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Abstract

A main determinant of prolonged Trypanosoma brucei infection and transmission and success of the parasite is the interplay
between host acquired immunity and antigenic variation of the parasite variant surface glycoprotein (VSG) coat. About 0.1%
of trypanosome divisions produce a switch to a different VSG through differential expression of an archive of hundreds of
silent VSG genes and pseudogenes, but the patterns and extent of the trypanosome diversity phenotype, particularly in
chronic infection, are unclear. We applied longitudinal VSG cDNA sequencing to estimate variant richness and test whether
pseudogenes contribute to antigenic variation. We show that individual growth peaks can contain at least 15 distinct
variants, are estimated computationally to comprise many more, and that antigenically distinct ‘mosaic’ VSGs arise from
segmental gene conversion between donor VSG genes or pseudogenes. The potential for trypanosome antigenic variation
is probably much greater than VSG archive size; mosaic VSGs are core to antigenic variation and chronic infection.
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Introduction

A survival strategy common to many bacterial, viral and

eukaryotic pathogens, comprising the most rapidly evolving arms

race between pathogen and host, is antigenic variation [1]. Over

the course of infection, the host mounts specific immune responses

against a major pathogen surface antigen, but these are unable to

eradicate the entire pathogen population, as some individuals have

already switched to express different variants of the antigen. As the

survivors proliferate, the process reiterates, resulting in chronic

infection that favours transmission. Antigenic variation is powered

by diversity in expressed antigens across the pathogen population

over the course of infection, and reinfection of partially-immune or

already-infected hosts, commonplace in many field situations, is

also favoured by expressed antigen diversity [2].

African trypanosomes—parasites of humans and animals in

sub-Saharan Africa—have perhaps the most comprehensive

system of antigenic variation described [3]. Bloodstream trypano-

somes are enshrouded in a dense, highly immunogenic coat of

variant surface glycoprotein (VSG) homodimers that conceals

invariant surface molecules of the parasite and is the major target

of the host immune response [4]. Each VSG monomer consists of

a membrane-proximal C-terminal domain (CTD) that is inacces-

sible to antibodies [5], and an exposed N-terminal domain (NTD)

that contains the biologically relevant epitopes [6]. Only one VSG

is transcribed at a time, but spontaneously, and at high frequency

(0.1–1% switch/parasite/generation), the expressed VSG is

changed, usually through its replacement with a different VSG

‘donor’ gene via gene conversion [7]. The Trypanosoma brucei

genome accommodates an archive of thousands of VSGs, located

mainly in subtelomeric arrays on conventional chromosomes [8]

and in the subtelomeres of a pool of approximately 100

minichromosomes [9]. The archive of the T. brucei reference

strain (TREU927/4) is well annotated, but is likely to remain

somewhat incomplete, due to poor coverage of the minichromo-

somes and the fact that often only one of each pair of homologous

chromosomes is represented. Bringing the genomically encoded

diversity present in the archive to bear on a host would favour

prolonged infection [10]. However, most annotated archive genes

are pseudogenic, with only an estimated 5% of the array VSGs

predicted to be fully functional [11]. Furthermore, infections tend

to be dominated by the non-switching, quiescent, ‘stumpy’

trypanosome transmission form, which could further limit

expressed antigenic diversity [12].

Many pathogens, including Anaplasma spp. [13], Borrelia

burgdorferi [14], Neisseria gonorrhoeae [15], Treponema pallidum [16],

Mycoplasma spp. [17] and Babesia bovis [18], undergo a process of

segmental gene conversion (SGC) that introduces variation in the

expressed antigen. In this process, conversion occurs within the

open reading frame, producing a gene that contains segments from

two or more donors. By varying only the immunodominant region

of an antigen, SGC can make efficient use of a small genome, and

can potentially generate vast combinatorial diversity from a

limited ‘archive’ of antigen genes [19]. VSGs can also undergo

SGC. In its simplest form, VSG SGC replaces just the NTD-

encoding part of the gene, retaining all or part of the previously

expressed CTD-encoding region [20,21]. In other cases, SGC

occurs throughout the VSG, producing ‘mosaic’ genes [22–24],
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which tend not to appear early in infection and may be selected by

immune responses as infections progress [25]. It has been

hypothesized that ‘strings’ of related mosaic VSGs, produced

stochastically by the accumulation of SGC events in a sublineage,

could produce novel variants, facilitating both prolonged infection

and superinfection of partially-immune hosts [26]. However, as

most previous work has focussed on the early stage of infection, the

patterns, extent and function of VSG expression in the chronic

stages are still unclear.

How is VSG switching mediated in chronic infection, what is the

extent of expressed antigenic diversity, and to what degree does

mosaicism contribute to the diversity phenotype? We have

sequenced and analysed hundreds of cDNAs harvested longitudi-

nally from 11 chronic infections to identify the prevalence and

patterns of mosaicism, and have subjected a ‘string’ of expressed

mosaics to serological analyses. Our results show far greater

richness in VSG expression than previously thought, and demon-

strate that mosaicism is a major contributor to chronic infection.

Results

Segmental gene conversion frequently contributes to
VSG variation

To follow changes in VSG expression, RNA was purified from

blood samples collected longitudinally from 11 mice infected with

T. brucei TREU927/4 GUTat 10.1. VSG sequences were retrieved

by VSG-specific cDNA amplification, cloning and sequencing,

rather than via next-generation RNA sequencing, the short read-

lengths of which would have complicated unambiguous assembly,

especially in a background of expression of related VSG. In total,

756 full-length and 8 partial VSG sequences were obtained, and

each sequence was assigned a three-part name XX-YYcZZ, where

XX was the infection number, YY was the sampling time in days,

and ZZ was a numerical identifier. These data were supplemented

with data obtained from similar infections [11], to give 801

sequences.

Putative donor genes were identified by comparing sequences

with a database of genomic VSG sequences (based on www.vsgdb.

net, [27], see Materials and Methods) using BLAST [28]. SGC

was inferred when two or more donors appeared to contribute to

the expressed VSG sequence in a segmental fashion, and no other

sequences were a more parsimonious match. An example is given

in Figure 1A. Expressed VSG sequences were also compared with

one another. Based on similarities between NTD-encoding

regions, the 801 sequences grouped into 93 distinct ‘sets’, each

of which was likely to have been founded on a particular primary

donor, or group of donors. SGC within a set was inferred when set

members were .2.5% divergent from one another in a nucleotide

alignment, differences were grouped in one or more clusters (five

or more differences over 30 nt), and distinct clusters of differences

were observed in different clones. Donors contributing to a set

were given a shorthand name xx-y, where xx was the set number,

and y a single letter identifier A–D (Table S1).

Donor sequences combined in various ways, generating an

additional layer of diversity amongst expressed VSGs, as can be

seen in Figures 1B and 1C. SGC occurred in two broad patterns:

‘39 donation’, in which variation from the primary donor occurred

in the predicted CTD-encoding region and utilized donors with

low overall identity [20,21], and ‘mosaicism’, which occurred in

the NTD and/or CTD-encoding regions of the VSG and utilized

highly sequence-related donors [11,22–24]. Mosaicism and 39

donation were often detected in the same clone sequence.

Comparison with donors identified mosaicism in 187/629 (30%)

unique sequences, and identified 39 donation in 358/629 (57%)

unique sequences. The extent of 39 donation varied, and in 90

cases (25% of all 39 donations) the boundary of conversion

occurred merely in the region predicted to encode the GPI-anchor

signal sequence. For these analyses, 172 sequences were removed

as they were incomplete or duplicates of other sequences from the

same sample. Comparison between clone sequences identified

patterns of variation corresponding with mosaicism in 24/93 sets

(26%), and variation at the 39 end in 32/93 sets (34%).

Two possible sources of error were that inferred SGC events

occurred artifactually by template switching during in vitro

amplification by RT-PCR, or that inferred SGC events repre-

sented the straightforward expression of unannotated VSGs in the

genome. Two experimental approaches were taken to test these

possibilities. First, pairs of primers were designed to bind

specifically to one donor or the other, either side of a sequenced

SGC event, and PCR reactions using different combinations of

these primers were applied to genomic DNA samples, including

samples obtained from primary clonal infections. PCR using

primers that were both directed against the same donor were able

to amplify product from pre-infection, early and terminal genomic

DNA (gDNA) samples, but PCR using primers that were directed

against different donors—i.e. corresponding with the SGC

event—were able to amplify product only from terminal gDNA

samples (Figure 2A and 2C). These results are consistent with the

SGC event appearing in the gDNA of the parasite population over

the course of infection. Second, to test whether inferred SGC

could be better explained by unannotated VSG present in the

genome at the start of infection, restriction endonuclease-digested

pre-infection gDNA was analysed by Southern hybridization with

a probe corresponding to a donor for the SGC event in question.

Identified genomic copies could account for all detected hybrid-

ization events (Figure 2B and 2D). Six examples of SGC events

were tested by each approach (Figure 2 and data not shown); the

results were consistent with neither type of error having arisen.

Together these results show that VSG SGC occurs frequently

over the course of a 4–5 week infection.

Author Summary

Trypanosoma brucei—a deadly parasite of humans and
animals—owes its success to its ability to cope with host
immunity, and the mechanism it uses to do so is a
remarkable example of biological variation. Immune
responses that develop against the parasite surface coat
are only partially effective against the parasite population;
some individual parasites will have already switched to a
different variant of the coat antigen, and thus survive to
prolong infection. Little is known about how the pattern of
antigen variation unfolds, particularly after the early stage
of infection. Here, we examined different antigen variants
that appeared over the course of infection, to estimate
their diversity and to see whether the parasites are able to
generate new antigen variants by combination. We found
antigen diversity was much greater than expected, and
that ‘mosaic’ variants—produced by combining bits of
more than one antigen gene—played a central role in the
later stages of infection. These results provide important
evidence for the robustness of this key survival strategy,
provide clues about its evolution, and allow us to identify
patterns in common with other antigenically variable
pathogens.

Mosaic VSGs in T. brucei Antigenic Variation
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Segmental gene conversion repairs pseudogenic donors
The properties of the putative donors were then investigated.

The NTD-encoding regions were considered separately from

CTD-encoding regions, due to the frequent occurrence of 39

donation (for the latter see below). BLAST searching and pairwise

alignments between clone and donor sequences identified 103

donor genes that had contributed to generate the expressed VSG

NTDs; these are shown in Table S1. The involvement of a further

Figure 1. Segmental gene conversion occurs readily during infection. (A) The top diagram represents a multiple sequence alignment
between clone 03-32c07 and its three putative donors 14-A (A), 14-B (B) and 14-C (C). The diagram runs 59 to 39 left to right. Mismatches between the
clone sequence and each individual donor are indicated by black bars. The most parsimonious pattern, minimising the number of contributing
segments and mismatches, is highlighted, and is summarized in the lower diagram. Segment contribution was inferred when there was .1 nt
difference from the donor contributing surrounding segments. In the lower diagram, dotted and bold lines divide the sequence into the regions
encoding the N-terminal signal peptide, the mature NTD, the mature CTD, and the GPI-anchor signal sequence. Black bars projecting from the top of
the diagram indicate conserved cysteine codons, and black bars spanning and projecting from the bottom of each diagram indicate the positions of
putative point mutations, where the expressed VSG differed from all identified donors. (B) Summaries of six example mosaic VSGs, from Set_14 (top),
Set_10 (middle), and Set_04 (bottom). Diagrams were drawn as in (A). Different colours represent segments contributed by different donors; no
donor sequence data was available for the regions coloured in white (39 donations in Set_04). (C)Summaries of three 39 donation events. Diagrams
were drawn as in (A). Pairwise nucleotide identities between the expressed VSGs, 59 and 39 of the boundary of 39 donation (indicated by the long
dotted line), are given (%).
doi:10.1371/journal.ppat.1003502.g001

Mosaic VSGs in T. brucei Antigenic Variation
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Figure 2. Testing segmental gene conversion events. (A) Top, diagrams of Set_17 clone sequences drawn as in Figure 1, with the binding
locations of specific primers for donors 17-A (AF/AR) and 17-B (BF/BR) indicated. Below, PCR was performed using gDNA from pre-infection parasites
(pre-infxn), and the first parasitaemic peak (08-08 and 09-08) and terminal samples (08-34 and 09-34) of primary clonal infections, using primer
combinations AF-BR or BF-BR; the appearance of the AF-BR product only in the terminal gDNA reactions suggests that the junction A-B appeared
over the course of infection and was present in the parasite population gDNA. Isolated plasmid clones were used as positive controls for each
reaction. (B) Pre-infection gDNA was endonuclease digested using one of nine enzymes. Gel-separated, blotted DNA was hybridized to a probe
corresponding to donor 17-A. Besides donor 17-A, this probe was expected to bind to two other VSGs, 17-B and 17-C. The expected positions of

Mosaic VSGs in T. brucei Antigenic Variation
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29 donors, whose sequences were unavailable, could be inferred by

comparison between clone sequences. Identified donors were

either annotated copies located in the subtelomeric arrays (‘array

donors’) or partial sequences or assemblies of read sequences (see

Supplemental Experimental Procedures for full details). Eleven

read sequences represent putative minichromosomal VSGs. It is

possible that the 101 sequences (23 sets) for which no donor could

be found also represent minichromosomal VSGs, which are

underrepresented in the assemblies.

Donors for 39 donation were more difficult to identify

unambiguously, perhaps due to (i) the likelihood of their being

telomere-proximal [29], and hence underrepresented amongst

annotated VSGs; (ii) the possibility that successive 39 donation

events accumulating at an expression site produce a sequence with

a composite structure that cannot be dissected [29]; and (iii) the

general similarity between VSG CTDs [11]. Donors were

therefore sought only when at least 80 bp of 39 donation was

apparent. Seventeen 39 donation donors could be found, with five

additional donors inferred by identifying identical 39 regions in

otherwise unrelated clones. Half of all 39 donation donors (11/22,

50%) corresponded with minichromosomal reads and/or VSGs

expressed at an early point in infection, and in five cases, indicated

in Table S1, there was sufficient downstream sequence to identify

‘TTAGGG-like’ repeats that occur 39 of telomere-proximal VSGs

[30]. These findings are consistent with a model in which 39

donation exchanges the NTD of the expressed VSG, whilst

retaining at least part of the previously-expressed CTD sequence.

Many (43/103, 42%) of the putative NTD donors were

pseudogenes, summarized in Figure 3. Their (partial) expression

was achieved by mosaicism, 39 donation, or both. SGC was

thereby able to release genomically-encoded antigenic diversity

that otherwise would have been inaccessible.

VSG expression shows great richness and is loosely
hierarchical

‘Richness’—the total number of different variants present in a

population—is a principal aspect of diversity [31]. Two infections

sequenced to $20 clones/sample showed upwards of ten different

VSG sets in 5/10 samples analysed, as many as 15 VSG sets in a

sample at one time, and 30–31 different VSG sets in total between

fragments corresponding to donors 17-B and 17-C are indicated on the figure with the letters ‘B’ and ‘C’ respectively; where the letter is in italics the
fragment binds only part of the probe (hence resulting in multiple bands with a weaker signal). The remaining band(s) are highlighted with
arrowheads; the strength of the signal indicates that these likely correspond with donor 17-A, the genomic locus of which is undetermined. (C)
Set_14 PCR. Figure is laid out and annotated as panel A, with the binding location of primers specific for donors 14-A (AF/AR)and 14-B (BF/BR) [11]
indicated. PCR was performed using gDNA from pre-infection parasites (pre-infxn) and terminal samples of infections (01-32, 02-32, 03-32, 04-31, 05-
31, 06-29), using primer combinations AF-AR, BF-BR and AF-BR. Isolated plasmid clones were used as positive and negative controls for each reaction.
(D) Set_14 Southern Hybridization using a probe corresponding to donor 14-A. Besides 14-A, this probe was expected to bind to at least three other
VSGs, 14-B, 14-C and 14-D. Figure is annotated as panel B, with the expected positions of fragments corresponding to donors 14-A, 14-B and 14-D
indicated ‘A’, ‘B’ and ‘D’ respectively. In this case it is likely that the remaining band(s) correspond with donor 14-C, the genomic locus of which is
undetermined.
doi:10.1371/journal.ppat.1003502.g002

Figure 3. Pseudogene donors were expressed through segmental gene conversion. Of the 103 donors contributing to expressed VSGs for
which sequence data were available, 43 were pseudogenes (red). In one case, a pseudogene with damage at the very 39 end of its NTD-encoding
region was repaired by 39 donation. See also Table S1.
doi:10.1371/journal.ppat.1003502.g003

Mosaic VSGs in T. brucei Antigenic Variation
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days 21 and 31. An example from day 27 of infection 05 is given in

Figure 4, and further details are given in Table S2. Moreover, the

fact that several VSG sets were represented by ‘singletons’

(sequence recovered only once) suggests this estimate understates

total antigenic richness expressed by the trypanosome population.

Rarefaction calculations [32] based on these data project that

there could be as many as 95 different VSG sets co-present

(infection 05, day 27, measured richness 14 sets, Chao1 estimated

richness 32.0 sets, 95% confidence upper boundary 95.3 sets).

Members of different sets shared less than 59% NTD-encoding

nucleic acid identity lending confidence to the premise that

richness is immunologically relevant. The relatively small size of

many samples makes accurate estimation of total sample antigenic

diversity difficult, but it is clear that African trypanosome antigenic

variation comprises, rather than homogeneous waves of individual

variants, richly diverse populations.

Despite overall diversity, VSG expression followed a loose

hierarchy, with the incidence of mosaic and array VSGs increasing

as infection proceeded (as seen in Figure 5), consistent with

evidence from previous studies [7,11,33]. Prior to day 21 of

infection, only 10/163 (6%) sample-unique sequences (4/24 sets,

17%) were mosaics, compared with 177/466 (38%) of sequences

(30/78 sets, 38%) from day 21 onwards. This result held when the

more abundant, post-day 20 data were randomly subsampled to

163 sequences without replacement, to control for the differences

in number of sequences. Mosaicism is therefore a feature of

chronic, rather than acute, infection. However, it is interesting to

note that two non-mosaic VSGs detected prior to day 21 were

closely related to variants that had accumulated segmental

conversions in samples obtained from later timepoints (10-07c01

matched mosaics from days 27–30 in infections 01, 06, 10 and 12;

09-03-04 matched mosaics from days 27–32 in infections 01, 05

and 06), indicating that early-expressed VSGs can be modified by

SGC as an infection progresses.

Mosaicism accumulates rapidly and introduces an
additional level of diversity into expressed VSGs

For a given expressed VSG, SGC donors shared homology with

each other. Mosaic donors had at least 73.2% nt identity (Table

S1), but there was apparently no demand for strict sequence

identity: in 49 out of 496 mosaic SGCs analysed, the boundary of

conversion occurred in a region with less than 4 bp perfect identity

between donors, and in three cases (SGCs in 04-21c40, 04-21c04

and 04-27c03) there was 0 bp perfect identity at the boundary. For

this analysis, identical SGCs present in different VSGs obtained

from the same infection were counted only once. Where they

could be identified, 39 donors showed local homology at the

boundary of 39 donation (.85% nucleotide identity over 13–

143 bp, median 57 bp), although full-length nt identity was as low

as 33%.

Diversity generated by SGC was abundant, even within a single

sample. Day 27 in infection 05, for example, saw five related

Set_10 mosaic variants, three related Set_14 mosaic variants, and

two related Set_64 mosaic variants, shown in Figure 4. A total of

seven related Set_22 mosaics were found in infection 04 at day 21.

Related mosaics, formed from the same set of donors, had as low

as 78.1% amino acid identity (04-23c07 and 04-27c21), although

in all cases related mosaics formed from the same set of donors

were more similar to one another than their donors were to one

another (data not shown).

Progressive mosaicism, in which serial SGC events are proposed

to accumulate gradually in an expressed VSG, generating an

increasingly complex ‘string’ of mosaics, could be inferred in

Set_04, Set_14, Set_40 and Set_84. However, predecessors for

many complex mosaics, for example 05-27c28, 11-17c01 and 01-

27c08, (each constructed from .10 segments) were not identified.

Such predecessors may not have been recovered by the process of

cDNA cloning and sequencing due their relatively low abundance

in a rich population of VSG variants, although one would expect a

large pool of predecessors to be necessary (and hence readily

Figure 4. Variants present in an infection. Diagrams representing
the mature NTDs of the 32 clones detected at day 27 in the infection of
mouse 05. Diagrams have been drawn as in Figure 1A, although here
only non-synonymous putative point mutations are included. Where a
diagram represents more than one clone, the number of matching
clones is shown to the right; variation between clones due to single
nucleotide differences is not shown. The pattern of segmental
conversion in the Set_20 mosaic could not be determined precisely
due to lack of donor sequence data. The clones grouped into 14 sets,
three of which showed .1 mosaic variant within this sample. The
minimum mature NTD amino acid identity is given for each set of
related mosaics. See also Table S2.
doi:10.1371/journal.ppat.1003502.g004

Mosaic VSGs in T. brucei Antigenic Variation
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detected) were each segment being added at maximally the ‘full-

length’ VSG switching rate of approximately 1023 events/cell/

generation [34].

These patterns indicate a role for mosaicism in combining

families of related donors—whose members may or may not be

intact genes—to generate rapidly an additional layer of combina-

torial diversity amongst expressed VSGs.

Related mosaics can be antigenically distinct
Because of the homology between mosaic donors and their

products, we selected a string of related mosaic VSGs isolated from

a single infection (Set_14 from infection 04) to test whether

diversity introduced by mosaicism could contribute directly to

antigenic variation. These variants had as low as 79.1% amino

acid identity between mature NTDs, and each could be explained

by the segmental combination of up to four donor genes, 14-A

(Tb927.11.20570/Tb11.09.0005), 14-B (Tb927.11.19190/

Tb11.13.0003), 14-C (identified in an assembly of read sequenc-

es, cloned and sequenced from gDNA and given GenBank

accession number KC434956) and 14-D (Tb10.v4.0009), and up

to eight independent point mutations. In one case (variant 04-

27c44), the expressed VSG had also undergone a 39 donation

event. Three of the four donors were pseudogenes; the fourth had

an atypical GPI anchor signal sequence with uncertain function-

ality, as denoted in VSGdb (this signal sequence did not appear in

any Set_14 clones).

Figure 5. Mosaic VSGs appear later in infection. The times of detection of each of the 93 sets, ordered by time of first appearance, are plotted
as dark rectangles, and ranges between earliest and latest times are shown in a lighter shade. Data for each set are coloured according to the
properties of its NTD donors. Day 21 is indicated by a dotted line. GUTat 10.1 (Set_01), expressed at the beginning of infection, is known to possess an
additional telomeric copy (unpublished data), indicated here with a ‘T’. For two sets, patterns of mosaicism were detected only at specific timepoints
and are coloured accordingly. Please note that this figure represents aggregated data from infections initiated with inocula containing varying
numbers of T. brucei (see methods).
doi:10.1371/journal.ppat.1003502.g005

Mosaic VSGs in T. brucei Antigenic Variation
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Five of the Set_14 VSGs from infection 04, shown in Figure 6A,

were expressed transgenically under drug selection as intact

surface coats in Lister 427 trypanosomes, as described in Materials

and Methods and Figure S1. VSG 427-4, a known functional VSG

absent from TREU 927/4, was expressed in a similar manner as a

negative control. A standard infection-and-cure protocol was used

to raise polyclonal antibody responses in mice. At least two

different antiplasma were obtained for four of the five variants, as

well as for parasites expressing 427-4 and unmodified parasites

expressing VSG 427-2 (antiplasma could not be obtained for

variant 04-21c04 as this transgenic parasite line exhibited

inadequate virulence, data not shown). Monoclonal antibodies

(mAbs) were also generated for two of the variants, 04-23c07 and

04-29c06. To test the antigenic relatedness of the Set_14 mosaics,

antibodies were applied in three assays on live cells: indirect

immunofluorescence, complement-mediated lysis (CML), and

agglutination. The results are shown in Figure 6B. With polyclonal

antisera, four of the five related mosaics cross-reacted in all assays,

reciprocally, but one variant, 04-29c06, which had arisen later

than the others in infection 04, was antigenically distinct. Likewise,

neither of the anti-04-29c06 mAbs bound to the other four

mosaics. One mAb raised against 04-23c07 bound two other

Set_14 mosaics, and the other bound only a hidden epitope on 04-

23c07, as revealed by acetone fixation; neither bound to 04-29c06.

To investigate the regions of variant 04-29c06 that contribute to

its antigenic distinctness, the amino acid sequences of the cross-

reacting variants were compared with the sequence of variant 04-

29c06. At twenty-six positions in the NTD, shown in Figure 6C,

variant 04-29c06 differed from all of the earlier-occurring variants.

Predictions of the three-dimensional structure of variant 04-29c06

using I-TASSER [35] and PHYRE2 [36], shown in Figure 6D,

suggested that 22 of these residues occurred in the region likely to

form loops at the membrane-distal end of the NTD, a region

which, on another VSG, correlated with B-cell epitopes [6].

SGC can therefore contribute directly to antigenic variation

during infection, by generating related, but antigenically distinct,

mosaics.

Discussion

Antigenic variation is a survival strategy driven by the

expression of antigenic diversity by the pathogen population.

With their huge archive, rapid switch rate, and large population

size within a host it is perhaps not surprising that T. brucei

infections display great antigenic richness: here we show that many

variants, numbering at least 15 in some cases, and estimated to

comprise many more, may be expressed across the parasite

population at one time. Hosts larger than mice—in which

trypanosome antigenic variation likely evolved—are capable of

sustaining a greater parasite burden, precipitating even more

switch events [37], and thus even greater richness. MacGregor et

al. (2011) have predicted that, for trypanosomes, the high

prevalence of the non-switching stumpy form during chronic

infection might limit the expression of different VSGs. Our

observation of great richness suggests that any such limitation is

unlikely to be of significant impact. Conversely, stumpy form

prevalence might actually enhance persistence of minor variant

subpopulations, by suppressing their numbers below the threshold

required for induction of a specific immune response [10,38].

Trypanosome antigenic variation should be viewed more as

stochastic, continuous onslaught by many variants, rather than

fastidious and tightly regulated expression of few variants,

although it is interesting to note that of the ,1000 VSGs that

constitute the annotated archive [11], ,10% were identified as

contributing to the expressed VSGs studied here. By underpinning

chronicity of infection, expressed VSG diversity likely goes hand-in-

hand with the dynamics of differentiation, enhancing opportunities

for successful transmission and facilitating the persistence of the

trypanosome in its ecosystem [39]. Richness in expressed surface

antigen variants may be a feature common to many pathogens,

pre-empting host immune responses and memory: antigen

sequences cloned from infections by the bacterium Borrelia

burgdorferi showed non-saturating richness [14] (although some

sequences varied only in single nucleotides), and in Plasmodium it is

likely that the whole archive of ,60 genes has appeared by day 11

of infection [40].

How does SGC serve the T. brucei diversity phenotype?

Following the initial phase of infection, associated primarily with

non-SGC activation of minichromosomal VSGs and distinct peaks

of parasitaemia [33], segmentally-converted VSGs become abun-

dant. Two broad patterns of VSG SGC were observed. One,

termed 39 donation, involves retention of at least part of the

previously expressed CTD. Swapping just the antigenically

important NTD allows the expression of VSGs with damaged

CTD-encoding regions—in this way it is analogous to the patterns

of variable cassette exchange seen in the variable surface antigens

of other pathogens [41]—but it seems unlikely that any

combinatorial diversity introduced by 39 donation can itself

contribute to antigenic variation because the boundaries of

conversion occur within the buried CTD [5]. The other pattern,

mosaicism, can likewise utilise damaged VSGs, and also introduces

diversity into the antigenically important NTD, generating sets of

related mosaics within an infection, and generating infection-

unique variants that could potentially contribute to superinfection

[26]. Evidence for progressive mosaicism—the stepwise increase in

complexity of an expressed mosaic ‘string’ within an infection,

similar to that in Anaplasma marginale [42]—was limited: the sheer

number of different variants present may have prevented detection

of intermediate mosaics, but it is also possible that mosaicism is a

rapid process, with multiple segments accumulating in a short

period. A useful, novel mosaic is a VSG able both to form a

functional coat and escape circulating immune responses: rapid

SGC, allied with efficient selection—the death of individual

trypanosomes that have activated a dysfunctional mosaic VSG or

perhaps even a form of VSG quality control [43]—would enable a

sublineage to efficiently explore the space of potential mosaics,

favouring production of a variant that fulfils these criteria. In more

natural hosts, where the greater number of switches arising from

greater population size accelerates the kinetics of antigenic

variation, the infection is likely to progress to this phase sooner,

as the easily-activated VSGs are neutralised and unique variants

remain to drive prolonged infection [25].

T. brucei homologous recombination depends on substrate

length and homology [44], a pattern reflected in mosaic VSG

construction: donors shared high identity (.73.7% identity), and

thus their associated mosaics were similar to one another. If only

similar sequences combine, how efficient can this process be at

introducing antigenic dissimilarity? Multiple segments, and the

accommodation of non-identity at their flanks, both of which were

observed in mosaic VSGs, may compensate for overall similarity.

N. gonorrhoeae and B. burgdorferi, both of which rely on SGC for

generating and expressing antigenic diversity, show similar

patterns: short conversion events with little or no identity at their

flanks [14,15]. Previous analyses of mosaic VSGs found that

although their products could escape individual mAbs, they were

insufficiently distinct to evade polyclonal antibody responses [24],

and a study of related VSGs found antigenic divergence between

two variants sharing 70% amino acid identity but cross-reaction
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between a mosaic and its donor, with which it shared 88% amino

acid identity, mostly in the NTD [45]. Here, we found that

mosaicism could contribute directly to antigenic variation:

polyclonal antibodies raised against the earlier-detected VSGs

could bind other earlier-detected variants, whereas the variant

detected at the later timepoint, sharing between 79.1–87.5% NTD

amino acid identity with the earlier variants, was completely

antigenically distinct. The capacity of T. brucei antigenic variation

may therefore be greater than predicted from the genome

sequence. Yet given that four donors were required for the

assembly of this mosaic VSG set, the yield of merely two distinct

variants would appear not to be an efficient use of the archive, nor

an effective way to introduce antigenic novelty in and of itself. It is

possible that testing of further related mosaics would reveal

additional antigenically variant forms, and natural infections, with

a more extensive chronic phase, may see longer strings of more

distinct mosaics. Severe immunosuppression occurring in the

mouse model [46] may have also biased against identifying

antigenically distinct variants. On the other hand, incomplete

variation through SGC might be sufficient in the context of a

complex natural infection, where antibody clearance might

operate [47], differentiation and incomplete cross-reaction sup-

press variants below the levels required to induce potent, specific

responses [38], and host immunity is suppressed [48].

Perhaps, for trypanosomes, the true value of VSG SGC comes

from its ability to accommodate and exploit longer-scale changes

arising during evolution of the VSG archive. Like many other

multi-gene families [49], the archive probably evolves through a

process of birth-and-death evolution, in which genes ‘born’ by

duplication diversify by accumulating mutations and short gene

conversions [50]: while some genes persist intact, others acquire

disruptive mutations and ‘die’. Their subtelomeric location

promotes rapid mutation of archive VSGs [51] while the only

occasional expression of each VSG results in weak selective

pressure per allele [52]. As they diverge, it is likely that intact

archive VSGs become pseudogenic, and damaged archive genes

continue to diversify (L. Plenderleith, pers. comm.). Archive

diversification is favourable as it facilitates reinfection, likely to be

important in isolated foci where most hosts have already been

infected. In these circumstances, second order selection—in which

the mechanisms responsible for the evolution and maintenance of

a gene family are under stronger selection than the individual

family members [53]—would favour an expression mechanism

that can cope with the pseudogeneity that would inevitably arise

following a protocol of archive hypermutation. The ability to

express diverging—and possibly damaged—VSGs using SGC

expands the effective archive size, increasing the total number of

antigenically different variants that the parasite population can

muster.

Might other species of African trypanosome, such as T. vivax

and T. congolense, similarly rely on SGC for antigenic variation? T.

vivax and T. congolense have a lower degree of archive pseudogeni-

city than T. brucei [54]. Perhaps tighter bottlenecks in the life cycle

of T. brucei [55], compared with T. vivax and T. congolense [56],

favour deleterious genetic drift, promoting rapid fixation of

pseudogenizing mutations. If the generation of mosaic VSGs was

a specific adaptation in response to this challenge, the occurrence

of mosaic VSGs in T. vivax or T. congolense infections might be much

less frequent. On the other hand, mosaic VSGs might be prevalent

in T. vivax and T. congolense infections if SGC has evolved primarily

as a generator of combinatorial antigenic diversity.

SGC is clearly important in underpinning the diversity

phenotype in T. brucei chronic infection. Further experiments

would identify the contribution of SGC to the kinetics of antigenic

variation in natural hosts and the role that mosaicism plays in

superinfection, particularly in a field setting, and to establish how

combinatorial variations generated by SGC can yield antigenically

unique variants. In addition, data from T. vivax and T. congolense

infections are required to unravel the selective pressures that have

favoured the development of such a comprehensive diversity

phenotype.

Materials and Methods

Ethics statement
All studies involving animals were conducted in compliance

with the UK Animals (Scientific Procedures) Act 1986 (ASPA) and

under the auspices of Licence 60/3760 which was approved by the

University of Glasgow ASPA Ethical Review Committee.

Chronic trypanosome infection
Trypanosoma brucei TREU 927/4 GUTat 10.1 parasites were

used to infect 6–8 week old female Balb/c (infections 01–09) or

MF1 (infections 10–12) mice. Two infections, 08 and 09, were

primary clonal infections, initiated with single parasites, the others

were initiated with 40,000 (infections 01–06) or 10,000 (infections

10–12) parasites. Blood samples were taken into CBSS containing

5% w/v sodium citrate and RNA produced using the RNeasy kit

(QIAGEN).

Amplification and cloning of VSGs
Reverse transcription was performed using the SuperScript III

First-Strand synthesis kit (Invitrogen) using oligo[dT] as the

primer. cDNA was column purified (QIAGEN) before PCR

amplification using Herculase II Fusion (Stratagene) using primers

directed against the spliced leader and conserved 16-mer

(sequences in Table S3). Amplicons were purified and subcloning

was carried out using the TOPO-TA subcloning kit as described

Figure 6. Related mosaics from the same infection are antigenically distinct. (A) Five related Set_14 mosaics from infection 04, variants 04-
21c04, 04-23c07, 04-23c48, 04-27c44 and 04-29c06, were drawn as in Figure 1. Below, the locations of differences between each pair of donors. ‘TAG’
indicates the position of an in-frame stop codon in donor 14-B. Comparisons with donor 14-D are not shown due to minimal contribution of 14-D to
these mosaics. (B) Results of serological analyses. I = live cell immunofluorescence; C = complement-mediated lysis; A = agglutination; I(f) = acetone-
fixed cell immunofluorescence. For the immunofluorescence analyses, ‘+++’ = strong ‘eggshell’-like signal; ‘++’ = strong fluorescence with patchy/
posterior accumulation; ‘+’ = weak fluorescence. For CML and agglutination assays, the score is the maximum number of 3-fold antibody dilutions
able to give a signal (.95% death/agglutination) when added to an equal volume of trypanosome suspension. ‘2’ = no signal; ‘X’ = test not
performed. Each live immunofluorescence combination was performed with at least two antiplasma, CML and agglutination assays were performed
with at least one antiplasma, with representative results shown. Some non-reciprocal cross-reaction occurred at higher antiplasma concentrations:
suboptimal VSG coverage may have transiently exposed invariant surface antigens, which could be targeted by antibodies. (C) Location of differences
in variant 04-29c06 NTD amino acid sequence. The 26 positions where variant 04-29c06 was different from the earlier appearing Set_14 mosaics are
indicated by magenta bars. Bars projecting from the top of the diagram indicate conserved cysteine residues, and black bars below the figure
indicate the predicted location of NTD loops. (D) The predicted 3D-structure of a variant 04-29c06 dimer was visualised in PyMol (The PyMOL
Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC.). Each monomer is coloured a different shade of green, and the residues represented in
panel 5C are coloured purple.
doi:10.1371/journal.ppat.1003502.g006
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previously [11]. For each reaction, a control was performed to

ensure that the RNA sample was not contaminated with genomic

DNA. The VSG coding sequence was assembled from overlapping

sequence reads produced from primers corresponding to sequenc-

es in the vector. In cases where these reads were insufficiently long

to obtain a good quality full-length sequence, reactions were

performed to cover the central region of the gene. Genomic DNA

(gDNA) was prepared by phenol:chloroform extraction and

ethanol precipitation, according to a standard molecular biology

protocol. PCRs to test for mosaic VSGs were performed using Taq

polymerase according to a standard amplification protocol; primer

sequences are listed in Table S3.

Sequence analysis and manipulation
Sequences were assembled, visualised, compared and analysed

using CLC Genomics Workbench (CLC Bio, Aarhus, Denmark),

eBioX (available at www.ebioinformatics.org/ebiox) and custom

Ruby scripts. Scripts are available on request. Intact sequences

presented in this study are contained in GenBank entries

KC434459–KC434954, and full details are available from the

Dryad digital data repository (doi:10.5061/dryad.7pc00). Richness

estimator was ‘bias-corrected Chao1’ performed using EstimateS

(Version 7.5, R. K. Colwell, http://purl.oclc.org/estimates). The

‘genomic VSG database’ was obtained by collecting all available

VSG sequences from TriTrypDB (www.tritrypdb.org using the text

search query ‘vsg’ and applying a filter to TREU 927/4 genes) and

from VSGdb (www.vsgdb.net, all entries). The list was made non-

redundant by removing duplicate sequences. The assembly of read

sequences is described in Table S4.

Generation and verification of transgenic VSG expressors
Transgenic VSGs were expressed under drug selection in Lister

427 trypanosomes, which have an extremely low rate of switching

[57], by first inserting the exogenous VSG into the active

expression site [58], and then removing the endogenous VSG

427-2. VSG expression plasmids, a kind gift from G. Rudenko,

were manipulated using enzymes provided by NEB according to

the manufacturer’s instructions. VSGs amplified from the subclon-

ing plasmid were cloned into a variant of p221_PUR117VS-

G_UTR [58], in which VSG117 had been replaced with an SbfI

site. The insert was sequenced to ensure fidelity in cloning. T. brucei

Lister 427 13-90 parasites were maintained in HMI-9 medium

supplemented with 20% FBS and passaged regularly to avoid

overgrowth. Transfections were carried out using an AMAXA

protocol (T-cell nucleofection buffer, programme X-001). After

the first round of transfection media were supplemented with

2.5 mg.ml21 puromycin for drug selection, following the second

round of transfection with plasmid pBS_VSG221KO (G.

Rudenko, manuscript in preparation) media was further supple-

mented with 1 mg.ml21 blasticidin. To test VSG expression, PCR

reactions were performed on cDNA using primers directed against

VSG 427-2, the Set_14 VSGs, VSG 427-4, and two other Lister

427 VSGs, VSG 427-6 and VSG 427-9, according to a standard

Taq polymerase amplification protocol (primers are listed in Table

S3). In each case, parasites were found to be expressing only the

exogenous VSG under consideration, as shown in Figure S1A. To

test for the presence of other VSG mRNA, total VSG cDNA was

amplified and digested with a restriction endonuclease for which a

recognition site was present in the Set_14 VSGs and not at a

similar position in other expression-site-occupying VSGs. The

digest yielded products of the expected sizes, leaving little or no

residual uncut product (data not shown). Amplified VSGs,

subcloned and sequenced, were found to match the specific

variant under consideration. To test whether VSG mRNA was

being translated, crude cell lysate from 2.56106 cell equivalents

was analysed by SDS-PAGE (NuPage system, Invitrogen). The

size of the variant band corresponded with the predicted size of the

exogenous VSG, as can be seen in Figure S1B. For two variants

(Set_14 variants 04-23c07 and 04-29c06), the variant band was

excised from a gel and subjected to mass spectrometry. In both

cases, peptides corresponding with the Set_14 variants were

identified by at least one significant match and were the only

VSGs identified (data not shown). Together, these analyses

indicated that the transgenic parasite lines were expressing the

VSGs under consideration. Furthermore, the survival of the

parasites in complement-competent plasma, as can be seen in

Figure 6B, indicated that the transgenic surface coat was

functional. To avoid prolonged in vitro passaging, stabilates of

clones were prepared for subsequent experiments; thawed

stabilates were maintained in culture for a maximum of two weeks.

Generation and testing of antibodies
To generate antibodies against a transgenic surface coat, 16106

parasites were injected intraperitoneally into a Balb/c mouse,

which was treated with 20 mg.kg21 cymelarsen (Rhône-Merieux)

when the parasitaemia exceeded 107.2 parasites.ml21. Five to eight

days after cure, plasma was retrieved from terminal blood samples

by collecting the supernatant from a 10 min centrifugation at

14,000 g. Monoclonal antibody-producing hybridomas were

obtained by preparing splenocytes from these infections according

to a standard polyethylene glycol (PEG) fusion protocol. Hybrid-

oma lines were cloned by limiting dilution at least twice to ensure a

pure population of mAb. For indirect immunofluorescence, all

reactions were carried out on ice. 16106 cells were incubated in

primary antibody solution (1:25 dilution of antiplasma in

trypanosome dilution buffer [47] or undiluted hybridoma culture

supernatant) for 10 min. Cells were fixed in the presence of

primary antibody to minimise clearance [47] by the addition of 1

vol 8% w/v paraformaldehyde in PBS and incubating for 10 mins.

For each reaction a negative control was included to test for non-

specific antibody fixation. Cells were washed twice with PBS,

resuspended in secondary antibody solution (Alexa-488 labelled

goat anti-mouse IgG, provided by Invitrogen, 1:500 dilution in

PBS+1% w/v BSA), incubated for 15 minutes, washed twice in

PBS, mounted on a glass slide and examined using a Zeiss

Axioscop 2 microscope. For each reaction, minimally 200

trypanosomes were examined. Indirect immunofluorescence on

acetone-fixed trypanosomes was performed as described previous-

ly [34]. For complement-mediated lysis, complement-competent

plasma, obtained from guinea pig blood by centrifugation, was

used to dilute antibodies and trypanosomes. Trypanosomes were

at a final concentration of 0.56107 parasites.ml21, and the

reaction was incubated at room temperature for 1 hr before

scoring for cell death. For the agglutination assay, parasites were at

a final concentration of 16107 parasites.ml21, antibodies and

trypanosomes were diluted in TDB, and scoring took place after

30 min at room temperature.

Supporting Information

Figure S1 Transgenic trypanosomes were expressing
mosaic VSGs. (A) PCR was performed on cDNA from cultured

parasites using primers specific for either VSG 427-2, the Set_14

mosaics or VSG 427-4. Each reaction was numbered according to

the template DNA as follows: 1, positive control (gDNA or

plasmid); 2, unmodified 427-2 expressers; 3, 04-21c04; 4, 04-

23c07; 5, 04-23c48; 6, 04-27c44; 7, 04-29c06; 8, 427-4. (B) Crude

cell lysate was separated using SDS-PAGE. Lanes were labelled as
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in Panel A. Arrowheads mark the position of the variant band in

each lane, the migration of which corresponds approximately to

the predicted size of the transgenic VSG. The identity of the

variant bands in lanes corresponding to 4 and 7 were determined

by mass spectrometry.

(TIF)

Table S1 Details of genomic copies. All identified donors

that contributed to expressed VSGs. The read donors were

assembled as described in Supporting Material, and assemblies can

be found on the Dryad digital data repository (doi:10.5061/

dryad.7pc00).

(XLSX)

Table S2 Number of clones/sets identified in each
sample. For each sample, the number of clones retrieved (top

number) and number of sets they form (bottom number) is given.

(XLSX)

Table S3 Oligonucleotide primer sequences (59–39) used
in this study.
(DOCX)

Table S4 Details of donors assembled from reads. Read

sequences were obtained from ftp://ftp.sanger.ac.uk/pub/

databases/T.brucei_sequences/.

(DOCX)
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