
chyma were assessed at 12, 24, and 36 h by flow cytometry the number of neutrophils in the
BALF and lung parenchyma, CD11b+ macrophages, CD11c+ alveolar macrophages, and
CD103+ dendritic cells in the lung parenchyma were found at similar levels in C57BL/6 and
Pycard-deficient mice (S2 Fig.). When we examined the expression of IL-1β in the BALF of
Pycard-deficient mice, no expression of IL-1β at 12 h was observed while significant levels were
detected in C57BL/6 mice (Fig. 3D); however, when IL-1α was examined in the lung parenchy-
ma we observed equivalent levels of cytokine expression (Fig. 3E), suggesting that IL-1α signal-
ing could still be activated in the Pycard-deficient mice.
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Since Pycard-deficient mice did not demonstrate impaired leukocyte recruitment after A.
fumigatus challenge, we next sought to quantitate the anti-fungal activity of macrophages from
C57BL/6 and Pycard-deficient mice. Hyphal damage induced by macrophages was assessed
using the XTT hyphal damage assay, which measures fungal cell metabolic activity as an
indirect measure of fungal viability [46]. C57BL/6 and Pycard-deficient bone marrow-derived
macrophages induced similar hyphal damage when co-cultured with A. fumigatus under
normoxic conditions (Fig. 3F, yellow bars). Interestingly, a previous report demonstrated en-
hanced anti-fungal activity of leukocytes against fungal hyphae under hypoxic conditions [46],

Figure 3. Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Age-matched C57BL/6 or Pycard-deficient mice were infected i.t. with
5×107 CEA10 conidia and at indicated time-points mice were euthanized, BALF collected, and lungs saved for histological analysis. (A) Formalin-fixed lungs
were paraffin embedded, sectioned, and stained with H&E (top) or GMS (bottom) for analysis by microscopy. Representative lung sections from C57BL/6
and Pycard-deficient mice infected with CEA10 for 48 h are shown using either the 4× (left) or 20× (right) objectives. (B) A. fumigatus germination rates were
assessed over the first 72 h of infection by microscopically counting both the number of conidia and number of germlings in GMS-stained section. (C) Total
macrophage (left panel) and neutrophil (right panel) recruitment in the BALF was measured at 12, 24, and 48 h post-infection. (D) IL-1β levels in the
bronchoalveolar lavage fluid (BALF) and (E) IL-1α levels in the lung parenchyma were assessed from C57BL/6 and Pycard-deficient mice infected i.t. 12 h
prior with 5×107 CEA10 conidia. IL-1α and IL-1β levels in BALF were measured by ELISA. (B-E) All data are representative of at least 2 independent
experiments at each time point consisting of 3–5 mice per group. Bar graphs show the group mean ± one SEM. Statistically significant differences were
determined using Student’s t-test (*p< 0.05; **p< 0.01). LOD = limit of detection. (F-G) The anti-fungal activity of bone marrow-derived macrophages
(BMDM) were assessed in vitro using the previously described XTT assay [46]. (E) BMDMs were obtained from C57BL/6 (WT) or Pycard-deficient (ASC)
mice. An XTT assay was performed using BMDM from each mouse strain in both normoxic and hypoxic conditions. (B) BMDMs from C57BL/6 mice were
obtained and incubated with isotype control antibody, IL-18 neutralizing antibody or IL-1ß neutralizing antibody. These BMDMs were then used in an XTT
assay in both normoxic and hypoxic conditions. (E-F) Data are representative of four biological replicates in each group. Bar graphs show the group mean ±
one SEM. Statistically significant differences were determined using an one-way ANOVA with Bonferroni’s post-test (1p< 0.05 compared to C57BL/6 cells
under the same conditions).

doi:10.1371/journal.ppat.1004625.g003
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which occurs within the lungs after A. fumigatus challenge and at sites of microbial infection
[47,48]. Intriguingly, time-points when hypoxia is observed also coincides with the recruitment
of inflammatory monocytes to the site of infection [12]. Thus, we sought to test the contribution
of the inflammasome to the anti-fungal response of macrophages under hypoxic conditions. Sim-
ilar to the previous findings [46], C57BL/6 bone marrow-derived macrophages displayed signifi-
cantly enhanced anti-fungal activity when cultured in hypoxia (Fig. 3F). In contrast, Pycard-
deficient macrophages induced less hyphal damage when co-cultured with A. fumigatus under
hypoxic conditions (Fig. 3F, blue bars). Since activation of the inflammasome triggers the release
of both IL-1β and IL-18 we next sought to assess which inflammasome-dependent cytokine was
responsible for increasing the anti-fungal activity of macrophages in hypoxia. C57BL/6 macro-
phages were treated with an isotype control antibody, anti-IL1β antibody, or anti-IL18 antibody
during the co-culture with A. fumigatus germlings. Subsequently, fungal damage was again as-
sessed by an XTT assay. Macrophages treated with an isotype control antibody display increased
anti-fungal activity in hypoxia. This increased anti-fungal activity was lost in the presence of a
blocking anti-IL1β antibody, but not a blocking anti-IL18 antibody (Fig. 3G). Collectively,
these data demonstrate that mice deficient in Pycard are mildly impaired in their ability to clear
A. fumigatus from the lungs, which correlated with in vitro defects in the anti-hyphal activity in-
duced by IL-1β in hypoxia, rather than inflammatory cell recruitment to the lungs.

Anti-IL-1α treatment impairs pulmonary recruitment of leukocytes,
enhancing the susceptibility of mice to pulmonary Aspergillus fumigatus
infection
As Il1r1-deficient mice were much less able to control A. fumigatus germination than
Pycard-deficient mice (Fig. 2 & 3) and Pycard-deficient mice still produced IL-1α in the lungs
(Fig. 3D), we next sought to understand the role IL-1α played in the clearance of A. fumigatus
from the lung. To determine the role of IL-1α after A. fumigatus challenge, we treated C57BL/6
mice i.p. with 40 μg of goat IgG or anti-IL1α 24 h prior to and 24 h after challenging mice
with*5×107 conidia of A. fumigatus. Control of A. fumigatus in the respiratory tract was
assessed by histological analysis at 48 h after instillation. GMS staining of lung tissue from
anti-IL1α treated C57BL/6 mice revealed the presence of germinating A. fumigatus conidia at
significantly higher frequencies than seen in goat IgG treated C57BL/6 mice (Fig. 4A & B).
As leukocyte recruitment to the lungs was significantly impaired in Il1r1-deficient, but not
Pycard-deficient, mice following A. fumigatus challenge, we next assessed inflammatory cell
recruitment to the BALF via differential microscopic counting of cytospins stained with Diff-
Quik from the bronchoalveolar lavage fluid at 24 and 48 h post-challenge. Interestingly, anti-
IL1α treated C57BL/6 mice demonstrated reduced neutrophil recruitment at 24 h post-A.
fumigatus challenge (Fig. 4C). Additionally, treatment of Pycard-deficient mice with anti-IL1α
significantly enhanced the susceptibility of those mice to A. fumigatus challenge, mirroring
what was found in Il1r1-deficient mice (S4 Fig.). Thus, blocking IL-1α in mice significantly im-
pairs early neutrophil recruitment to the lungs early after A. fumigatus challenge resulting in
impaired control of A. fumigatus germination in the lungs.

IL-1α signaling enhances the expression of CXCL1
As both Il1r1-deficient mice and anti-IL1α treated C57BL/6 mice displayed significantly de-
creased cellular infiltration into the BALF (Fig. 2D and 4C), we next sought to understand the
roles that IL-1α, IL-1RI, and the inflammasome play in setting up the inflammatory milieu
within the lungs. Thus, we challenged four cohorts of mice, C57BL/6 treated with 40 μg of
goat IgG, C57BL/6 treated with 40 μg of anti-IL1α, Il1r1-deficient, and Pycard-deficient,
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with*5×107 conidia of A. fumigatus. Twenty-four hours after challenge, the inflammatory
milieu in the lung parenchyma was assessed by a 12-plex multiplex cytokine assay. Anti-IL1α
treatment, rather than Pycard-deficiency, largely mirrored the inflammatory cytokine defects
found in the Il1r1-deficient mice (Fig. 5) fitting with the biological outcomes of A. fumigatus
challenge in those mice. Specifically, TNFα, CCL3, and CCL4 expression was not diminished
in the absence of IL-1α, IL-1RI, or ASC (Fig. 5). Interestingly, CXCL1 and G-CSF expression
were significantly reduced in Il1r1-deficient mice. CXCL1 expression was almost entirely de-
pendent on IL-1α signaling (Fig. 5), while G-CSF expression trend to being dependent on both
IL-1α and ASC in an additive manner (Fig. 5). A similar trend, as observed with CXCL1, was
seen with IL-6 and CCL2, but it did not reach significance (Fig. 5). Thus, blocking IL-1α in
mice significantly decreased the abundance of CXCL1 in the lungs, which correlates with the
decreased neutrophil recruitment in Il1r1-deficient mice.

Absence of CCR2+ monocytes results in decreased IL-1α, CXCL1, and
neutrophil recruitment
As IL1α was necessary for optimal CXCL1 expression and neutrophil infiltration into the
BALF (Fig. 4C & 5), we next sought to identify potential cellular sources of IL-1α in response
to pulmonary challenge with A. fumigatus. Within the lung of a naïve mouse several potential
sources of IL-1α exist including: non-hematopoietic cells (epithelial and endothelial cells), alve-
olar macrophages in the airway spaces, and CCR2+ monocytes within the lung parenchyma.

Figure 4. C57BL/6 mice treated with IL-1α neutralizing antibody were more susceptible to Aspergillus
fumigatus infection.C57BL/6 mice treated with isotype control antibody or IL-1α neutralizing antibody were
infected i.t. with 5×107 CEA10 conidia. At the indicated time points mice were euthanized, BALF collected
and lungs saved for histological analysis. (A) Formalin-fixed lungs were paraffin embedded, sectioned and
stained with H&E (top) or GMS (bottom) for analysis by microscopy. Representative lung sections from
C57BL/6 mice treated with isotype control antibody (left) or with anti-IL-1α antibody (right) and infected with
CEA10 for 48 h are shown using either the 4× (left) or 20× (right) objectives. (B) A. fumigatus germination
rates at 48 h after challenge was determined by microscopically counting both the number of conidia and
number of germlings in GMS-stained section. (C) Total macrophage (left panel) and neutrophil (right panel)
recruitment in the BALF was measured at 24 and 48 h post-infection via cytospins. Data are representative of
two independent experiments consisting of 4–5 mice per group. Bar graphs show the group mean ± one
SEM. Statistically significant differences were determined using a Student’s t-test (*p< 0.05, ***p< 0.001).

doi:10.1371/journal.ppat.1004625.g004
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During pulmonaryMycobacterium tuberculosis infection two distinct populations of myeloid
cells co-express IL-1α and IL-1β: inflammatory monocytes which are CD11b+ CD11c− Ly6c+

and monocytic dendritic cells which are CD11b+ CD11c+ [49]. In response to pulmonary A.
fumigatus challenge, CCR2+ inflammatory monocytes are rapidly recruited to the lung and
give rise to monocyte-derived dendritic cells that play essential roles in innate defense against
invasive aspergillosis [12]. Interestingly, both CCR2+ inflammatory monocytes and monocyte-
derived dendritic cells show increased transcription of the Il1a gene at 48 h post-A.fumigatus
challenge [12], but whether lung-resident CCR2+ monocytes could contribute to IL-1α produc-
tion at early times after infection was not explored.

Thus, we challenged either C57BL/6 or CCR2-depleter mice [10,50], which had been treated
one day prior with 250 ng of diphtheria toxin, with*5×107 conidia of A. fumigatus. To con-
firm depletion of the CCR2+ monocytes we quantified CCR2+ inflammatory monocytes (iden-
tified as CD45+CD11b+Ly6C+Ly6G−) in the BALF and lung parenchyma 8 h after A. fumigatus
challenge by flow cytometry. We found that diphtheria toxin had no effect on CCR2+ mono-
cytes in control animals, while CCR2-depleter mice treated with DT had no detectable Ly6C+

inflammatory monocytes, in the BALF or lung parenchyma as expected (Fig. 6A) [12]. We
found that IL-1α protein levels were significantly decreased when CCR2+ monocytes were ab-
sent (Fig. 6B) consistent with the idea that lung-resident CCR2+ inflammatory monocytes are
important for producing and/or inducing expression of this cytokine in the lung at early times
after infection. Since blocking IL-1α in mice significantly decreased the expression of CXCL1
in the lungs (Fig. 5), we next asked whether CXCL1 protein levels were diminished in the lung
parenchyma of the CCR2-depleter mice. We found that CXCL1 protein levels were also signifi-
cantly decreased in the absence of CCR2+ monocytes (Fig. 6C). Thus, CCR2+ monocytes are
important regulators of the early expression of IL-1α and CXCL1. Consistent with the

Figure 5. IL-1α signaling enhances expression of leukocyte recruiting chemokines. C57BL/6 mice treated with either isotype control antibody or
IL-1α neutralizing antibody, Il1r1-deficient and Pycard-deficient mice were infected with 5×107 CEA10 conidia and at 24 hours post-infection, mice were
euthanized, BALF collected, and lung tissue homogenized. Cytokine and chemokine levels in the lung homogenates were measured using 12-plex multiplex
Luminex assay, similar trends were observed in BALF. Data are representative of two independent experiments consisting of 4–5 mice per group. Bar
graphs show the group mean ± one SEM. Statistically significant differences were determined using a Kruskal-Wallis one-way ANOVA with Dunn’s post-test
(*p< 0.05, **p< 0.01).

doi:10.1371/journal.ppat.1004625.g005
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importance of these factors in promoting early neutrophil recruitment (Fig. 2 and 4), dimin-
ished IL-1α and CXCL1 levels in CCR2-depleter mice correlated with diminished recruitment
of neutrophils to the airways 8 h after A. fumigatus challenge (Fig. 6D). Thus, CCR2+ mono-
cytes are important regulators of the early expression of IL-1α and CXCL1, which are required
for optimal recruitment of neutrophils at early times after A. fumigatus challenge.

CXCL1 supplementation of Il1r1-deficient mice enhances neutrophil
recruitment and resistance to pulmonary Aspergillus fumigatus
challenge
As both Il1r1-deficient mice and anti-IL1α treated mice displayed significantly decreased
cellular infiltration into the BALF (Fig. 2D and 4C) that correlated with decreased abundance
of CXCL1 (Fig. 5), we next sought to test whether immunotherapy which enhances neutrophil
accumulation in the lungs, such as CXCL1 supplementation, could enhance control of A.
fumigatus growth in the Il1r1-deficient mice. We challenged either C57BL/6 or Il1r1-deficient
mice with*5×107 conidia of A. fumigatus. Three hours after challenge mice were treated i.t.
with either PBS or 0.5 μg CXCL1. As expected, Il1r1-deficient mice displayed a significant im-
pairment in controlling A. fumigatus germination at 48 h when compared with C57BL/6 mice
(Fig. 7A-B). Provision of CXCL1 to Il1r1-deficient mice could partially rescue control of A.
fumigatus germination in the lungs, while no enhancement in control of fungal growth was ob-
served in the CXCL1 treated C57BL/6 mice (Fig. 7A-B). Furthermore, provision of CXCL1 i.t.
rescued the impairment of anti-IL1α treated C57BL/6 mice in controlling A. fumigatus

Figure 6. CCR2+ monocyte regulate early IL-1α and CXCL1 expression.C57BL/6 or CCR2-depleter mice
were treated i.p. with 250 ng of DT 24 h prior to challenge with 5×107 Af293 conidia. (A) Naïve C57BL/6 or
CCR2-depleter mice or C57BL/6 or CCR2-depleter mice challenged eight hours prior were euthanized and
the BALF and lung tissue collected for flow cytometric analysis to assess depletion of target cells by DT. Plots
are gated on CD45+ CD11b+ cells and show Ly6c and Ly6g staining, which identify the CCR2+ monocytes
and neutrophils, respectively. (B) IL-1α and (C) CXCL1 protein levels in the lung parenchyma at 8 h post-
challenge with 5×107 conidia of A. fumigatus strain Af293 were measured using ELISA assays. Bar graphs
show the group means ± one SEM. (D) Eight hours post-challenge with 5×107 conidia of A. fumigatus strain
Af293, neutrophils in the BALF were enumerated. Data are representative (B-C) or pooled (D) from two
independent experiments consisting of 4 mice per group. Each symbol represents an individual mouse and
the line represents the group mean. Statistically significant differences were determined using a one-way
ANOVA with Bonferroni’s post-test compared C57BL/6 mice (*p< 0.05, **p< 0.01).

doi:10.1371/journal.ppat.1004625.g006
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infection (S5A Fig.). As expected, twenty-four hours after challenge the recruitment of neutro-
phils, but not macrophages, to the BALF in Il1r1-deficient mice was enhanced by the provision
of CXCL1 (Fig. 7C). Additionally, neutrophil recruitment to the BALF in anti-IL1α treated
C57BL/6 mice was significantly enhanced (S5B Fig.). While CXCL1 provision enhanced neu-
trophil accumulation in the airways of Il1r1-deficient mice, we also sought to test whether the
anti-hyphal activity of neutrophils was altered in the absence of IL-1RI signaling but exogenous
addition of CXCL1. Hyphal damage induced by neutrophils isolated from the bone marrow of
respective mouse genotypes was assessed using the XTT hyphal damage assay [46]. C57BL/6
bone marrow neutrophils induced robust hyphal damage when co-cultured with A. fumigatus,
which was not further enhanced by treated with 50 nM of CXCL1 (Fig. 7D). Interestingly,
Il1r1-deficient bone marrow neutrophils induced significantly less damage to A. fumigatus hy-
phae than was observed with C57BL/6 bone marrow neutrophils (Fig. 7D). In contrast to the
treatment of C57BL/6 bone marrow neutrophils, treatment of Il1r1-deficient bone marrow
neutrophils with 50 nM of CXCL1 significantly enhanced the anti-hyphal activity of those cells
(Fig. 7D). When cell death and endothelial/epithelial cell leakage were assessed in vivo by lac-
tate dehydrogenase (LDH) and albumin measurement, respectively, in the BALF both markers
were increased in the absence of IL-1RI (Fig. 7E-F). CXCL1 supplementation reduced both

Figure 7. Treatment of Il1r1-deficient mice with CXCL1 partially increases resistance to Aspergillus fumigatus infection. C57BL/6 mice and Il1r1-
deficient mice were challenged i.t. with 5×107 CEA10 conidia. Three hours post-challenge mice were given 0.5 μg CXCL1 i.t. or PBS alone. Twenty-four
hours post-infection, mice were euthanized, BALF collected, and lungs saved for histological analysis. (A) Formalin-fixed lungs were paraffin embedded,
sectioned and stained with H&E (top) or GMS (bottom) for analysis by microscopy. Representative lung sections from Il1r1-deficient mice challenged with
CEA10 for 48 h and treated with either PBS or CXCL1 are shown using either the 4× (left) or 20× (right) objectives. (B) A. fumigatus germination rates were
assessed at 48 h of infection by microscopically counting both the number of conidia and number of germlings in GMS-stained section. Number of conidia
and number of germlings were counted for each GMS-stained section to quantify the percent germination. (C)Macrophage and neutrophil recruitment in
Il1r1-deficient mice 24 h post-challenge infected with A. fumigatus treated with PBS or CXCL1 given i.t. was determined via cytospins. (D) Bone marrow
neutrophils from C57BL/6 and Il1r1-deficient mice were incubated with CEA10 germlings in vitro at a 10:1 ratio in normoxia for 2 h. The XTT assay was used
to determine percent fungal damage. (E) Lung damage and (F) leakage were assessed by measuring LDH and albumin, respectively. Data is representative
of at least two independent experiments consisting of three to five mice per group, except for the bone marrow neutrophil anti-hyphal XTT assay which is a
single experiment which consisted of pooled bone marrow neutrophils from three mice done in triplicate. Each symbol represents an individual mouse or
replicate and the line represents the group mean. Statistically significant differences were determined using a one-way ANOVA with Bonferroni’s post-test
(*p< 0.05, **p< 0.01, ***p< 0.001, ns = not significant).

doi:10.1371/journal.ppat.1004625.g007
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markers, but albumin levels were more dramatically reduced than LDH levels (71% versus
32%, respectively) (Fig. 7E-F). Thus, provision of CXCL1 could significantly enhance
neutrophil recruitment to the lungs in the absence of IL-1α signaling and enhanced the in vitro
anti-hyphal activity of Il1r1-deficient bone marrow neutrophils, which together ultimately re-
sulted in a partial repair of the A. fumigatus control mechanisms in the Il1r1-deficent lungs.

Discussion
In this study, we uncover an essential function for IL-1RI in preventing fungal proliferation
and host damage in murine lungs. We have demonstrated a novel dichotomy for the IL-1 cyto-
kines in regulating the innate immune response induced by A. fumigatus. Specifically, IL-1α is
required for initiating the correct inflammatory signals necessary for optimal leukocyte recruit-
ment, while the inflammasome and IL-1β was necessary for optimal anti-fungal activity against
fungal hyphae. We have elucidated that IL-1α plays the dominant role in activating IL-1RI sig-
naling which results in amplified CXCL1 expression, which correlated with optimal leukocyte
recruitment to the respiratory tract. CCR2+ monocytes were important cells in regulating the
early production of IL-1α, CXCL1, and neutrophil recruitment. Taken together, our data
demonstrate that signaling through IL-1RI by both IL-1α and IL-1β was necessary for optimal
control of A. fumigatus pulmonary challenge to prevent IPA development.

IL-1RI signaling was essential in resisting pulmonary A. fumigatus challenge in our studies,
as demonstrated by Il1r1-deficient mice being unable to resist fungal growth resulting in
significant mortality in those animals. This finding is consistent with results reported by
Pearlman and colleagues who also found that Il1r1 was needed to prevent the development of
A. fumigatus induced keratitis [51]. Moreover, van de Veerdonk and colleagues have recently
shown that a polysaccharide fungal virulence factor, galactosaminogalactan (GAG), from
A. fumigatus induces the expression of IL-1Ra, which antagonizes IL-1 signaling resulting in
enhanced susceptibility to IPA [52]. Gresnigt et al demonstrated that GAG pretreatment of
BALB/c mice resulted in more fungal growth associated with impaired neutrophil recruitment,
which was completely dependent on IL-1Ra expression [52]. However, the importance of GAG
induction of IL-1Ra during a live pulmonary A. fumigatus infection remains unknown. GAG
expression might actually be reduced at specific infection sites during in vivo A. fumigatus chal-
lenge because hypoxia, which occurs after A. fumigatus challenge [47] has been observed to
reduce GAG production [46]. In general, the temporal and spatial dynamics of fungal cell wall
PAMPs in vivo during an active infection is not fully understood and likely complicated by the
heterogeneous nature of the lung and infection site microenvironments.

Downstream of IL-1RI the proximal signaling adapter to propagate IL-1 signaling is
MyD88. Similar to our observation with Il1r1-deficient mice, Marr and colleagues [44] and
Hohl and colleagues (Jhingran A. et al, in press) have found theMyd88-deficient mice are
more susceptible to A. fumigatus challenge. Additionally, impaired control of pulmonary
histoplasmosis and disseminated candidiasis was observed in Il1r1-deficient and Il1a/Il1b-
doubly deficient mice, respectively [41,45]. While our studies and the studies just discussed
strongly support a role for IL-1RI signaling in limiting IPA, and other invasive fungal infec-
tions, Romani and colleagues have observed that Il1r1-deficient mice were more resistant to
pulmonary A. fumigatus challenge [53]. The difference with our study is potentially due to the
A. fumigatus strain studied, as Romani and colleagues have shown that different A. fumigatus
strains have diverse abilities to induce pathology and immune responses [54]. Importantly, the
infection models studied are significantly different, with Romani and colleagues utilizing a
cyclophosphamide-induced immunosuppression model with Aspergillus conidia delivered on
3 consecutive days intranasally [53], while our studies used immunocompetent mice and a
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single dose of Aspergillus conidia given intratracheally. Additionally Bellocchio et al. [53], re-
ported that histological analyses in the Il1r1-deficient mice revealed “numerous fungal elements
in the relative absence of signs of inflammatory pathology” which is consistent with the results
we report here in our experimental model. Murine mortality in infectious disease models can re-
sult from direct pathogen mediated damage or immunopathogenesis, and it is unclear, in this re-
gard, how our models differ. What appears to be clear, however, is that in the absence of IL-1RI
signaling, Aspergillus proliferation increases in vivo. Taken together, all these findings demon-
strate that the IL-1 signaling pathway is likely central for resistance to fungal diseases, but their
role during immunosuppression and frequency of fungal exposure/quantity may differ, warrant-
ing further exploration of the IL-1 cytokine family in each clinically relevant model of IPA.

In further support of our observation, the protective role of IL-1 cytokines in anti-fungal im-
munity uncovered in our study using the murine model of A. fumigatus infection is likely to be
operational in humans as indicated by genetic linkage studies. First, individuals with SNPs in
the IL-1 gene cluster, which are associated with decreased IL-1 dependent inflammatory events,
were at increased risk for the development of IPA [25,26]. Second, polymorphisms in the
CIAS1 gene play a central role regulating inflammasome activity and IL-1β production, which
can alter the risk of a subset of patients to developing recurrent vulvovaginal candidiasis [55].
Third, macrophages from patients with chronic cavitary pulmonary aspergillosis (CCPA) had
prolonged expression of Il1a and Il1b after A. fumigatus treatment when compared to healthy
controls and SNPs in the Il1b and Il1rn loci are associated with susceptibility to developing
CCPA [56]. Thus, targeting the IL-1 cytokine pathways in humans could be important in man-
aging fungal infections.

In previous papers exploring the role of MyD88 during A. fumigatus [44,51] it was shown
that fungal growth was not controlled, but the mechanism impaired in the absence of IL-1RI
and MyD88 signaling remains an open question. In this study and a parallel study by Jhingran
et al (in press) it was demonstrated that MyD88 and IL1RI mediated signals are necessary for
optimal leukocyte recruitment after pulmonary A. fumigatus challenge, which is needed for
preventing the development of IPA. Analogously, in the A. fumigatus keratitis model both
Myd88- and Il1r1-deficient mice demonstrated reduced cellular infiltrate early after inoculation
[51]. However, why the lack of IL-1RI or MyD88 signaling results in decreased cellular infil-
trates was an open question. Interestingly, we found a decrease in the expression of the chemo-
kine CXCL1 in Il1r1-deficient mice, which others have also observed in challengedMyd88-
deficient mice [44] (Jhingran A. et al, in press). CXCL1, together with CXCL2 and CXCL5, are
ligands for CXCR2 and are key chemoattractants for recruitment of neutrophils. Administra-
tion of a blocking anti-CXCR2 antibody or genetic ablation of Cxcr2 has been shown to exacer-
bate mortality and delay neutrophil recruitment following pulmonary A. fumigatus challenge
[23,24]. Moreover, transient over-expression of CXCL1 in CC10-expressing lung epithelial
cells resulted in significantly enhanced leukocyte accumulation and reduced fungal burden
[22]. Correspondingly, when we treated Il1r1-deficient mice with recombinant murine CXCL1
we observed significantly enhanced neutrophil accumulation. In addition, Il1r1-deficient bone
marrow neutrophils displayed decreased anti-hyphal activity in vitro, which was restored by
treatment with CXCL1. These data demonstrate that both IL-1RI and CXCL1 signaling is criti-
cal in not only enhancing neutrophil recruitment to the airways in the Il1r1-deficient mice, but
also in inducing the optimal anti-hyphal state of the recruited neutrophils. While the mecha-
nism behind CXCL1 mediated anti-hyphal activity in our model is unknown, neutrophils from
Cxcl1-deficient mice have an impaired reactive oxygen response in a polymicrobial sepsis
model [57]. Moreover, Cxcl1-deficient neutrophils stimulated with Klebsiella pneumoniae had
reduced expression of p67phox and p47phox and reduced production of myeloperoxidase, nitric
oxide, and hydrogen peroxide, which results in decreased killing of Klebsiella pneumoniae by

Role of IL-1 Cytokines after Aspergillus fumigatusChallenge

PLOS Pathogens | DOI:10.1371/journal.ppat.1004625 January 28, 2015 14 / 25



the neutrophils [58]. Finally, IL-8 has been shown to be important for priming the human neu-
trophils reactive oxygen burst [59]. Thus, our data supports a model where IL-1RI signaling is
critical for optimal neutrophil recruitment and activation of their anti-hyphal activity in part
through the regulation of CXCL1 abundance. Further support for this conclusion comes from
a recent analysis of mice with a myeloid deficiency of the transcriptional regulator HIF1α. Loss
of myeloid HIF1α results in severe susceptibility to the same strain of A. fumigatus utilized
here in part through reduction in neutrophil recruitment. Importantly, loss of HIF1α resulted
in decreased IL1-α and CXCL1 levels after A. fumigatus challenge similar to what we observed
in our studies [60]. Interestingly, other inflammatory pathways are also temporally regulating
neutrophil recruitment after A. fumigatus challenge, because Card9-deficient mice had a late
defect in neutrophil recruitment that was associated with a more global diminution of the in-
flammatory milieu [61]. In addition to the early defect in neutrophil recruitment Il1r1-deficient
mice also had decreased macrophage recruitment to the airways by 48 h post-inoculation. The
reason for this is unknown at this time, but it is known that G-CSF deficient mice have mono-
cyte defects and our cytokine analysis demonstrated that Il1r1-deficient mice had significantly
lower level of G-CSF in the airways [62]. Thus, further studies exploring the regulation of
multiple neutrophil chemotactic pathways, such as CXCR2-, CCR1-, IL17-, leukotriene-, and
complement-dependent pathways, and monocyte chemotactic pathways, such as G-CSFR—and
CCR2-dependent pathways, are needed after pulmonary fungal challenge.

IL1RI, together with IL1RAcP, is the high-affinity receptor for both IL-1α and IL-1β [27].
The maturation and secretion of IL-1α and IL-1β is known to be regulated by distinct proteo-
lytic pathways dependent on calpain and caspase-1, respectively [27,63]. Numerous fungal
pathogens have been shown to activate the inflammasome resulting in the production of IL-1β
[30,31,32,33,34,35,36,37]. Importantly for our studies, others have demonstrated that the
NLRP3-ASC-Caspase1 inflammasome could be activated by A. fumigatus [31], but the in vivo
relevance of that finding was unknown. Control of C. albicans infection, which also activated
the NLRP3-ASC inflammasome, was highly dependent on NLRP3 and IL-1β [30,36,37,41].
In sharp contrast, our current results indicate that the inflammasome only plays a modest role
in the control of pulmonary A. fumigatus growth. In our experiments, neutrophil recruitment
in mice lacking the inflammasome was completely normal, which is in contrast to C. albicans
infection where mice deficient in IL-1β displayed a significant reduction in neutrophil re-
cruitment [41]. Furthermore, antibody blockade of IL-1β during pulmonaryHistoplasma
capsulatum infection resulted in decreased survival associated with decreased recruitment of
Gr-1+ cells early and CD4+ cells late to the lungs of challenged animals [45]. Thus, we were
surprised to observe such a dominant role for IL-1α in regulating early leukocyte recruitment
following pulmonary A. fumigatus challenge, which correlates with its regulation of the chemo-
kine CXCL1. In support of this finding, during sterile inflammation the importance of IL-1α in
regulating neutrophil recruitment is unquestionable [38,39]. It has also been demonstrated
that IL-1α plays a critical role during murine L. pneumophila infection, initiating neutrophil re-
cruitment and the inflammatory response early after infection [40]. Others have previously
shown that IL-1RI and MyD88 expression within a radioresistant population of cells was
essential for optimal expression of CXCL1 and CXCL2 during L. pneumophila infection [64].
Interestingly, in their parallel study Hohl and colleagues found that IL-1RI/MyD88 signaling in
a radioresistant cell population was necessary for optimal CXCL1 expression and neutrophil
recruitment early after pulmonary A. fumigatus challenge (Jhingran A. et al, in press).

Because of the early importance of IL-1 cytokines in regulating the pulmonary anti-fungal
immune response, non-hematopoietic cells (epithelial or endothelial cells) or lung-resident
myeloid cells could represent potential sources of IL-1α and IL-1β after A. fumigatus challenge.
During pulmonaryMycobacterium tuberculosis infection two distinct populations of myeloid
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cells co-express IL-1α and IL-1β: inflammatory monocytes which are CD11b+ CD11c− Ly6c+

and monocytic dendritic cells which are CD11b+ CD11c+ [49]. After pulmonary A. fumigatus
challenge both inflammatory monocytes and monocytic dendritic cells are found in the lung
parenchyma and both show increased transcription of the Il1a gene [12]. Here our data
demonstrates that CCR2+ monocytes are at least one of the important cell types regulating the
early expression of IL-1α and CXCL1, as well as neutrophil recruitment at 8 hpi. However, in
the absence of CCR2+ monocytes there is still a significant amount of IL-1α and CXCL1 pro-
duced in the lungs after A. fumigatus challenge, thus there are likely multiple sources of IL-1α
that can regulate early pulmonary neutrophil accumulation. Moreover, by 48 h after infection
CXCL1 levels and neutrophil recruitment to the lung is unaffected in CCR2-depleter mice [12],
thus suggesting that distinct mechanisms of neutrophil recruitment are operational at various
times after infection. This is supported by observation thatMyd88-deficient and Card9-defi-
cient mice have early or late defects in neutrophil recruitment, respectively (Jhingran A. et al,
in press and [61]).

In our experiments the inflammasome and IL-1β appear to regulate the anti-fungal activity
of macrophages against hyphae, especially under hypoxic conditions. This enhancement of
anti-fungal activity in hypoxic microenvironments is physiologically and clinically important
because hypoxia can be generated within the lungs of mice with IPA [47], which is coincident
with inflammatory monocyte arrival to the lungs [12]. Understanding how hypoxia can en-
hance the anti-fungal activity of macrophage in an inflammasome and IL-1β dependent man-
ner will be important in understanding how macrophages limit fungal growth. Interestingly, a
recent paper from Torres et al demonstrated that acidosis, which can be driven by hypoxia, re-
sulted in increased IL-1β production in response to P. aeruginosa challenge [65]. Perhaps
somewhat surprisingly, in the absence of MyD88 anti-fungal activity against A. fumigatus co-
nidia remains intact (Jhingran A. et al, in press). It has been shown in other fungal pathogens
that IL-1β treatment of human peripheral blood leukocytes enhances their anti-fungal activity
against Paracoccidiodies brasiliensis [66,67]. Additionally, Il1r1- and Nlrp3-deficient macro-
phages have impaired antifungal activity against P. brasiliensis [34]. In contrast, during dissem-
inated candidiasis Il1a-deficiency was associated with decreased anti-fungal activity of
leukocytes [41]. Thus, studies designed to understand the differential dependencies of the IL-1
cytokines in regulating leukocyte recruitment and anti-fungal activity during a range of fungal
diseases and morphological forms are needed.

In addition to understanding the cellular source of IL-1α and IL-1β, understanding the in-
flammatory pathways leading to expression of IL-1α and IL-1β are essential to our understand-
ing of resistance to IPA. In the absence of dectin-1 signaling there is decreased expression of
both IL-1α and IL-1β [68,69]. The loss of HIF1α in the LysM-expressing cells also resulted in
decreased IL-1α levels after A. fumigatus challenge [60], which can be regulated by dectin-1
agonists such as β-glucan [70]. Pulmonary A. fumigatus infection results in significant tissue
damage and cell death, but the exact type of cell death is not known. Moreover, the phenotype
of cell death will be shaped by the hypoxic microenvironment found during IPA. The type of
cellular death occurring in vivo during A. fumigatus will have important immunological im-
pacts shaping the early IL-1α and IL-1β response because necrotic cell death favors IL-1α re-
lease while pyroptosis favors IL-1β release [71]. Interestingly, C. albicansmutants with defects
in inducing pyroptosis also demonstrated defects in inducing IL-1β secretion, but IL-1α release
was not examined [72]. Additionally, understanding how deficiencies in PRR signaling alters
the overall inflammatory response will be crucial as patients with SNPs in PRRs are known to
have elevated risks for developing IPA [73]. Our data demonstrate that in the Pycard-deficient
mice there are elevated levels of TNFα, CCL3, and CCL4. One explanation for observing elevat-
ed levels of TNFα, CCL3, and CCL4 could be the range or degree that PRRs are being engaged

Role of IL-1 Cytokines after Aspergillus fumigatusChallenge

PLOS Pathogens | DOI:10.1371/journal.ppat.1004625 January 28, 2015 16 / 25



in the Pycard-deficient mice and/or temporal and spatial dynamics of fungal cell wall PAMP
engagement with PRRs in vivo that are not fully understood and further complicated by a PRR
known to be engaged during infection now being absent.

It is well defined that prolonged corticosteroid treatment increases susceptibility of hosts to
IPA [74]. Interestingly, dexamethasone induces the expression and release of IL-1RII [75].
IL-1RII is known to limit the activity of IL-1 cytokines and/or sequester IL-1α protein in the
cytosol, preventing the cleavage of IL-1α by calpain [63]. Dexamethasone has also been shown
to impair IL-1α and IL-1β secretion from human mast cells in response to Pseudomonas
aeruginosa stimulation [76]. Moreover, dexamethasone treatment of bronchoalveolar macro-
phages prior to treatment with A. fumigatus conidia significantly impaired their release of
IL-1α [77,78]. Because we have uncovered such a prominent role for IL-1α in controlling
pulmonary A. fumigatus challenge, future studies exploring the cleavage status of IL-1α and ex-
pression of IL-1RII in clinically relevant models are critical.

Finally, the importance of appropriate activation of leukocytes in the control of A. fumigatus
is highlighted by patients with chronic granulomatous disease being highly susceptible to A.
fumigatus [15,16,17]. Interestingly, CGD patients or mice are typically in a hyperinflammatory
state, which is linked to inflammasome activity and IL-1β expression [79,80]. Further, blockade
of IL-1 cytokines in p47phox-deficient mice through treatment with hIL1ra results in improved
control of A. fumigatus [79]. Together, these studies demonstrate that further exploration
of the positive and negative regulators of IL-1 signaling during invasive fungal infections is
needed. Moreover, it is critical that we continue to explore the regulation of the inflammatory
response induced in each of the different subpopulations of hosts susceptible to developing in-
vasive fungal infections in order to develop patient specific novel immunotherapeutic approaches
that could complement treatment with anti-fungal agents.

Materials and Methods

Mice
C57BL/6J mice were bred in-house. Pycard (ASC)-deficient andMyd88-deficient mice were
originally provided by Dr. Vishiva Dixit (Genentech) and Dr. Mark Jutila (Montana State Uni-
versity), respectively. Il1r1-deficient (Stock #003245) and C57BL/6 (Stock #000664) mice were
originally purchased from Jackson Laboratories. Mouse strains were then bred in-house. The
CCR2-depleter (CCR2-DTR) strain was generated on the C57BL/6 background as previously
described [10,50]. Control animals for CCR2+ monocyte depletion experiments were sex—and
age-matched, non-transgenic littermates. All mice were 8–10 weeks of age at the time of infec-
tion. All animal experiments were approved by the Montana State University or Rutgers Uni-
versity Institutional Animal Care and Use Committee.

Preparation of Aspergillus fumigatus conidia
A. fumigatus strain CEA10 or Af293 was grown on glucose minimal media (GMM) agar plates
for 3 days or Sabouraud dextrose agar (SDA) for 7–10 days at 37°C, respectively. Conidia were
harvested by adding 0.01% Tween 80 to plates and gently scraping conidia from the plates
using a cell scraper. Conidia were then filtered through sterile Miracloth, were washed and re-
suspended in phosphate buffered saline (PBS), and counted on a hemacytometer.

Aspergillus fumigatus challenge pulmonary model
Mice were challenged with A. fumigatus conidia by the i.t. route. Mice were anesthetized with
2.5% 2,2,2-tribromoethanol or a Ketamine/Xylazine solution given i.p.; subsequently, mice
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were challenged i.t. with*5 × 107 A. fumigatus conidia in a volume of 100 μl. At the indicated
time after A. fumigatus challenge, mice were euthanized using a lethal overdose of pentobarbi-
tal. Bronchoalveolar lavage fluid (BALF) was collected by washing the lungs with 2 ml of PBS
containing 0.05M EDTA. BALF was clarified by centrifugation and stored at −20°C until
analysis. BAL cells were resuspended in 200 μl of PBS and total BAL cells were determined by
hemacytometer count. BAL cells were subsequently spun onto glass slides using a Cytospin4
cytocentrifuge (Thermo Scientific) and stained with Diff-Quik stain set (Siemens) for differen-
tial counting. For histological analysis lungs were filled with and stored in 10% buffered
formalin phosphate for at least 24 hours. Lungs were then embedded in paraffin and sectioned
into 5-micron sections. Sections were stained with H&E and GMS using standard histological
techniques to assess lung inflammatory infiltrates and fungal germination, respectively. For cy-
tokine analysis lungs were homogenized in 2 ml of PBS. After clarification, lung homogenates
were stored at −20°C until analysis.

Neutralizing antibodies and chemokine reconstitution
For IL-1α neutralization studies, normal goat IgG control and anti-mIL-1α neutralizing anti-
body were purchased from R&D systems. IgG control or anti-mIL-1α neutralizing antibody
were administered i.p. at 40 μg per mouse. Administration of neutralizing antibody was given
every other day, beginning the day prior to A. fumigatus challenge. For CXCL1 reconstitution
studies, recombinant murine CXCL1 was purchased from PeproTech. CXCL1 was adminis-
tered i.t. at 0.1–0.5 μg per mouse and was given 3 hours after A. fumigatus challenge. For the
hIL1ra studies, recombinant hIL1ra and the appropriate placebo (Amgen) were kindly provid-
ed by Dr. Charles A. Dinarello. The hIL1ra and placebo were administered i.p. at 200 mg per
mouse given at −24, 0, and +24 h relative to A. fumigatus challenge.

CCR2+ cell depletion strategy
For depletions of CCR2+ cells, CCR2-DTR mice and control littermates received 250 ng of
diphtheria toxin i.p. one day prior to infection. Diphtheria toxin was purchased from List Bio-
logical Laboratories (Campbell, CA) and reconstituted at 1 mg/ml in PBS. Aliquots were stored
at −80°C. The specificity and efficiency of depletion in the lung was confirmed by
flow cytometry.

Quantification of lung damage and leakage
To assess lung damage, bronchoalveolar lavage fluid was analyzed by measuring lactate dehy-
drogenase levels using a CytoTox 96 Cytotoxicity Assay (Promega) following the manufactur-
er’s instructions. To assess vascular/pulmonary leakage, bronchoalveolar lavage fluid was
analyzed using an Albumin BCG Reagent Set (Eagle Diagnostics). A standard curve was made
by diluting the calibrator in PBS. Then 100 μl of sample or standard was transferred to a
96 well flat-bottomed plate, mixed with 100 μl of BCG reagent, let sit at RT for 5 min and then
read on a plate reader at 630 nm.

Lung cell isolation and flow cytometric analysis
After collection of the BAL fluid, lung samples were minced in RPMI containing 100 units/ml
of collagenase (Gibco) at 37°C for 60 minutes, followed by disruption through a 40-μm filter.
After which, red blood cells were lysed using a Tris ammonium chloride solution. Staining
of*107 cells was performed in 200 μl of PBS containing 2% bovine serum and 2 mM EDTA.
For analysis of leukocytes, antibody staining was both conducted at 4°C for 30 minutes.
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Phenotypic analysis of leukocytes was conducted using a panel of cell surface markers: CD11b,
CD11c, Ly6g, Ly6c, 7/4, CD19, and I-A/I-E, as previously described [10]. All antibodies used
for analysis were purchased from Biolegend, BD Biosciences, eBioscience or Novus Biologicals.
After staining, cells were washed and fixed with 1% paraformaldehyde in PBS. Fluorescent in-
tensities were measured using an LSR (BD Biosciences) and data were analyzed using FlowJo
software (Tree Star).

Assay for cytokine, chemokine, and soluble receptor secretion
Bronchoalveolar lavage fluid and lung homogenates from C57BL/6 mice challenged with A.
fumigatus for 6, 12, 24, and 48 h were initially analyzed for cytokines and chemokines using
ProcartaPlex Mouse Cytokine & Chemokine 36-plex (Affymetrix-eBioscience). IL-1Ra levels
were determined by ELISA (R&D Systems). Plates were read using a BioPlex 200 (Bio-Rad) or
a SpectraMax Paradigm plate reader (Molecular Devices).

Growth of bone marrow-derived macrophages (BMDM)
Femurs and tibias from 8–10 week old mice were obtained and centrifuged to collect bone
marrow. Cells were resuspended in media containing RPMI 1640, 2 mM L-glutamic acid,
50 mg/l gentamycin, 100 U/ml penicillin/streptomycin, 30% L929 cell supernatant, 20% FBS
and 0.0004% 2-ME. On day 3 fresh medium was added to the cultures. Cells were incubated
for a total of 6 days at 37°C and 5% CO2.

Isolation of bone marrow neutrophils
Bone marrow neutrophils were isolated from femurs and tibias from 8–12 week old C57BL/6
and Il1r1-deficient mice as previously described [60]. Briefly, single cell suspensions of bone
marrow in HBSS containing 0.1% FBS and 1% glucose were resuspended in 3 ml of 45% Percoll
(GE Healthcare). A discontinuous Percoll gradient was set-up consisting of (top to bottom)
3 ml 45%, 2 ml 50%, 2 ml 55%, 2 ml 62%, and 3 ml 81%. Gradients were then centrifuged for
30 min at 1600 × g in a Sorvall Legend Mach 1.6R benchtop centrifuge. Bone marrow neutro-
phils were collected from the 62%/81% border and washed with HBSS before counting and
viability assessment.

In vitro fungal damage assay
An XTT assay was used to measure fungal metabolic activity as previously described [46].
Bone marrow derived macrophages and CEA10 germlings were incubated together in nor-
moxic or hypoxic conditions at a 10:1 (effector:target) ratio for 5 hours. Bone marrow neutro-
phils and CEA10 germlings were incubated together in normoxic conditions at a 10:1 (effector:
target) ratio for 2 hours with or without 50 nM CXCL1 [81]. Following incubation, macro-
phages or neutrophils were lysed and the remaining fungi were incubated with 0.4 mg/ml XTT
and 0.05 mg/ml coenzyme Q for 1 h and the optical density (OD) subsequently measured on a
spectrophotometer at a wavelength of 450 nm. The percent fungal damage was defined by the
equation: (1-[A450 of fungi with cells—A450 of cells alone] / [A450 of fungi alone]) � 100.

Statistical analysis
Statistical significance was determined by a Student’s t-test, one-way ANOVA using a
Bonferroni post-test, or Kruskal-Wallis one-way ANOVA with Dunn’s post-test through the
GraphPad Prism 5 software as outlines in the figure legends.
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Supporting Information
S1 Fig. hIL-1ra treatment results in impaired control of Aspergillus fumigatus. C57BL/6
mice were treated with recombinant hIL-1ra or placebo and infected i.t. with 5×107 CEA10 co-
nidia. Forty-eight hours post-infection, mice were euthanized, BALF collected, and lungs saved
for histological analysis. Formalin-fixed lungs were paraffin embedded, sectioned, and stained
with GMS for analysis by microscopy. A. fumigatus germination rates were assessed at 48 h of
infection by microscopically counting both the number of conidia and number of germlings in
GMS-stained section. Number of conidia and number of germlings were counted for each
GMS-stained section to quantify the percent germination. Data are representative of one exper-
iment consisting of 5 mice per group. The bar graph show the group means ± one SEM. Statis-
tically significant differences were determined using a Student’s t-test (��p< 0.01).
(EPS)

S2 Fig. Impaired neutrophil recruitment in the lung parenchyma of Il1r1-deficient mice.
C57BL/6, Il1r1-deficient, and Pycard-deficient mice were challenged i.t. with 5×107 CEA10 conid-
ia. At 12, 24, and 36 h post-challenge, mice were euthanized, BALF and lungs collected for flow
cytometric analysis of neutrophil, monocyte, and dendritic cell populations with the lungs, like
previously done [10]. (A)Neutrophils in the lungs were identified as being CD45+ Ly6g+ 7/4+.
(B-E) Lungs were digested in collagenase to generate single cell suspensions, after which cells were
stained for flow cytometric analysis. Lung neutrophils were identified as CD45+ CD11b+ Ly6g+

7/4+ (B), CD11b+ macrophages were identified as CD45+ Ly6g− CD11b+ CD11c− CD103− (C),
CD11c+ macrophages were identified as CD45+ Ly6g− CD11b+ CD11c+ CD103− (D), CD103+

dendritic cells were identified as CD45+ Ly6g− CD11b− CD11c+ CD103+ (E). Each time-point rep-
resents 8–10 mice pooled from two independent experiments. Data are presented as box and
whisker plots with Tukey whisker and outliers displayed as dots. Statistically significant differences
were determined using a one-way ANOVAwith Bonferroni’s post-test (�p< 0.05; ��p< 0.01).
(EPS)

S3 Fig.Myd88-deficient mice are impaired in their ability to recruit neutrophils after As-
pergillus fumigatus challenge. Age-matched C57BL/6 orMyd88-deficient mice were infected
i.t. with 5×107 CEA10 conidia and at indicated time-points, mice were euthanized, and BALF
collected. Total macrophage (left panel) and neutrophil (right panel) recruitment in the BALF
was measured at 12 and 24 h post-challenge. Data are representative of at least 2 independent
experiments at each time point consisting of 3–5 mice per group. Bar graphs show the group
means ± one SEM. Statistically significant differences were determined using Student’s t-test
(�p< 0.05; ��p< 0.01).
(TIF)

S4 Fig. Pycard-deficient mice treated with IL-1α neutralizing antibody are highly
susceptible to Aspergillus fumigatus infection. C57BL/6 or Pycard-deficient mice treated with
isotype control antibody or IL-1α neutralizing antibody were infected i.t. with 5×107 CEA10
conidia. Twenty-four hours post-infection mice were euthanized, BALF collected and lungs
saved for histological analysis. Formalin-fixed lungs were paraffin embedded, sectioned, and
stained GMS for analysis by microscopy. A. fumigatus germination rates were assessed 48 h
after challenge by microscopically counting both the number of conidia and number of
germlings in GMS-stained section. Data are representative of two independent experiments
consisting of 4–5 mice per group. The bar graph show the group means ± one SEM. Statistically
significant differences were determined using a one-way ANOVA with Bonferroni’s post-test
(��p< 0.01, ���p< 0.001).
(TIF)
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S5 Fig. Intratracheally provision of CXCL1 to anti-IL1α treated C57BL/6 mice increases re-
sistance to Aspergillus fumigatus infection. C57BL/6 mice were treated with goat IgG or anti-
IL1α 24 h prior to and 24 h after i.t. challenge with 5×107 CEA10 conidia. Three hours post-
challenge half the anti-IL1α treated mice were given 0.5 μg CXCL1 in PBS or PBS alone given
i.t. At 48 h post-infection mice were euthanized, BALF collected, and lungs saved for histologi-
cal analysis. Formalin-fixed lungs were paraffin embedded, sectioned and stained with GMS
for analysis by microscopy. (A) A. fumigatus germination rates were assessed 48 h after chal-
lenge by microscopically counting both the number of conidia and number of germlings in
GMS-stained section. (B) Total macrophage (left panel) and neutrophil (right panel) recruitment
in the BALF was measured at 24 h post-challenge. Data are representative of two independent
experiments consisting of 3–5 mice per group. Bar graphs show the group means ± one SEM.
Statistically significant differences were determined using a one-way ANOVA with Bonferroni’s
post-test (�p< 0.05).
(TIF)
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