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Over the last 30 years, the growing immunocompromised

population has created fertile ground for opportunistic pathogens,

particularly those from the Kingdom Fungi. While the range of

fungal species causing infections is increasing, there remain three

key culprits [1]. Firstly, the ascomycete yeast Candida albicans is

responsible for the greatest number of fungal infections, particu-

larly those acquired in a hospital setting. Secondly, the mould

Aspergillus fumigatus, also an ascomycete, has become a cause of high

mortality, particularly in transplant patients and those with

hematological diseases. Finally, the basidiomycete yeast Cryptococ-

cus neoformans has become a scourge of AIDS patients, accounting

for an estimated 624,000 deaths per annum [2]. The genomes of

C. albicans and A. fumigatus were published in 2004 [3] and 2005 [4]

respectively, and the C. neoformans var. neoformans genome was

published in 2005 [5]. Excitingly, the var. grubii genome, the

variety responsible for the majority of infections [6], is nearing

publication [G. Janbon, personal communication]. The analysis of

these C. neoformans sequences, coupled with earlier karyotypic

analyses, has uncovered a paradox: a pathogen with a highly stable

genome that appears to have the capacity to undergo gross

chromosomal rearrangement when required. This ‘‘flexible

stability’’ could potentially represent an adaptive strategy support-

ing the opportunistic nature of this important pathogen.

Early Insights into the Cryptococcus Genome

The earliest genomic studies in C. neoformans came from analysis

of electrophoretic karyotype [7]. Surveys of the pathogen by John

Perfect’s group described variation in chromosome size and

number between isolates, suggesting the genome was highly

flexible and tolerant of rearrangement [8]. Extensive karyotyping

by Teun Boekhout’s laboratory followed, confirming the extent of

the variability within the population and demonstrating a role for

the sexual cycle in generating karyotypic diversity within the

species [9,10]. Excitingly, this early work suggested a link between

genomic change and infection; in some instances, serial clinical

isolates exhibited changes in chromosome sizes between infections,

as did half of strains passaged through a mouse model of infection

[11]. Such high frequency of variability strongly suggested these

changes contribute to adaptability under selective pressure

encountered in the host, consistent with the observation that

these strains often exhibit changes in virulence-associated pheno-

types [12,13].

The nature of the gross chromosomal changes leading to such

karyotypic diversity was extremely difficult to elucidate in the

pregenomics era. Our first insights into C. neoformans chromosomal

rearrangement came from study of the evolution of the mating-

type (MAT) locus. C. neoformans has a bipolar mating-type system

consisting of MATa and MATa alleles that encode sex-determin-

ing homeodomain transcription factors, pheromones, and phero-

mone receptors. Over a decades’ work performed by several

laboratories gradually revealed that in this pathogen the MAT

locus is large. In comparison to the ,2.5 kb of S. cerevisiae [14],

early estimates of MAT size were between 35 and 75 kb [15,16],

and finally yielded sizes of 105 and 117 kb for var. neoformans a and

a respectively, and 103 and 127 kb for var. grubii [17].

Phylogenetic and synteny analyses support the locus having

evolved through a translocation bringing ancient homeodomain

and pheromone/pheromone receptor loci together. Subsequent

inversions, gene conversions and transposon accumulation resulted

in a highly divergent gene order within the locus, in contrast with

the synteny of the flanking regions [17,18].

Cryptococcus Enters the Genomic Era

The study of MAT provided the groundwork for understanding

the C. neoformans genome and how it is evolving, the next stage of

which began with the generation of linkage maps outlining the

genomic architecture of the species [19,20] and supporting the

subsequent publication of the full genome sequence of C. neoformans

var. neoformans in 2005 [5]. Sequencing of two related strains,

JEC21 and B-3501A, revealed a 20 Mb haploid genome

consisting of 14 chromosomes ranging in size from 762 kb to

2.3 Mb and each containing a regional centromere in the form of

a transposon cluster. Over 6,500 genes were identified with an

average size of 1.9 kb distributed over an average of 6.3 exons.

Transposons represented ,5% of the genome and clustered not

only at regional centromeres but also adjacent to the rDNA

repeats and within MAT.

During assembly, an anomaly was observed: only 13 chromo-

somes were evident for JEC21, one of which contained two

transposon clusters rather than the single predicted centromeric

clusters on the other 12. Interrogation of this unusual assembly by

Joe Heitman’s group revealed a unique genomic event [21]. It

became apparent that during construction of the JEC20/JEC21

congenic laboratory pair, a telomere-telomere fusion had occurred

followed by breakage of the dicentric intermediate and duplication

of a 62 kb fragment containing 22 genes. While it is unknown
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whether this event was a result of a recombination between

subtelomeric transposable elements or of nonhomologous end

joining, it did further indicate a propensity for large-scale genomic

events in C. neoformans.

The release of the genome for C. neoformans var. neoformans, as

with all important species, heralded a proliferation of comparative

genomic analyses. The initial comparison was with the var. grubii

type strain H99, the genome of which had been available in draft

format since 2001 as a collaboration between Duke University and

the Broad Institute. The genomes of these closely related varieties

share 85–90% sequence identity and are largely colinear [22],

although this colinearity breaks down in the subtelomeric regions

[23], centromeres, and MAT. In contrast to the early karyotypic

analyses, such similarity supports a model of high genome stability

since divergence of the varieties an estimated 18.5 million years

ago [24].

During comparisons of var. neoformans and var. grubii, Fred

Dietrich and colleagues discovered a 40 kb region containing 14

genes where the two varieties were almost identical (98.5%

similar), which was dubbed the Identity Island [22]. Significantly

this region was located on nonhomologous chromosomes:

chromosome 6 in var. neoformans and 5 in var. grubii. Through

comparison with C. gattii, it was determined that the Island had

introgressed into var. neoformans from var. grubii, explaining the

high nucleotide identity. Such an event could occur during

formation of hybrid diploids [25]. Since the acquisition of the

Identity Island the native copy of the region has been mostly

eradicated in var. neoformans. Interestingly, JEC21 also contains a

duplication of a 14 kb segment of the Identity Island.

Further comparative studies by Sun and Xu revealed more

insights into the evolutionary changes in these varieties’ genomes,

describing a number of small rearrangements [26]. The source of

these changes was implied by the presence of transposable

elements in association with around half of the events.

Transposons are a principal source of genomic rearrangement

in S. cerevisiae [27], a trend that appears to also hold true in C.

neoformans. Further analysis conducted by our own group

permitted the designation of each of the rearrangements

occurring outside MAT or the centromeres as either var. grubii

or var. neoformans specific [28] (Figure 1). Given the previously

observed karyotypic variability, the relatively small number of

changes fixed within the two varieties over millions of years is

somewhat astonishing.

In addition to these small events, a translocation involving

chromosomes 3 and 11 was found to be unique to the var. grubii

type strain H99 [26]. Sequencing across the translocation

breakpoint on chromosomes 3 and 11 identified a 3 bp

microhomology consistent with the event arising via nonhomol-

ogous end joining [28]. Significantly, this sole karyotypically

observable event was found within a clinically derived lineage,

suggesting this type of selective pressure as a necessary precursor.

Microevolution and Beyond

While these sequence-based studies relied on data from just a

few strains, the advent of more high-throughput genomic

technologies made larger-scale studies possible. Initially, compar-

ative genomic hybridization (CGH) by Jim Kronstad and

colleagues uncovered a significant number of previously unob-

served amplifications and deletions in comparisons within both

var. neoformans and var. grubii [29]. Most importantly, CGH

uncovered a propensity for aneuploidy within C. neoformans, and

this characteristic was found to be responsible for the intrinsic

heteroresistance to the widely used antifungal fluconazole

characterised by June Kwon-Chung’s group [30,31]. Resistant

strains were found to have duplications of chromosome 1 (all

strains) in addition to chromosomes 4, 10, and 14 in some strains

[30]. Aneuploid strains were also found in freshly obtained

clinical isolates and could be generated via passage through mice

[32].

Key to the observations of karyotypic variability of clinical

isolates, aneuploidy in association with heteroresistance and

infection, and translocations specific to clinical lineages, is the

application of selective pressure encountered in the host. This

situation is similar to that seen in C. albicans, where genomic

reorganization has been proposed as a mechanism of coping with

selective pressure [33]. However, selective pressure is not only

encountered in the host. What then is behind the overall stability

of the genome? One possibility is a requirement for retention of a

sexual cycle by the species. Spores produced as a result of matings

enable dispersal in times of stress and are also infectious [34,35].

Strains with genomes too far from the norm could be filtered out

by this process either through sexual isolation, as seen in the

separation of C. gattii [36], or through disruption of key genes

required for mating. Increased genomic reorganization in asexual

species such as C. glabrata, including the generation of novel

chromosomes, supports this idea [37].

Sex in nature between opposite mating types of C. neoformans is

known to occur in some populations [6]. However, the

overwhelming global predominance of the a mating type of var.

grubii means it is a parasexual cycle between isolates of the same

mating type that is most relevant, and evidence of recombination

within single-sex subpopulations supports its occurrence in the

environment [38,39]. Laboratory-passaged isolates often lose their

ability to mate, indicating the requirement for selective pressure to

maintain the process and therefore some associated advantage

[40]. One advantage to a predominantly single-sex population

could be the generation of novel diversity, as opposed to the

mixing of existing diversity, recently demonstrated by Joe Heitman

and colleagues to be a result of homothallic mating [41]. Thus sex

not only permits dispersal but is a source of genome flexibility in

closely related strains.

Genome resequencing projects are the next step toward fully

understanding the balance between stability and flexibility within

the genome of C. neoformans. This approach enables the detailed

comparison of multiple isolates from a single patient and thus has

the potential to fully assess the impact of long-term culture of C.

neoformans in the human body on genomic variability. The first

analysis of this type carried out by our laboratory compared two

strains obtained from a female AIDS patient 77 days apart and

uncovered aneuploidy of chromosome 12: two copies of the entire

chromosome in the first isolate and one complete copy plus two

additional copies of the left arm in the later isolate, observable as a

mini-chromosome during pulsed-field gel electrophoresis [42].

The first isolate also contained a large inversion. Analysis at the

nucleotide level revealed the isolates were separated by three SNPs

and two indels, one of which leads to loss of a predicted

transcriptional regulator causing changes in carbon source

utilization and virulence. For the first time, this study provided

evidence of large-scale plasticity between very closely related

isolates. Now what is required is the confirmation of to what extent

this flexibility is induced by the host environment.

The power of genome resequencing projects lies in their ability

to be performed on an increasingly large scale. Bulk analysis of

sequential clinical isolates will overcome the inevitable difficulties

associated with dealing with the uncontrolled experimental

environment of the human host and permit the designation of a

typical level of genome flexibility that can be incorporated into the
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definition of mixed infection [43]. In addition, controlled mouse

experiments coupled with sequencing will provide the required

temporal data to associate genome changes with infection. The

extensively curated annotations of var. grubii, now available to the

community via the Broad Institute as a prelude to the highly

anticipated genome paper, complete the foundation on which this

future work will build.
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