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Abstract

Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are responsible for some of
the most common neglected tropical diseases. The infective larvae of skin-penetrating nematodes are thought to search for
hosts using sensory cues, yet their host-seeking behavior is poorly understood. We conducted an in-depth analysis of host
seeking in the skin-penetrating human parasite Strongyloides stercoralis, and compared its behavior to that of other parasitic
nematodes. We found that Str. stercoralis is highly mobile relative to other parasitic nematodes and uses a cruising strategy
for finding hosts. Str. stercoralis shows robust attraction to a diverse array of human skin and sweat odorants, most of which
are known mosquito attractants. Olfactory preferences of Str. stercoralis vary across life stages, suggesting a mechanism by
which host seeking is limited to infective larvae. A comparison of odor-driven behavior in Str. stercoralis and six other
nematode species revealed that parasite olfactory preferences reflect host specificity rather than phylogeny, suggesting an
important role for olfaction in host selection. Our results may enable the development of new strategies for combating
harmful nematode infections.

Citation: Castelletto ML, Gang SS, Okubo RP, Tselikova AA, Nolan TJ, et al. (2014) Diverse Host-Seeking Behaviors of Skin-Penetrating Nematodes. PLoS
Pathog 10(8): €1004305. doi:10.1371/journal.ppat.1004305

Editor: Simon A. Babayan, University of Glasgow, United Kingdom
Received February 6, 2014; Accepted June 30, 2014; Published August 14, 2014

Copyright: © 2014 Castelletto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a Sloan Research Fellowship, a Searle Scholar Award, and a Rita Allen Foundation Fellowship to EAH. The funders had no

* Email: ehallem@microbio.ucla.edu

role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Skin-penetrating nematodes such as the threadworm Str.
stercoralis and the hookworms Ancylostoma duodenale and
Necator americanus (Figure 1A) are intestinal parasites that infect
approximately 1 billion people worldwide. Infection with skin-
penetrating worms can cause chronic gastrointestinal distress as
well as stunted growth and long-term cognitive impairment in
children. Moreover, Str. stercoralis infection can be fatal for
immunocompromised individuals and infants [1]. Str. stercoralis is
endemic in tropical and sub-tropical regions throughout the world,
including the United States, and is estimated to infect 30-100
million people worldwide [2]. Infection rates in rural and semi-
rural areas are often high, particularly among children. For
example, a recent study found that 25% of school children in semi-
rural Cambodia were infected with Str. stercoralis [3]. A better
understanding of how skin-penetrating worms target human hosts
could lead to new strategies for preventing infections.

Skin-penetrating nematodes are infective only during a partic-
ular stage of their life cycle called the infective juvenile (IJ), a
developmentally arrested third larval stage analogous to the C.
elegans dauer [4]. IJs inhabit the soil and infect by skin
penetration, often through the skin between the toes. Inside the
host, IJs migrate through the circulatory system to the lungs, are
coughed up and swallowed, and develop to adulthood in the
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intestine [1]. IJs may also reach the intestine using other migratory
routes [5]. Adult nematodes reproduce in the intestine, and eggs or
young larvae are excreted in feces. In the case of hookworms,
young larvae develop into IJs, which find and infect new hosts
(Figure 1B). In the case of Strongyloides species, some larvae
develop into IJs and others develop into free-living adults. In the
human parasite Str. stercoralis and the rat parasite Str. ratti, which
are subjects of this study, all progeny of free-living adults develop
into IJs (Figure 1C). Some species of Strongyloides, such as the dog
and cat parasite Str. planiceps, can undergo a limited number of
sequential free-living generations [6]. Thus, Strongyloides can
develop through at least one free-living generation outside the
host. Str. stercoralis can also cycle through multiple parasitic
generations in the same host, resulting in a potentially fatal
disseminated infection [1].

Little is known about the process by which skin-penetrating
nematodes find hosts [7]. IJs of some skin-penetrating species
respond to heat and sodium chloride [8-12], suggesting a role for
thermosensation and gustation in host seeking. In addition, S#r.
stercoralis is attracted to human blood serum and sweat [10,12],
while Str. ratti is attracted to mammalian blood serum [13]. It has
long been speculated that olfaction may be important for host
seeking, since animals emit unique odor blends that could confer
species-specificity [7]. However, the only specific odorant that has
so far been found to elicit a response from a skin-penetrating
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Author Summary

Parasitic worms are a significant public health problem.
Skin-penetrating worms such as hookworms and the
human threadworm Strongyloides stercoralis dwell in the
soil before infecting their host. However, how they locate
and identify appropriate hosts is not understood. Here we
investigated the host-seeking behavior of Str. stercoralis.
We found that Str. stercoralis moves quickly and actively
searches for hosts to infect. We also found that Str.
stercoralis is attracted to human skin and sweat odorants,
including many that also attract mosquitoes. We then
compared olfactory behavior across parasitic worm species
and found that parasites with similar hosts respond
similarly to odorants even when they are not closely
related, suggesting parasitic worms use olfactory cues to
select hosts. A better understanding of host seeking in
skin-penetrating worms may lead to novel control strate-
gies.

nematode is urocanic acid, a component of mammalian skin that
attracts Str. stercoralis [14]. Thus, the extent to which skin-
penetrating nematodes use olfactory cues to locate hosts is unclear.
Here we examined the host-seeking strategies and sensory
behaviors of the human parasite Str. stercoralis as well as two
other species of skin-penetrating nematodes, the rat parasites
Str. ratti and Nippostrongylus brasiliensis (Figure 1A, D). We
compared their behaviors to those of five other nematode
species with diverse lifestyles and ecological niches: the passively
ingested ruminant-parasitic nematode Haemonchus contortus;
the entomopathogenic nematodes (EPNs) Heterorhabditis bac-
teriophora, Steinernema glaseri, and Steinernema carpocapsae;
and the free-living nematode Caenorhabditis elegans (Figur-
es 1A, D). This across-species analysis was used to fit the
behaviors of skin-penetrating nematodes into an ecological
framework, and to identify species-specific behavioral differenc-
es that reflect differences in phylogeny, host range, or infection
route. We found that different species of mammalian-parasitic
nematodes employ diverse host-seeking strategies, with the
human parasite Str. stercoralis being a cruiser that actively seeks
out hosts. We found that Str. stercoralis and the other skin-
penetrating nematodes are attracted to skin and sweat odorants,
while the passively ingested ruminant parasite Ha. contortus is
attracted to the smell of grass. By comparing odor response
profiles across species, we found that olfactory preferences
reflect host specificity rather than phylogeny, suggesting a
critical role for olfaction in the process of host finding and
appropriate host selection. Our results provide insight into how
skin-penetrating nematodes locate hosts to infect.

Results/Discussion

Mammalian-parasitic nematodes vary in their movement
patterns

To gain insight into the host-seeking strategies used by
mammalian-parasitic nematodes, we first examined their move-
ment patterns in the absence of chemosensory stimuli. We
compared their movement patterns to those of EPNs, which use
well-characterized host-seeking strategies: some are “cruisers’ that
actively search for hosts, some are “ambushers” that wait for
passing hosts, and some use an intermediate strategy [9,15]. We
first examined motility using an assay in which IJs were allowed to
distribute on an agar plate in the absence of chemosensory stimuli
for one hour and the location of IJs on the plate was recorded. We
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found that the motility of skin-penetrating IJs resembled that of
EPN cruisers, with the human parasite Str. stercoralis being the
most active (Figure 2A). By contrast, the motility of Ha. contortus
resembled that of the ambushing EPN Ste. carpocapsae (Fig-
ure 2A). Thus, skin-penetrating IJs appear to be more active than
passively ingested IJs.

To investigate the host-seeking strategies of skin-penetrating
nematodes in more detail, we examined unstimulated movement
of IJs using automated worm tracking [16]. We found that
parasitic IJs vary dramatically in their crawling speeds, with the
human parasite Str. stercoralis moving more rapidly than the other
species tested (Figure SIA). The mean speeds of the skin-
penetrating rat parasites were comparable to that of the most
active EPN, Ste. glaseri, while the mean speed of Ha. contortus
resembled that of the less active EPNs (Figure S1A). Turn
probability also varied among species but did not correlate with
speed (Figure S1B). Some but not all species crawled significantly
faster following mechanical stimulation, and in fact the maximum
speeds attained by Str. stercoralis, Str. ratti, and Ste. glaseri
following mechanical stimulation were similar (Figure S1C-D,
Movies S1 and S2). Thus, at least some of the differences in basal
crawling speeds among species reflect differences in movement
strategy rather than differences in the inherent speeds at which the
IJs are capable of crawling.

The fact that Str. stercoralis has a higher basal speed than Str.
ratti and N. brasiliensis is consistent with the possibility that host-
seeking strategy evolved independently in these species to
accommodate host behavior and ecology. Str. ratti and N.
brasiliensis are parasites of nesting rodents, which are highly focal
with circumscribed resting places. Since parasite transmission
likely occurs within the confines of the nest, rapid mobility may
not provide an adaptive advantage for these parasites. By
contrast, Str. stercoralis is a parasite of humans, primates, and
dogs, all of which are highly mobile. Rapid mobility may be
necessary for Str. stercoralis to accommodate the mobility of its
hosts.

Heat increases crawling speed and stimulates local

searching in skin-penetrating nematodes

Heat is emitted by all mammals and is a known sensory cue for
some mammalian-parasitic nematodes, including Str. stercoralis
[11]. We therefore examined the responses of the mammalian-
parasitic IJs to a 37°C heat stimulus. We found that the skin-
penetrating nematodes increased their crawling speed in response
to thermal stimulation, while the passively ingested nematode Ha.
contortus did not (Figure 2B). Skin-penetrating nematodes may
increase their speed in response to heat to maximize the likelihood
of encountering host skin.

A comparison of I] movement patterns at room temperature
versus 37°C revealed that skin-penetrating IJs show dramat-
ically different movement patterns at the different tempera-
tures. The trajectories of individual IJs were relatively straight
at room temperature but highly curved at 37°C (Figure 2C).
To quantify these differences, we calculated a distance ratio
consisting of the total distance travelled divided by the
maximum displacement achieved. We found that all three
species of skin-penetrating nematodes showed greater distance
ratios at 37°C compared to room temperature (Figure 2D).
These results suggest that heat may act as a cue that signifies
host proximity and stimulates local searching. However, we
note that the temperature at the surface of human skin is 32—
35°C [17], and IJ movement within this temperature range
remains to be examined.
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Figure 1. Phylogenetic relationships and life cycles of parasitic nematodes. A. Phylogeny of selected nematode species. Phylogenetic
analysis is from Dillman et al., 2012 [22]. Species used in the present study are highlighted. Red = skin-penetrating mammalian-parasitic nematode;
gold = passively ingested mammalian-parasitic nematode; blue =entomopathogenic nematode; green =free-living nematode. For each of the
selected species, icons depict one of their common hosts (human, rat, beetle, or cow). Phylogenetic relationships are based on ML and Bayesian
analyses of nearly complete SSU sequences. Values above each branch represent Bayesian posterior probabilities; ML bootstrap indices appear below
each branch. Values lower than 75 are not reported. Priapulus caudatus and Chordodes morgani were defined as outgroups. Detailed methods for
phylogenetic tree construction are provided in Dillman et al., 2012 [22]. B-C. Life cycles of skin-penetrating nematodes. B. Hookworms must infect a
new host every generation. lJs infect hosts by skin-penetration. Nematodes develop to adulthood, reproduce, and lay eggs inside the host. Eggs are
excreted in host feces and develop into 1Js, which find and infect new hosts. C. Str. stercoralis and Str. ratti can develop through a single generation
outside the host. Some larvae excreted in host feces develop into IJs; others develop into free-living adults that mate and reproduce outside the host.
All progeny of free-living adults develop into IJs, which find and infect new hosts. L1-L4 are larval stages; lJ = infective juvenile. D. Ecology of selected

nematode species.
doi:10.1371/journal.ppat.1004305.g001

Nictation behavior varies among mammalian-parasitic
nematodes

An important component of host-seeking strategy for many
parasitic nematodes is nictation, a behavior in which the worm
stands on its tail and waves its head to facilitate attachment to
passing hosts [9]. We examined the nictation behavior of
mammalian-parasitic nematodes by performing nictation assays
on an “artificial dirt” substrate consisting of dense agar with near-
microscopic pillars [18], since IJs are not capable of standing on
standard agar plates due to the high surface tension on the plates
[18]. We found that nictation frequencies varied among species.
N. brasiliensis showed a high nictation frequency comparable to
that of the ambushing EPN Ste. carpocapsae (Figure 2E and
Movie S3), suggesting that it spends most of its foraging time
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nictating. By contrast, the Strongyloides species showed much
lower rates of nictation (Figure 2E and Movie S4), suggesting they
spend most of their foraging time crawling. Ha. contortus did not
nictate on the artificial dirt substrate or any other substrate tested
(see Materials and Methods), suggesting it may not be capable of
nictating.

Mammalian-parasitic nematodes utilize diverse host-
seeking strategies

Taken together, our results suggest that mammalian-parasitic
nematodes employ diverse host-seeking strategies. The skin-
penetrating Strongyloides species appear to be cruisers that are
highly mobile and tend to crawl rather than nictate. By contrast,
the passively ingested nematode Ha. conlortus appears to be an
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Figure 2. Foraging behaviors of skin-penetrating nematodes. A. lJ motility in the absence of chemosensory stimulation. Motility varies across
species (P<<0.0001, one-way ANOVA), with Str. stercoralis being the most active (P<0.01, one-way ANOVA with Tukey-Kramer post-test). n =6-9 trials
for each species. For this graph and subsequent graphs with multiple species, red=skin-penetrating; gold =passively ingested; blue=-
entomopathogenic. Of the three entomopathogenic species, Ste. carpocapsae is considered an ambusher, Ste. glaseri is considered an active cruiser,
and He. bacteriophora is considered a less active cruiser [15]. Statistical analysis is shown in Table S1. B. Unstimulated vs. heat-stimulated mean speeds
of mammalian-parasitic lJs. Heat-stimulated 1Js were exposed to an acute 37°C stimulus and tracked at 37°C. ***, P<<0.001; *, P<<0.01, unpaired t test
or Mann-Whitney test. n=5-10 trials for each species. C-D. Heat stimulates local search behavior. C. Representative tracks for Str. stercoralis and Str.
ratti from 20 s recordings at room temperature versus 37°C. D. Movement patterns at room temperature versus 37°C. Distance ratios were calculated
as the total track length divided by the maximum displacement attained during the 20 s recording period. A distance ratio of 1 indicates travel in a
straight line; a distance ratio of >1 indicates a curved trajectory. ***, P<<0.001; **, P<<0.01, Mann-Whitney test. n=5-10 trials. E. Nictation frequencies
of IJs. Nictation was defined as standing or waving behavior of at least 5 s in duration over the course of a 2 min period. Nictation frequencies varied
among species (P<<0.0001, chi-square test). N. brasiliensis showed a nictation frequency comparable to Ste. carpocapsae (P>0.05, chi-square test with
Bonferroni correction) and greater than Str. stercoralis or Str. ratti (P<<0.01, chi-square test with Bonferroni correction). Statistical analysis is shown in
Table S4. n=20-28 lJs for each species. For all graphs, error bars indicate SEM.

doi:10.1371/journal.ppat.1004305.9002

ambusher that displays little unstimulated movement. N. brasi-
liensis can exhibit rapid, prolonged movement comparable to that
of the cruisers but tends to nictate rather than crawl, suggesting it
is also an ambusher. However, we note that foraging strategy is in
some cases substrate-dependent, and different strains of a species
can exhibit different host-seeking behaviors [19,20]. Thus, we
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cannot exclude the possibility that the host-seeking strategies of
these species may vary under conditions not tested here.

Str. stercoralis is attracted to human-emitted odorants

EPNs have been shown to use a diverse array of insect volatiles
and herbivore-induced plant volatiles for host finding [21-30]. By
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contrast, only one odorant has so far been identified as an
attractant for Str. stercoralis [14]. We therefore tested the extent to
which Str. stercoralis displays directed movement in response to
human-emitted volatiles. We examined the responses of Sir.
stercoralis 1Js to a large panel of odorants, most of which are
known to be emitted by human skin, sweat, and skin microbiota
(Table S5). Responses were examined using a chemotaxis assay
(Figures S2 and S3) [21,22]. We found that Str. stercoralis was
strongly attracted to a number of these odorants (Figure 3A).
Nearly all of the attractants we identified for Str. stercoralis also
attract anthropophilic mosquitoes (Figure 3A), suggesting that
nematodes and mosquitoes target humans using many of the same
olfactory cues. While many of the human-emitted odorants that
attracted Str. stercoralis are also emitted by other mammals, 7-
octenoic acid is thought to be human-specific [31] and may be
used by Sir. stercoralis to target humans. Str. stercoralis and
disease-causing mosquitoes are co-endemic throughout the world
[2], and our results raise the possibility of designing traps that are
effective against both parasites.

We also examined responses to carbon dioxide (COsy), which is
emitted by aerobic organisms in exhaled breath and is an
attractant for many parasites, including EPNs [9,21,22]. We
found that Str. stercoralis was repelled by COy at high
concentrations and neutral to CO, at low concentrations,
suggesting that COy is not a host attractant (Figure 3A and
Figure S4A). These results are consistent with the fact that Str.
stercoralis infects by skin penetration, and only low levels of CO,
are emitted from skin [32]. However, some EPNs respond
synergistically to mixtures of COy and other odorants [33], and
we cannot exclude the possibility that Str. stercoralis is attracted to
COy in mixtures or under conditions not tested here.

Olfactory preferences of parasitic nematodes reflect host
specificity

The fact that Str. stercoralis responds to human-emitted
odorants suggests that olfaction plays an important role in host
finding. However, the extent to which Str. stercoralis or any other
mammalian-parasitic nematode uses olfactory cues for host
selection is not known. To gain insight into whether olfaction
contributes to host choice, we compared the olfactory responses of
Str. stercoralis to those of six other species: Str. ratti, N.
brasiliensis, Ha. contortus, He. bacteriophora, Ste. carpocapsae,
and C. elegans. We found that all species responded to a wide
array of odorants, indicating that as is the case for EPNs [21,22],
even ambushers are capable of robust chemotaxis (Figure 3B and
Figure S4). Moreover, each species exhibited a unique odor
response profile, indicating that olfactory responses are species-
specific even among closely related species such as Str. stercoralis
and Str. ratti (Figure 3B). COy response varied greatly among
species. Like Str. stercoralis, Str. rafti and N. brasiliensis were
repelled by COjy at high concentrations and neutral to CO4 at low
concentrations (Figure 3B and Figure S4B-C). By contrast, Ha.
contortus 1Js, like EPN IJs and C. elegans dauers [21,22], were
attracted to COq (Figure 3B and Figure S4D). To confirm that the
observed responses to odorants were olfactory rather than
gustatory, we examined the responses of Str. stercoralis and Str.
ratti to a subset of odorants in a modified chemotaxis assay in
which odorants were placed on the plate lid rather than the plate
surface. We found that attractive responses were still observed
when the odorants were placed on the plate lid, although the
response of Str. stercoralis to one odorant was slightly reduced
(Figure S5). Thus, the observed behavioral responses are primarily
olfactory, but in some cases may include a gustatory component.
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The olfactory preferences of the passively ingested mammalian
parasite, Ha. contortus, are consistent with its known ecology. Ha.
contortus IJs migrate from the feces of their ruminant hosts to grass
blades, where they are ingested by grazing ruminants [34]. The
fact that 5% COy, which approximates the concentration found in
exhaled breath [35], was strongly attractive to Ha. contortus
(Figure S4D) suggests that Ha. contortus may use exhaled COy to
migrate toward the mouths of potential hosts. By contrast, Ha.
conlortus was repelled by many of the skin and sweat odorants
tested (Figure 3B), consistent with a lack of attraction to
mammalian skin. Of the few attractive odorants we identified for
Ha. contortus, two — methyl myristate and myristic acid — are
known constituents of cow and goat milk [36-38] and may be used
by Ha. contortus to migrate toward cows and goats. To test
whether Ha. contortus also responds to plant-emitted odorants, we
examined responses to freshly cut grass. We found that Ha.
conlortus is attracted to the smell of grass, while Str. stercoralis and
Ste. carpocapsae are not (Figure 3C). These results suggest that
Ha. contortus uses COy in combination with other ruminant-
emitted odorants and grass odorants to position itself for passive
ingestion.

We then quantitatively compared odor response profiles across
species, and found that species with similar hosts responded more
similarly to odorants despite their phylogenetic distance (Fig-
ure 3D). For example, the distantly related rat parasites Str. ratti
and N. brasiliensis responded similarly to odorants, as did the
distantly related insect parasites He. bacteriophora and Ste.
carpocapsae. The three skin-penetrating species responded more
similarly to each other than to the other species tested, while the
passively ingested mammalian parasite Ha. contortus responded
very differently from all of the other species tested (Figure 3D).
These results indicate that olfactory preferences reflect host
specificity and infection mode rather than phylogeny, consistent
with a key role for olfaction in host selection.

Olfactory preferences of Strongyloides species are life
stage-specific

Skin-penetrating nematodes exit from hosts in feces as eggs or
young larvae and subsequently develop into infective larvae
outside the host. Thus, both infective and non-infective life stages
are present in the environment (Figure 1B—C). This raises the
question of whether host attraction 1s specific to the infective stage.
We compared olfactory responses of free-living larvae, free-living
adults, and IJs for both Str. stercoralis and Str. ratti in response to
a subset of host odorants. We found that all three life stages were
robustly attracted to host odorants, suggesting that host attraction
is not downregulated in non-infective life stages (Figure 4). The
free-living life stages of skin-penetrating worms are thought to
reside primarily on host fecal matter, where they feed on bacteria
present in the feces [39]. We therefore compared the responses of
free-living larvae, free-living adults, and IJs to host feces. We found
that responses differed dramatically across life stages: free-living
larvae and adults were strongly attracted to feces, while IJs were
neutral to host feces (Figure 4). Moreover, while Str. ratti IJs were
neutral to both host and non-host feces, Str. stercoralis TJs were
neutral to host feces but repelled by non-host feces (Figure 4).

Our results suggest a model in which all life stages are attracted
to host skin odor, but strong attraction to host fecal odor by the
free-living life stages causes them to remain on feces. Attraction to
fecal odor is downregulated at the infective stage, enabling the IJs
to migrate away from the feces in search of hosts. Repulsion of Str.
stercoralis TJs from non-host feces may serve as an additional
mechanism to prevent foraging in close proximity to non-hosts. To
gain insight into the individual odorants that confer changes in
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Figure 3. Olfactory responses of mammalian-parasitic nematodes. A. Str. stercoralis is attracted to a number of human-emitted odorants.
Red = attractants for Str. stercoralis that also attract anthropophilic mosquitoes [31,52-58]. n=6-23 trials per odorant. Str. stercoralis did not respond
to the chemotaxis controls (Figure S3). *, P<<0.05; ***, P<<0.001 relative to control, t-test (CO; vs. air and L-lactic acid vs. H,0) or one-way ANOVA with
Bonferroni post-test (all other odorants vs. paraffin oil). B. Olfactory responses across species. Response magnitudes are color-coded according to the
scale shown to the right of the heat map, and odorants are ordered based on hierarchical cluster analysis. n=6-14 trials for each odorant-species
combination. Each species exhibited a unique odor response profile (P<<0.0001, two-way ANOVA with Tukey’s post-test). Data for responses of EPNs
and C. elegans to 10% CO, are from Dillman et al., 2012 [22]. Red =skin-penetrating; gold = passively ingested; blue =insect-parasitic; green = free-
living. C. Responses of Ha. contortus to grass odor. Responses to the odors of two different grass samples were examined. n=8-17 trials for each
sample. D. Olfactory preferences reflect host specificity rather than phylogeny. The behavioral dendrogram was constructed based on the odor
response profiles of each species. Hierarchical cluster analysis was performed using UPGMA (Unweighted Pair Group Method with Arithmetic Mean).
Euclidean distance was used as a similarity measure. Hosts (humans, ruminants, rodents, or insects) for each species are indicated. Coph. Corr.=0.96.
For all graphs, error bars indicate SEM.

doi:10.1371/journal.ppat.1004305.9003
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sensitivity to feces, we examined responses to two components of
fecal odor, skatole and indole [40]. We found that the free-living
stages of Str. ratti were highly attracted to both skatole and indole,
while the IJs were neutral to both odorants (Figure S6A). Thus,
altered sensitivity to these odorants may contribute to the
developmental change in the response to fecal odor. By contrast,
Str. stercoralis 1Js were more attracted to skatole than the free-
living life stages and all three life stages were relatively
unresponsive to indole (Figure S6B), suggesting that other as yet
unidentified odorants mediate the sensitivity of Str. stercoralis to
fecal odor.

Implications for nematode control

Str. stercoralis infection is a worldwide cause of chronic
morbidity and mortality. Current drugs used to treat nematode
infections are inadequate for nematode control: some are toxic,
drug resistance is a growing concern, and reinfection rates are high
[41]. Our data suggest that Str. stercoralis 1Js are fast-moving
cruisers that actively search for hosts using a chemically diverse
array of human-emitted odorants. The identification of odorants
that attract or repel Str. stercoralis and other parasitic nematodes
lays a foundation for the design of targeted traps or repellents,
which could have broad implications for nematode control.

Materials and Methods

Ethics statement

Gerbils were used for host passage of Sir. stercoralis, and rats
were used for host passage of Str. ratti and N. brasiliensis. All
protocols and procedures were approved by the UCLA Office of
Animal Research Oversight (Protocol No. 2011-060-03B), which
adheres to the AAALAC standards for laboratory animal use, and
were in strict accordance with the Guide for the Care and Use of
Laboratory Animals.

Nematodes, vertebrate animals, and insects

Strongyloides stercoralis UPD strain and Strongyloides ratti
ED321 strain were provided by Dr. James Lok (University of
Pennsylvania). Nippostrongylus brasiliensis was provided by Dr.
Edward Platzer (University of California, Riverside). Haemonchus
contortus was provided by Dr. Adrian Wolstenholme and Mr. Bob
Storey (University of Georgia). Heterorhabditis bacteriophora
Oswego strain and Steinernema glaseri VS strain were provided
by David Shapiro-Ilan (USDA). Steinernema carpocapsae were
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from the ALL strain [21,22,42]. C. elegans dauers were from the
wild isolate CB4856 (“Hawaii”). Male Mongolian gerbils for
culturing Str. stercoralis were obtained from Charles River
Laboratories. Male or female Long-Evans or Sprague Dawley
rats for culturing Str. ratti and N. brasiliensis were obtained either
from Harlan Laboratories or second-hand from other investigators
at UCLA through the UCLA Internal Animal Transfer supply
system for surplus animals. Galleria mellonella larvae for culturing
EPNs were obtained from American Cricket Ranch (Lakeside,
CA).

Maintenance of Str. stercoralis

Str. stercoralis was serially passaged in gerbils and maintained
on fecal-charcoal plates. Inoculation of gerbils with Str. stercoralis
was performed essentially as previously described [43]. Briefly, Str.
stercoralis 1Js were isolated from fecal-charcoal plates using a
Baermann apparatus [43]. Each gerbil was subcutaneously
injected with 2000 IJs in 200 ul sterile PBS. Gerbils became
patent (as defined by the presence of nematodes in gerbil feces) on
day 12 post-inoculation and remained patent for approximately 70
days. At 28 and 35 days post-inoculation, each gerbil received
2 mg methylprednisolone (Depo-Medrol, Pfizer) subcutaneously to
induce an auto-infective cycle. To harvest infested feces, gerbils
were housed overnight in cages containing a wire rack on the
bottom of the cage. Fecal pellets fell below the rack onto damp
cardboard and were collected the following morning. Feces were
mixed with dH;O and autoclaved charcoal (bone char from
Ebonex Corp., Cat # EBO.58BC.04) in an approximately 1:1
ratio of charcoal to feces. The fecal-charcoal mixtures were poured
into Petri dishes (10 cm diameter, 20 mm height) lined with wet
filter paper, and were stored at 23°C until use. Nematodes used for
behavioral analysis were isolated from fecal-charcoal plates using a
Baermann apparatus [43] or from plate lids. To obtain free-living
larvae (primarily post-parasitic L2s) for chemotaxis assays,
nematodes were collected from fecal-charcoal plates after approx-
imately 18 hrs. To obtain free-living adults for chemotaxis assays,
nematodes were collected from fecal-charcoal plates after 48 hrs.
To obtain IJs, nematodes were collected from fecal-charcoal plates
starting at day 5 post-collection. IJs were used for behavioral assays
within 2 weeks of fecal collection.

Maintenance of Str. ratti

Str. ratti was serially passaged in rats and maintained on fecal-
charcoal plates. Inoculation of rats with Str. raiti was performed
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essentially as previously described [44]. Briefly, Str. ratti 1Js were
isolated from fecal-charcoal plates using a Baermann apparatus.
Each rat was subcutaneously injected with 700 IJs in 300 pl sterile
PBS. Rats became patent on day 6 post-inoculation and remained
patent for up to 28 days post-inoculation. To harvest infested feces,
rats were housed overnight in cages containing a wire rack on the
bottom of the cage. Fecal pellets fell below the rack onto damp
cardboard and were collected the following morning. Fecal-
charcoal plates were prepared as described above for Str.
stercoralis and stored at 23°C until use. Nematodes used for
behavioral analysis were isolated from fecal-charcoal plates using a
Baermann apparatus [43] or from plate lids. Free-living larvae,
adults, and IJs were obtained from fecal-charcoal plates as
described above for Str. stercoralis.

Maintenance of N. brasiliensis

N. brasiliensis was serially passaged in rats and maintained on
fecal-charcoal plates. To inoculate rats, N. brasiliensis IJs were
isolated from fecal-charcoal plates using a Baermann apparatus.
Each rat was subcutaneously injected with 4000 IJs in 300 pl
sterile PBS. Rats became patent on day 6 post-inoculation and
remained patent for up to 14 days. Infested feces were collected
as described above for Str. ratti. Fecal-charcoal plates were
prepared as described above for Str. stercoralis, except that
vermiculite (Fisher catalog # S17729) was added to the feces and
charcoal in an approximately 1:1:1 ratio of vermiculite to
charcoal to feces. Plates were stored at 23°Cl until use. In some
cases, either Nystatin (Sigma catalog # N6261) at a concentra-
tion of 200 U/ml or Fungizone (Gibco catalog #15290-018) at a
concentration of 1 pg/ml was added to the filter paper on the
bottom of the plate to inhibit mold growth. Nematodes used for
behavioral analysis were isolated from fecal-charcoal plates using
a Baermann apparatus [43] or from plate lids. To obtain IJs,
nematodes were collected from fecal-charcoal plates starting at
day 7 post-collection. IJs were used for behavioral assays within 2
weeks of fecal collection.

Maintenance of Ha. contortus

Ha. contortus was stored in dH,O at 8°C prior to use. IJs were
tested within 6 months of collection. No differences in IJ
movement or behavior were observed in freshly collected versus
6 month old IJs. IJ behavior declined after 6 months, so IJs older
than 6 months were not tested.

Maintenance of entomopathogenic nematodes (EPNs)

EPNs were cultured as previously described [21]. Briefly, 5 last
instar Galleria mellonella larvae were placed in a 5 cm Petri dish
with a 55 mm Whatman 1 filter paper acting as a pseudo-soil
substrate in the bottom of the dish. Approximately 250 ul
containing 500-1000 IJs suspended in water was evenly distrib-
uted on the filter paper. After 7-10 days the insect cadavers were
placed on White traps [45]. Emerging IJs were collected from the
White trap, rinsed 3 times with dHyO, and stored in dH;O until
use. Ste. carpocapsae and He. bacteriophora were maintained at
25°C, while Ste. glaseri was maintained at room temperature. IJs
were used for behavioral assays within 7 days of collection from
the White trap.

Maintenance of C. elegans

C. elegans was cultured on NGM plates seeded with E. coli
OP50 according to standard methods [46]. Dauer larvae were
collected from the lids of plates from which the nematodes had
consumed all of the OP50 and stored in dH,O at room
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temperature prior to use. Dauer larvae were used for behavioral
assays within 2 weeks of collection from plate lids.

Motility assays

30-100 IJs were placed in the center of a chemotaxis plate [47].
IJs were allowed to distribute over the agar surface for 1 hr, after
which the percentage of IJs in the outer zone (Zone 2) was
determined. Zone 1 was a 4 cm diameter circle centered in the
middle of the plate. Zone 2 consisted of the rest of the plate and
included the edges of the plate, which acted as a trap since IJs that
crawled onto the plate edge desiccated and could not return to the
agar surface.

Recording worm movement for automated tracking

Recordings of worm movement were obtained with an
Olympus E-PM1 digital camera attached to a Leica S6 D
microscope. To quantify unstimulated movement, 4-5 IJs were
placed in the center of a chemotaxis plate [47] and allowed to
acclimate for 10 min. 20 s recordings were then obtained. Worms
that either did not move, that stopped moving during the
recording, or that crawled off the assay plate during the recording
were excluded from the analysis. To quantify movement before
and after mechanical stimulation, IJs were placed on chemotaxis
plates and allowed to acclimate for 10 min. prior to tracking.
Baseline movement was recorded for approximately 15 s. The
plate lid was then removed, the IJ was gently agitated using a
worm pick, and post-agitation movement was recorded for
approximately 30 s. 5 s recording clips directly following agitation
were used to calculate the maximum speeds shown in Figure S1D,
and 5 s recording clips directly preceding and following agitation
were used to generate the sample tracks shown in Figure SI1C.
Maximum speeds were calculated in WormAnalyzer (see below)
based on changes in worm position over a seven frame (or
0.23 second) window. To quantify movement following thermal
stimulation, assays were performed in a 37°C warm room.
Chemotaxis assay plates were kept in the warm room prior to use.
Individual IJs were transported into the warm room, transferred to
assay plates, and immediately recorded for 20 s. For the room
temperature control, IJs were similarly transferred to assay plates
and immediately recorded for 20 s. Locomotion was quantified
using WormTracker and WormAnalyzer multi-worm tracker
software (Miriam Goodman lab, Stanford University) [16]. The
following WormTracker settings were adjusted from the default
settings (designed for C. elegans adults) for analysis of IJ
movement: min. single worm area = 20 pixels; max. size change
by worm between successive frames =250 pixels; shortest valid
track = 30 frames; auto-thresholding correction factor = 0.001. To
calculate turn frequencies, the following WormAnalyzer settings
were adjusted from the default settings for analysis of IJ speed:
sliding window for smoothing track data =30 frames; minimum
run duration for pirouette identification = 2.9 s for Str. stercoralis,
5.3 s for Ste. glaseri, and 6 s for all other species (to compensate
for differences in speed among species). All turns were confirmed
by visual observation of worm tracks; turns not confirmed by visual
observation were not counted. For calculations of maximum
displacement in Figure 2D, the distance between the worm’s start
point and the farthest point the worm reached during the 20 s
recording was calculated in Image].

Nictation assays

Nictation was quantified on “micro-dirt” agar chips cast from
polydimethylsiloxane (PDMS) molds as previously described [18],
except that chips were made from 5% agar dissolved in dH;O and
were incubated at 37°C for 2 hr and then room temperature for
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1 hr before use. The micro-dirt chip consisted of agar with near-
microscopic pillars covering its surface (pillar height of 25 um with
aradius of 25 um and an interval between pillars of 25 pm), which
allowed IJs to nictate on top of the pillars. For each assay, 3-10 IJs
were transferred to the micro-dirt chip and allowed to acclimate
on the chip for 10 min. Each IJ was then monitored for 2 min. An
IJ was scored as “nictating” if it raised its head off the surface of
the chip for a period of at least 5 s during the 2 min assay period.
Nictation behavior was also tested on sand. Sand nictation assays
were performed essentially as previously described [21,48]. Sand
(silicon dioxide, >230 mesh, CAS 60676-86-0) was distributed
onto the surface of a chemotaxis plate using a sieve. IJs were
transferred to the plate surface and allowed to acclimate for
10 min. Nictation behavior was then observed for two minutes. In
all cases, nictation behavior on sand was consistent with nictation
behavior on micro-dirt chips. In the case of Ha. contortus, we also
tested for nictation on grass and vermiculite; no nictation was
observed on any substrate tested. To test for nictation on grass,
grass samples were collected from a lawn seeded with UC Verde
Buffalo grass and perennial rye grass (the same lawn as for sample
1  below). The grass was cut into small chunks
(~2.5 mmx2.5 mm) and distributed onto the surface of a
chemotaxis plate. IJs were transferred onto the plate surface or
directly onto blades of grass, and nictation was scored after a
10 min. acclimation period. Nictation was also scored after 20, 30,
or 60 min., or the next day. No nictation was observed with Ha.
conlortus at any time point.

Odor chemotaxis assays

Odor chemotaxis assays were performed essentially as described
[21,22] (Figure S2). Assays were performed on chemotaxis assay
plates [47]. Scoring regions consisted of 2 cm diameter circles on
each side of the plate along the diameter with the center of the
circle 1 cm from the edge of the plate, as well as the rectangular
region extending from the edges of the circle to the edge of the
plate. Either 2 pl (for mammalian-parasitic IJs) or 1 pl (for insect-
parasitic IJs and C. elegans dauers) of 5% sodium azide was placed
in the scoring region as anesthetic. 5 pl of odorant was then placed
on the surface of the assay plate in the center of one scoring region,
and 5 pl of control (paraffin oil, dH5O, or ethanol) was placed on
the surface of the assay plate in the center of the other scoring
region. Approximately 200 worms were placed in the center of the
assay plate and left undisturbed on a vibration-reducing platform
for 3 hours at room temperature. A chemotaxis index (CI) was
then calculated as: CI=(# worms at odorant—# worms at
control)/(# worms at odorant+control) (Figure S2). A positive CI
indicates attraction; a negative CI indicates repulsion. A 3 hour
assay duration was used because 3 hour assays were found to be
most effective for EPNs [21,49]. However, 1 hour assays were also
performed with Str. ratti, and no significant differences were
observed in 1 hour vs. 3 hour assays (Table S6). Two identical
assays were always performed simultaneously with the odor
gradient in opposite directions on the two plates to control for
directional bias due to room vibration; assays were discarded if the
difference in the ClIs for the two plates was =0.9 or if fewer than 7
worms moved into the scoring regions on one or both of the plates.
Liquid odorants were tested undiluted unless otherwise indicated.
Solid odorants were prepared as follows: 1-dodecanol, methyl
palmitate, and methyl myristate were diluted 0.05 g in 2.5 ml
paraffin oil; palmitic acid was diluted 10 g in 200 ml ethanol;
myristic acid, skatole, and indole were diluted 0.05 g in 2.5 ml
ethanol; and L-lactic acid was diluted 0.05 g in 2.5 ml dH,O.
Ammonia was purchased as a 2 M solution in ethanol. Solid
odorants were tested at these concentrations unless otherwise
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indicated. For assays in which odorants were placed on the plate
lid rather than the plate surface (Figure S5), filter paper squares of
approximately 0.5 cm in width were attached to the plate lid using
double-stick tape. Odorant or control was then pipetted onto the
filter paper, and chemotaxis was examined as described above.

CO, chemotaxis assays

COy chemotaxis assays were performed essentially as described
[21,22]. Assays were performed on chemotaxis assay plates [47],
and scoring regions were as described above for odor chemotaxis
assays (Figure S2). Gases were delivered at a rate of 0.5 ml/min
through holes in the plate lids from gastight syringes filled with
either a COy mixture containing the test concentration of CO,,
10% Oy, and the balance Ny, or a control air mixture containing
10% Oy and 90% Ny. Certified gas mixtures were obtained from
Air Liquide or Airgas. Assays were performed and scored as
described above for odor chemotaxis assays, except that the assay
duration was 1 hour.

Grass chemotaxis assays

Fresh grass samples were collected from the campus of the
University of California, Los Angeles. Sample 1 was collected from
a lawn seeded with UC Verde Buffalo grass and perennial rye
grass, and sample 2 was collected from a lawn seeded with a
custom blend of annual ryegrass, Festuca, Bonsai dwarf fescue,
Bermuda grass, and bluegrass. 200 pl of dHyO was added to 0.1 g
grass. Grass was then ground in a small weigh boat, and 5 ul of the
grass suspension was used in a chemotaxis assay with 5 pl dHyO as
a control. Grass was either used immediately for chemotaxis assays
or stored at 4°C for no more than 3 days.

Fecal chemotaxis assays

Uninfected rat or dog feces was collected from animals in the
UCLA vivarium. Responses to feces were tested using a modified
chemotaxis assay in which feces was placed on the plate lid rather
than the plate surface. Filter paper squares of approximately
0.5 cm in width were attached to the plate lid using double-stick
tape. Fecal matter was moistened with dHyO, smeared onto filter
paper, and tested in a chemotaxis assay as described above for
odor chemotaxis assays. We note that similar attraction to feces
was observed when filter paper with feces was tested against filter
paper with dH,O, and no attraction was observed to wet filter
paper when wet filter paper was tested against dry filter paper
(data not shown).

Data analysis

Statistical analysis was performed using either GraphPad Instat,
GraphPad Prism, or PAST [50]. The heatmap was generated
using Heatmap Builder [51].

Supporting Information

Figure S1 IJ movement across species. A. Unstimulated
mean speeds of IJs. IJ speed varies among species (P<<0.0001,
Kruskal-Wallis test). Str. stercoralis crawled significantly faster
than the other species tested (P<<0.05, Dunn’s post-test). Statistical
analysis is shown in Table S2. n=20-31 IJs for each species. B.
Unstimulated turn frequencies of IJs in turns/s. Turn frequency
varied among species (P<<0.0001, Kruskal-Wallis test with Dunn’s
post-test) but did not correlate with speed (R?=0.22 and P = .28,
linear correlation analysis). Statistical analysis is shown in Table
S3.1n=20-31 IJs for each species. C. Representative tracks of Ste.
carpocapsae, Str. ralti, and Str. stercoralis before and after
mechanical stimulation. Recordings show 5 s of pre-stimulation
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movement and 5 s of post-stimulation movement. Red lines
indicate the timing of the mechanical stimulation; red dot indicates
the maximum speed attained during each recording; blue lines
indicate the mean unstimulated speed for each species. D.
Unstimulated vs. mechanically stimulated maximum speeds of
IJs. #*, P<0.001; ** P<<0.01, unpaired t test or Mann-Whitney
test. n=20-31 trials for unstimulated speed, 5-10 trials for
stimulated speed. Maximum speed was used for this analysis since
the species differed in how quickly they returned to basal speed
following mechanical stimulation. For all graphs, error bars
indicate SEM.

(PDF)

Figure $2 Chemotaxis assay for IJs. Odorant is placed on
one side of the plate and control is placed on the other side (black
dots). IJs are placed in the center of the plate and allowed to
distribute in the odor gradient for 3 hr. The number of IJs in
each scoring region is then counted, and a chemotaxis index is
calculated as shown (right). The chemotaxis index ranges from +1
to — 1, with a positive chemotaxis index indicating attraction and
a negative chemotaxis index indicating repulsion. Red
bar=1 cm.

(PDF)

Figure S3 Responses of Str. stercoralis to diluent
controls. Responses of Str. stercoralis to paraffin oil vs. paraffin
oil, water vs. water, and ethanol vs. ethanol in a chemotaxis assay.
The diluents did not elicit responses from Str. stercoralis, resulting
in an equal distribution of IJs on both sides of the assay plate.
n=10-12 trials for each condition. Error bars indicate SEM.
(PDF)

Figure S4 Responses to odorants across concentrations.
A-D. Responses of Sir. stercoralis (A), Str. ratti (B), N. brasiliensis
(C), and Ha. contortus (D) to increasing concentrations of odorants
in a chemotaxis assay. n=6-21 trials for each species-odorant
combination.

(PDF)

Figure S5 Responses to odorants are primarily olfacto-
ry rather than gustatory. A. Responses of Str. stercoralis in a
standard chemotaxis assay where odorants are placed on the plate
surface vs. a modified chemotaxis assay where odorants are placed
on the plate lid. Responses to 3-heptanol and 1-nonanol were not
significantly different, while the response to 3-methyl-1-butanol
was slightly reduced. **, P<0.01, two-way ANOVA with
Bonferroni post-test. n=6-12 trials for each condition. B.
Responses of Str. ratti were not significantly different in the lid
assay vs. the plate assay (P>0.05, two-way ANOVA). n=6-16
trials for each condition. For all graphs, error bars indicate SEM.

(PDF)

Figure S6 Responses of Strongyloides species to select-
ed fecal odorants. A. Responses of Str. ratti to skatole and
indole across life stages. Both odorants were neutral for IJs but
attractive for free-living larvae and adults. **, P<<0.01; *** P<
0.001, two-way ANOVA with Tukey’s post-test. n = 8-13 trials for
each odorant. B. Responses of Str. stercoralis to skatole and
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