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Abstract

Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute
respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both
termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1
genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from
human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a
typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary
human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including
disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an
immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive
infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture
system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis.
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Introduction

Human bocavirus 1 (HBoV1) was initially identified in 2005, in

nasopharyngeal aspirates of patients with acute respiratory-tract

infections (ARTI) [1]. It was found to be associated with ARTI in

children, at a detection rate of 2–19% [2–5]. Three additional

human bocaviruses, HBoV2, 3 and 4, discovered in human stool

samples, have since been phylogenetically and serologically

characterized [6–9]. However, whether these are associated with

any diseases is currently unknown. HBoV1 is commonly detected

in association with other respiratory viruses, and is the fourth most

common respiratory virus (after respiratory syncytial virus (RSV),

adenovirus and rhinovirus) in infants less than 2 years of age who

are hospitalized for the treatment of acute wheezing [2,10–12].

Indeed, ARTI is one of the leading causes of hospitalization of

young children in developed countries [13,14]. Acute HBoV1

infection, diagnosed by a virus load of .104 genome copies (gc)/

ml in respiratory samples, viraemia, or by detection of HBoV1-

specific IgM or of an increase in the levels of IgG antibodies,

results in respiratory illness [2,15–20]. Recent descriptions of life-

threatening HBoV1 infections in pediatric patients in association

with high virus loads or diagnostic HBoV1-specific antibodies [21–

23], in addition to a recent longitudinal study of children from

infants to puberty, documenting a clear association of acute

primary HBoV1 infection with respiratory symptoms [24],

strongly support that HBoV1 is an etiological agent of both upper

and lower ARTI.

HBoV1 has been classified as a new member of the genus

Bocavirus of the family Parvoviridae [25], of which bovine parvovirus

(BPV1) and minute virus of canines (MVC) are the prototypes

[26,27]. In comparison with the BPV1 and MVC genomes, the

HBoV1 genome sequences obtained previously appeared to

exclude the two termini, and therefore, were incomplete [28].

However, sequencing of the head-to-tail junctions of HBoV1 and

HBoV3 ‘‘episomes,’’ which had been amplified in DNA samples

extracted from HBoV1-infected differentiated human epithelial

cells and from intestinal biopsies of HBoV3-infected patients,

respectively, revealed portions of the HBoV termini [29,30].

Notably, these sequences were conserved with the terminal

sequences of BPV1 and MVC [28].

In vitro HBoV1 infection has been reported only once in well-

differentiated human airway epithelia (HAE) [31]. That study
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provided only minimal information on virus replication, and did

not include observations of pathophysiology. Obviously, the lack

of a sustainable and highly reproducible system that enables high-

yield virus production, as well as the ability to conduct reverse

genetics is a significant barrier to further elucidation of HBoV1

replication and pathogenesis. In the current study, we have

successfully sequenced the full-length HBoV1 genome and cloned

it in a plasmid referred to as pIHBoV1. Furthermore, we have

demonstrated that transfection of human embryonic kidney 293

(HEK293) cells with pIHBoV1 results in efficient production of

HBoV1 virions at a high titer, and that these virions are able to

productively infect both primary and conditionally transformed

polarized HAE.

Results

The terminal hairpins of the HBoV1 genome are typical of
those of the genus Bocavirus

A head-to-tail junction of an HBoV1 episome identified in an

HBoV1-infected HAE [28,29] was found to possess two sequences

(39-CGCGCGTA-59 and 39-GATTAG-59) identical to parts of the

BPV1 left-end hairpin (LEH) [27,32]. This finding suggested that

the head sequence is part of the HBoV1 LEH (nucleotides in blue;

Figure 1A). We therefore used the head sequence as the 39 end of a

reverse primer (RHBoV1_LEH). Together with a forward primer

(FHBoV1_nt1), which anchors the 39 end of the HBoV1 genome

predicted from the BPV1 LEH, we amplified the hairpin of the

LEH from a viral DNA extract (1.26108 gc/ml) prepared from a

nasopharyngeal aspirate taken from an HBoV1-infected patient

(HBoV1 Salvador1 isolate) [17]. Only one specific DNA band was

detected at approximately (,)150-bp (Figure 1D, lane 1).

Sequencing of this DNA revealed a novel sequence of the HBoV1

LEH (nucleotides in red between the two arrows; Figures 1A and

S1A). Because the LEHs of the prototype bocaviruses BPV1 and

MVC are asymmetric [27,32], we set up another PCR reaction

with a forward primer located in the hairpin (FHBoV1_LEH) and

a reverse primer targeting a sequence downstream of the LEH at

nt 576 (RHBoV1_nt576; Figure 1B). Sequencing of a DNA

fragment (Figure S1B), detected as expected as a ,600-bp band

(Figure 1D, lane 3), confirmed the presence of the novel joint

sequence and the LEH (Figure 1B).

The tail of the HBoV1 head-to-tail junction [28,29] was found to

contain a sequence (59-GCG CCT TAG TTA TAT ATA ACA T-

39) identical to that of the right-end hairpin (REH) of the other

prototypic bocavirus MVC [27]. We thus speculated that the entire

HBoV1 REH is similar in structure to its MVC counterpart. Using

a reverse primer targeted to this sequence (RHBoV1_nt5464) and a

forward primer located upstream of the REH (FHBoV1_nt5201),

we were able to amplify a specific ,300-bp-long DNA fragment

(Figure 1D, lane 5). Sequencing confirmed the presence of the

palindromic hairpin of the predicted REH (nucleotides in red;

Figures 1C and S1C), and revealed two novel nucleotides at the end

of the hairpin (GC in red; Figure 1C).

These results indicate that we have identified, for the first time,

both the LEH and REH of the HBoV1 genome from a clinical

specimen, and confirm that the HBoV1 genome structure is

typical of the genus Bocavirus.

A full-length HBoV1 clone (pIHBoV1) is capable of
replicating and producing progeny virus in HEK293 cells

We also cloned and sequenced the non-structural (NS) and

capsid (VP) protein-coding (NSVP) genes of the HBoV1 Salvador1

isolate from the patient-extracted viral DNA. We then ligated the

LEH, NSVP genes and REH into pBBSmaI using strategies

diagramed in Figure S2, and refer to this full-length clone as

pIHBoV1. We have deposited the sequence of the full-length

genome of the isolate in GenBank (JQ923422).

As we previously showed that HEK293 cells support replication

of the DNA of an autonomous human parvovirus (B19V) in the

presence of adenovirus helper genes or adenovirus [33], we first

investigated whether the adenovirus helper function is necessary

for pIHBoV1 replication in HEK293 cells. Specifically, we

transfected pIHBoV1 into HEK293 cells (untreated or infected

with adenovirus), alone or with pHelper. Interestingly, we found

that pIHBoV1 replicated well in the absence of helper virus.

Indeed, all the three representative forms of replicated bocavirus

DNA [27,34] (DpnI digestion-resistant dRF DNA, mRF DNA and

ssDNA) were detected in each test case, and at similar levels

(Figure 2A). DpnI digestion-resistant DNA bands are newly

replicated DNA in cells as DpnI digestion only cleaves plasmid

DNA prepared from prokaryotic cells, which is methylated at the

dam site [35]. In contrast, these DNA forms of the viral genome

were absent in pIHBoV1-transfected primary airway epithelial

cells (NHBE; Figure 2B, lanes 7&8) and present at very low levels

(over 20 times lower than in pIHBoV1-transfected HEK293 cells)

in pIHBoV1-transfected human airway epithelial cell lines BEAS-

2B (Figure 2B, lanes 5&6), A549 and 16HBE14o- (Figure 2C),

even in the presence of adenovirus. Thus, replication in these cells

appears to be non-existent or poor in these contexts.

To confirm the specificity of DNA replication and the identity

of the DpnI-resistant DNA bands, we disrupted the ORFs

encoding viral proteins NS1, NP1, VP1 and VP2 in pIHBoV1;

knockout of expression of the corresponding viral protein was

confirmed by Western blot analysis. When the NS1 ORF was

disrupted, no DpnI digestion-resistant DNA was detected

(Figure 2D, lane 4), confirming that replication of this DNA

requires NS1. Notably, when the NP1 ORF was disrupted, an RF

DNA band was detected but it was very weak (Figure 2D, lane 6),

suggesting that NP1 is also involved. When the VP2 ORF was

knocked out, the ssDNA band disappeared, but this was not the

case when VP1 was disrupted (VP2 was still expressed; Figure 2D,

compare lanes 7 to 9), these findings are consistent with a role for

Author Summary

Human bocavirus 1 (HBoV1) has been identified as one of
the etiological agents of wheezing in young children with
acute respiratory-tract infections. HBoV1 productively
infects polarized primary human airway epithelia. Howev-
er, no cell lines permissive to HBoV1 infection have yet
been established. More importantly, the sequences at both
ends of the HBoV1 genome have remained unknown. We
have resolved both of these issues in this study. We have
sequenced a full-length HBoV1 genome and cloned it into
a plasmid. We further demonstrated that this HBoV1
plasmid replicated and produced viruses in human
embryonic kidney 293 cells. Infection of these HBoV1
progeny virions produced obvious cytopathogenic effects
in polarized human airway epithelia, which were repre-
sented by disruption of the epithelial barrier. Moreover, we
identified an airway epithelial cell line supporting HBoV1
infection, when it was polarized. This is the first study to
obtain the full-length HBoV1 genome, to demonstrate
pathogenesis of HBoV1 infection in human airway epithe-
lia, and to identify the first cell line to support productive
HBoV1 infection.

Human Bocavirus Reverse Genetics System
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the capsid formation in packaging of the parvoviral ssDNA

genome [36–38].

The presence of the ssDNA band in pIHBoV1-transfected

HEK293 cells suggested that progeny virions were produced. To

prove this, we carried out large-scale pIHBoV1 transfection and

CsCl equilibrium centrifugation to purify the virus that was

produced. We fractionated the CsCl gradient, and found the

highest HBoV1 gc (1–56108 gc/ml) at a density of 1.40 mg/ml,

which is typical of the parvovirus virion. Electron microscopy

analysis revealed that purified virus displayed a typical icosahedral

structure, with a diameter of ,26 nm (Figure 2E).

Collectively, these findings confirm that we have generated a

full-length clone of HBoV1 capable of replicating and producing

progeny virus in transfected HEK293 cells.

HBoV1 progeny virus produced from pIHBoV1-
transfected cells is infectious

The infectivity of the HBoV1 virions purified from pIHBoV1-

transfected HEK293 cells was examined in polarized primary

HAE, the in vitro culture model known to be permissive to HBoV1

infection [31]. Three sets (different donors, culture lots #B29-11,

B31-11 and B33-11) of B-HAE were generated, and these were

Figure 1. Sequencing the terminal hairpins of the HBoV1 Salvador1 isolate. Sequence and predicted structure of the left-end, LEH (A&B),
and right-end, REH (C), hairpins are shown and diagramed, with PCR primers indicated by arrowed lines. PCR products were analyzed by
electrophoresis on 2% agarose gels; the expected DNA bands are indicated by arrowheads (D). In both the LEH and REH, nucleotides in red represent
new sequences identified in this study, nucleotides in blue represent sequences identified from the head-tail junction of an HBoV1 episome [28,29],
and nucleotides in black are the 59end and 39end sequences of the incomplete HBoV1 genome (GenBank: JQ411251).
doi:10.1371/journal.ppat.1002899.g001

Human Bocavirus Reverse Genetics System
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infected with HBoV1 from the apical side. Initially the B-HAE

cultures were infected with various amounts of virus, and when a

multiplicity of infection (MOI) of ,750 gc/cell was used, most of

the cells (,80%) were positive for anti-NS1 staining (indicating

that the viral genome had replicated and that genes encoded by it

had been expressed) at 5 days post-infection (p.i.). This MOI was

subsequently used for apical infection. Notably, B29-11, B31-11

and B33-11 HAE each supported productive HBoV1 infection

(Figures 3 and S3). Immunofluorescence (IF) analysis of infected

B31-11 HAE at 12 days p.i. showed that virtually all the cells

expressed NS1 and NP1 (Figures 3A and 3B), and that a good

portion of the infected cells expressed capsid proteins (VP1/2;

Figure 3C).

The production of progeny virus following HBoV1 infection

was monitored daily by collecting samples from both the apical

and basolateral chambers of the HAE culture and carrying out

Figure 2. Southern blot analysis of pIHBoV1 transfection and electron microscopy analysis of purified virus. (A–D) Southern blot
analysis. (A) HEK293 cells (plus or minus infection with adenovirus type 5 (Ad) at an MOI of 5) were transfected with pIHBoV1, alone or together with
pHelper, as indicated. (B&C) pIHBoV1 was transfected into various cell lines that had (+) or had not (2) been infected with Ad as indicated. Lanes 1–8
in panel B were analyzed on the same gel, and the gels shown in panels B&C were transferred and blotted together. Ten ng of the HBoV1 dsDNA
genome (,5.6-kb), excised from pIHBoV1 using the SalI and XhoI sites, was used as a control (Ctrl) for DpnI digestion in panels A–C. (D) HEK293 cells
were transfected with pIHBoV1 and its various mutants as indicated. At 48 h post-transfection, Hirt DNA was extracted and digested with (+) or
without (2) DpnI, followed by Southern blotting using the HBoV1 dsDNA genome as a probe. dRF DNA, double replicative form DNA; mRF DNA,
monomer replicative form DNA. (E) Negative staining electron micrograph. Purified HBoV1 particles were negatively stained and examined by a
transmission electron microscopy. Bar indicates 100-nm.
doi:10.1371/journal.ppat.1002899.g002

Human Bocavirus Reverse Genetics System
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HBoV1-specific quantitative PCR (qPCR; Figures 4A and S3B).

In the case of B33-11 B-HAE, apical release was obviously

initiated at 3 days p.i., then continued to increase to a peak of

,108 gc/ml at 5–7 days p.i., then decreased slightly through day

10 p.i. and was maintained at a level of ,107 gc/ml through day

22 p.i. (Figure 4A). The total virus yield from one Millicell insert of

0.6 cm2 over a 24-h interval was greater than 261010 gc. This

result suggested that productive HBoV1 infection of primary B-

HAE is persistent. Notably, in the B-HAE cultures from both

donors, virus was also continuously released from the basolateral

side, keeping pace with apical secretion throughout, though at

levels about one log lower than the release from the apical surface

(Figures 4A and S3B). The genomes of the progeny virions

released from infected B-HAE were amplified and sequenced

using the primers listed in Figure 1 and primers spanning the

NSVP genes between the termini. The result showed an identical

sequence with that of the HBoV1 Salvador isolate (Genbank

JQ923422). Additionally, no virus was detected in mock-infected

B-HAE (data not shown).

Taken together, these results demonstrate that the HBoV1

virions produced by pIHBoV1 transfection is capable of infecting

polarized primary HAE cultures from cells derived from various

donors and releasing identical progeny virions from infected

primary HAE. More importantly, we found that productive

HBoV1 infection was persistent.

HBoV1 infection of primary B-HAE features characteristics
of respiratory-tract injury

Although no gross cytopathic effects were observed in HBoV1-

infected B-HAE, histology analysis of mock- vs. HBoV1-infected

epithelia (B33-11) revealed morphological differences: infected B-

HAE did not feature obvious cilia at 7 days p.i., and was

significantly thinner than the mock-infected one on average at 22

days p.i. (Figure 4B). We further monitored the transepithelial

electrical resistance (TEER) during infection of B-HAE, and found

that at 6 days p.i., it was reduced from a value of ,1,200 to

,400 V.cm2, while the mock-infected B-HAE maintained the

initial TEER (Figure 4C). Notably, the decrease in TEER in the

infected B-HAE was accompanied by an increase in HBoV1

secretion (Figure 4A).

To confirm a role for HBoV1 infection in disruption of the

barrier function of the epithelium, we examined the distribution of

the tight junction protein Zona occludens-1 (ZO-1) [39]. Infected

B-HAE showed dissociation of ZO-1 from the periphery of cells

started from 7 days p.i., compared with mock-infected B-HAE

(Figure 5A), which likely plays a role in reducing TEER.

Cumulatively, these results demonstrate that HBoV1 infection

disrupts the integrity of HAE and that this may involve breakdown

of polarity and redistribution of the tight junction protein ZO-1.

To confirm a role for HBoV1 infection in the loss of cilia, we

examined expression of the b-tubulin IV, which is a marker of cilia

[40,41]. In HBoV1-infected B-HAE, expression of b-tubulin IV

was drastically decreased at 7 days p.i., and was not detected at 22

days p.i., in contrast to that in mock-infected B-HAE (Figure 5B).

These results confirmed that HBoV1 infection caused the loss of

cilia in infected B-HAE. Notably, infected B-HAE showed changes

of nuclear enlargement, which became obvious at 22 days p.i.

(Figure 5, DAPI), indicating airway epithelial cell hypertrophy.

Collectively, we found that productive HBoV1 infection

disrupted the tight junction barrier, lead to the loss of cilia and

airway epithelial cell hypertrophy. These are hallmarks of

respiratory tract injury when a loss of epithelial cell polarity occurs.

An immortalized human airway epithelial cell line
supports HBoV1 infection when the cells are polarized

Although primary HAE cultures support HBoV1 infection,

their usefulness is limited by the variability between donors, tissue

availability and high cost. We thus explored alternative cell culture

models for their abilities to support HBoV1 infection. Using the

Figure 3. Transfection-produced HBoV1 infects primary B-HAE.
The primary B-HAE (B31-11) was cultured in Millicell inserts, and
infected with purified HBoV1 at the apical surface. At 12 days post-
infection (p.i.), mock- and HBoV1-infected primary B-HAE cultures were
fixed and analyzed by immunofluorescence (IF) using anti-(HBoV1) NS1
(A), NP1 (B), and VP1/2 (C) as indicated. Nuclei were stained with 49,6-
diamidino-2-phenylindole (DAPI; blue) and cells were visualized by
confocal microscopy at a magnification of 640. HAE, human airway
epithelia.
doi:10.1371/journal.ppat.1002899.g003
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purified HBoV1, we examined HEK293 cells, other common

epithelial cell lines permissive to common respiratory viruses [42],

including HeLa, MDCK, MRC-5, LLC-MK2 and Vero-E6, and

several transformed or immortalized human airway epithelial cell

lines (A549, BEAS-2B, 16HBE14o- [43], NuLi-1 and CuFi-8

[44]), as well as primary NHBE cells for the ability to support

Figure 4. HBoV1 infection of primary B-HAE is persistent and causes cytopathogenic effects. The primary B-HAE (B33-11) was cultured in
Millicell inserts, and infected with HBoV1 at the apical surface. (A) At the indicated days p.i., the apical surface was washed with 200 ml of PBS to
remove released virus. 50 ml of the medium were taken from the basolateral side. DNase-resistant HBoV1 DNA copies were quantified by qPCR (y-axis)
and plotted to the days p.i. as shown. Averages and standard deviations are shown. (B) At 7 and 22 days p.i., HBoV1-infected primary B-HAE
membranes taken from the bottom of the inserts were embedded in OCT, sectioned, and stained using hematoxylin and eosin. Mock-infected B-HAE
was taken at 22 days p.i. Images were taken at a magnification of660. (C) The transepithelial electrical resistance (TEER) of mock- and HBoV1-infected
primary B-HAEs was measured using an epithelial Volt-Ohm Meter (Millipore) at the indicated days p.i. Averages and standard deviations are shown.
doi:10.1371/journal.ppat.1002899.g004

Human Bocavirus Reverse Genetics System
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infection in conventional monolayer culture. All were negative for

HBoV1 infection as determined by IF analysis (data not shown).

We next speculated that since some respiratory viruses infect

polarized HAE but not undifferentiated cells [45], some charac-

teristics of the polarized epithelia may be critical for HBoV1

infection. We thus polarized immortalized cells (NuLi-1 and CuFi-

Figure 5. IF analysis of the tight junction protein ZO-1 and the cilia marker b-tubulin IV during HBoV1 infection of primary B-HAE.
Mock- and HBoV1-infected B-HAE (B33-11) cultures at the indicated days p.i. were co-stained with anti-NS1 and anti-ZO-1 (Invitrogen) antibodies (A),
or co-stained with anti-(HBoV1) NS1 and anti-b-tubulin IV (Sigma) antibodies (B). Confocal images were taken at a magnification of 640. Nuclei were
stained with DAPI (blue).
doi:10.1371/journal.ppat.1002899.g005

Human Bocavirus Reverse Genetics System
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8) at an air-liquid interface (ALI) for one month. Once polarization

was confirmed by detection of a TEER of .500 V.cm2, the

cultures were infected with HBoV1, under the same conditions as

used for primary B-HAE cultures. Notably, IF analysis revealed

that at 10 days p.i., HBoV1-infected CuFi-HAE (differentiated

from CuFi-8 cells) was uniformly positive for NS1 (Figure 6A),

whereas the HBoV1-infected NuLi-HAE (differentiated from

NuLi-1 cells) was not (Figure S4). Moreover, the CuFi-HAE did

express HBoV1 NS1, NP1 and VP1/VP2 proteins (Figures 6B and

6C). The kinetics of virus release from the apical surface was

similar to that of a primary B-HAE infected with virus at a similar

titer (maximally 26107 gc/ml), although virus release from the

basolateral surface was undetectable (Figure 6D). HBoV1 infection

also resulted in a decrease in the thickness of the epithelium

(Figure 6E), and dissociation of the tight junction protein ZO-1

from the epithelial cell peripheries (Figure 6F).

Collectively, these findings demonstrate that the immortalized

cell line CuFi-8 [44], when cultured and polarized at an ALI,

supports HBoV1 infection, and recapitulates the infection

phenotypes observed in primary HAE, including destruction of

the airway epithelial structure.

Discussion

In this study, we have cloned the full-length HBoV1 genome

and identified its terminal hairpins. Virions produced from

transfection of this clone into HEK293 cells are capable of

infecting polarized HAE cultures. Thus, we have established a

reverse genetics system that overcomes the critical barriers to

studying the molecular biology and pathogenesis of HBoV1, using

an in vitro culture model system of HAE.

It is notable that the HBoV1 terminal hairpins appear to be

hybrid relicts of the prototype bocavirus BPV1 at the LEH, but of

MVC at the REH [28]. Replication of HBoV1 DNA in HEK293

cells revealed typical replicative intermediates of parvoviral DNA.

Although the head-tail junctions are unexpected in the replication

of autonomous parvoviruses, they were likely generated during the

cycle of rolling hairpin-dependent DNA replication [46]. There-

fore, we believe that the replication of HBoV1 DNA basically

follows the model of rolling hairpin-dependent DNA replication of

autonomous parvoviruses, with terminal and junction resolutions

at the REH and LEH, respectively [46]. The replication of

parvoviral DNA depends on entry into S phase of the cell cycle or

the presence of helper viruses [46,47]. In this regard, it is puzzling

that mature, uninjured airway epithelia are mitotically quiescent

(,1% of cells dividing) [48–50], as are the majority of the cells in

polarized HAE (in the G0 phase of the cell cycle). However,

recombinant adeno-associated virus (AAV; in genus Dependovirus of

the family of Parvoviridae) infects HAE apically and expresses

reporter genes [51–53]. Gene expression by recombinant AAV

requires a conversion of the ssDNA viral genome to a double-

stranded DNA form that is capable to be transcribed [54]. This

conversion involves DNA synthesis. Hence, we hypothesize that

HBoV1 employs a similar approach to synthesize its replicative

form DNA. Notably, wild type AAV infected primary HAE

apically and replicated when adenovirus was co-infected [55]. The

exact mechanism of how HBoV1 replicates in normal HAE will be

an interesting topic for further investigation.

The airway epithelium, a ciliated pseudo-stratified columnar

epithelium, represents the first barrier against inhaled microbes

and actively prevents the entry of respiratory pathogens. It consists

of ciliated cells, basal cells and secretory goblet cells that together

with the mucosal immune system, provide local defense mecha-

nisms for the mucociliary clearance of inhaled microorganisms

[56]. The polarized ciliated primary HAE, which is generated by

growing isolated tracheobronchial epithelial cells at an ALI for on

average one month, forms a pseudo-stratified, mucociliary

epithelium and displays morphologic and phenotypic character-

istics resembling those of the in vivo human cartilaginous airway

epithelium of the lung [57,58]. Recent studies have revealed that

this model system recapitulates important characteristics of

interactions between respiratory viruses and their host cells

[41,45,59–62].

In the current study, we have examined primary B-HAE

cultures obtained from three different donors. HBoV1 infection of

primary B-HAE was persistent and caused morphological changes

of the epithelia, i.e. disruption of the tight barrier junctions, loss of

cilia and epithelial cell hypertrophy. The loss of the former, plasma

membrane structures that seal the perimeters of the polarized

epithelial cells of the monolayer, is known to damage the cell

barrier necessary to maintain vectorial secretion, absorption and

transport. ZO-1, which we monitored here, is specifically

associated with the tight junctions and remains the standard

marker for these structures. Similarly, cilia play important roles in

airway epithelia, in that they drive inhaled particles that adhere to

mucus secreted by goblet cells outward [63]. HBoV1 infection

compromises barrier function, and thus potentially increases

permeability of the airway epithelia to allergens and susceptibility

to secondary infections by microbes. The observed shedding of

virus from the basolateral surface of infected primary HAE, albeit

at a lower level (,1 log lower than that from the apical surface), is

consistent with the facts that HBoV1 infection disrupted the

polarity of the pseudo-stratified epithelial barrier and resulted in

the leakage to the basolateral chamber. This explanation is also

supported by HBoV1 infection of CuFi-HAE, where disruption of

the tight junction structure was less severe and virus was released

only from the apical membrane. The induction of leakage by

HBoV1 also suggests a mechanism that accounts for the viraemia

observed in HBoV1-infected patients [5]. Further disease pathol-

ogy could be accounted for by infection-induced loss of cilia of the

airway epithelia; a lack of cilia is often responsible for bronchiolitis

[64–66]. Therefore, our study provides direct evidence that

HBoV1 is pathogenic to polarized HAE, which serves as in vitro

model of the lung [57,58]. Since HBoV1 is frequently detected

with other respiratory viruses in infants hospitalized for acute

wheezing [2,10–12], the apparent pathological changes observed

in HBoV1-infected HAE suggest that prior-infection of HBoV1

likely facilitates the progression of co-infection-driven pathogenesis

in the patient.

The kinetics of virus release from the apical chamber of HAE

infected with the progeny virus of pIHBoV1 (cloned from the

clinical Salvador1 isolate) was similar to that following infection

with the HBoV1 Bonn1 isolate, a clinical specimen [31]. We

believe that our study of HBoV1 infection of primary HAE

reproduces infection of the virus from clinical specimens. In

addition, we generated virus from a pIHBoV1-b clone, which

contains the NSVP genes from the prototype HBoV1 st2 isolate

[1]. Infection of primary B-HAE with this st2 virus resulted in a

level of virus production similar to that observed here using the

Salvador1 isolate (data not shown). We believe that our study with

the laboratory-produced HBoV1 Salvador1 represents infection of

HBoV1 of clinical specimens in HAE. The MOI used for infection

in the current study was high. However, it should be noted that

this titer is based on the physical numbers of virion particles as

there are no practical methods for determining the infectious titer

of HBoV1 preparations. It should also be taken into consideration

that extensive parvovirus inactivation occurs during the purifica-

tion process, i.e. during CsCl equilibrium ultracentrifugation [67].
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Figure 6. Analyses of HBoV1-infected CuFi-HAE. (A) At 10 days p.i., mock- and HBoV1-infected CuFi-HAEs were analyzed by IF with an anti-
(HBoV1)NS1 antibody. (B&C) At 5 days p.i., mock- and HBoV1-infected CuFi-HAEs were analyzed by Western blotting with anti-(HBoV1)NS1, NP1, and
VP1/2 antibodies as indicated. pIHBoV1-transfected HEK293 cells were used as controls. (B) The blot was reprobed sequentially with anti-NP1 and
anti-b-actin antibodies; (C) the same samples were separated and blotted with the anti-b-actin antibody. Diamonds indicate specific viral proteins
detected, and the sizes of the marker are shown. (D) CuFi-HAE was infected with HBoV1, virus was collected from both the apical and basolateral
sides at days p.i. as indicated, and quantified. Averages and standard deviations are shown. (E) At 10 days p.i., mock- and HBoV1-infected CuFi-HAE
membranes were stained with hematoxylin and eosin. Images were taken at a magnification of 660. (F) At 10 days p.i., mock- and HBoV1-infected
CuFi-HAEs were analyzed by IF with an anti-ZO-1 antibody (BD Bioscience). Nuclei were stained with DAPI. Confocal images in panels A and F were
taken at a magnification of 640.
doi:10.1371/journal.ppat.1002899.g006
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Virus infection of HAE most likely reflects HBoV1 infection of the

lung airways in patients with a high virus load in respiratory

secretions [5].

The fact that pIHBoV1 did not replicate well in undifferentiated

human airway epithelial cells (Figures 2B and 2C) indicates that

polarization and differentiation of the HAE is critical for HBoV1

DNA replication. Nevertheless, polarized NuLi-HAE, which is

derived from normal human airway epithelial cells, did not

support HBoV1 infection, but the CuFi-HAE derived from airway

epithelial cells isolated from a cystic fibrosis patient did. The CuFi-

HAE is unique relative to the others in that it retains the capacity

to develop epithelia that actively transport in Na+ but not Cl2

because of the mutation in the cystic fibrosis gene [44]. Given the

high complexity of the airway epithelium, we speculate that the

permissiveness of HBoV1 infection is dependent on various steps

of virus infection, e.g. attachment, entry, intracellular trafficking,

and DNA replication of the virus. Nevertheless, a polarized CuFi-

HAE model derived from the CuFi-8 cell line represents a novel

stable cell culture model that is providing unexpected insights into

the infection characteristics of HBoV1. Although HBoV1 infection

of CuFi-HAE reproduced disruption of the barrier tight junctions

like that seen also in primary B-HAE, the absence of virus on the

basolateral side implies that in HAE the secretion of HBoV1 is

apically polarized. We speculate that the milder damage of tight

junctions in these cells might prevent virus release from the

basolateral side of infected CuFi-HAE. Further studies will focus

on understanding the permissiveness of CuFi-HAE to HBoV1

infection and on the reason for the ease of infection of an HAE

with a cystic fibrosis phenotype.

It has been shown that HBoV1 remains detectable in the upper

airways of patients for weeks and months, even up to half a year

[68–71]. However, the mechanism behind this persistence, i.e.

whether it is due to persistent replication and shedding, passive

persistence after primary infection, or recurrent mucosal surface

contamination, has remained unknown. Our results in in vitro HAE

cultures showed that HBoV1 is able to replicate and shed from

both the apical and basolateral surfaces at least for three weeks,

supporting the notion that shedding of the virus from the airways is

a long-lasting process. This may further explain why a high rate of

co-infection, or co-detection, between HBoV1 and other respira-

tory viruses has been reported [5]. Since recombinant AAV

persists as an episome in transduced tissues, which prolongs gene

expression [72,73], it is possible that also the HBoV1 genome can

be presented as an episome [29,30] for long term expression and

replication. Apparently, the mechanism underlying this feature of

HBoV1 infection warrants further investigation. However, in

contrast to the other human-pathogenic B19V, HBoV1 does not

seem to persist in human tissues for many years [74].

In conclusion, our findings indicate that the innovative reverse

genetics system for studying HBoV1 infection that we describe

here will enable us to elucidate the mechanism of HBoV1

replication and pathogenesis in a polarized HAE. Our system

mimics natural HBoV1 infection of the in vivo human cartilaginous

airway epithelia. The pathogenesis of HBoV1 in co-infection with

other respiratory viruses and in conditions of lung diseases is a

focus of future study.

Materials and Methods

Cell culture
Cell lines and primary cells. Human embryonic kidney

293 (HEK293) cells (CRL-1573), HeLa (CCL-2) , MDCK (CCL-

34), MRC-5 (CCL-171) , LLC-MK2 (CCL-7), and Vero-E6

(CRL-1586) were obtained from American Type Culture Collec-

tion (ATCC, Manassas, VA), and were cultured in Dulbecco’s

Modified Eagle Medium (DMEM) with 10% fetal calf serum

(FCS). The cell lines originating from human airway epithelial cells

are A549 (ATCC CCL-185), BEAS-2B (ATCC CRL-9609),

16HBE14o- (obtained from Dr. Dieter Gruenert; [43]), as well

as NuLi-1 and CuFi-8 (Tissue and Cell Culture Core, Center for

Gene Therapy, University of Iowa). NuLi-1 and CuFi-8 were

immortalized from normal and cystic fibrosis human primary

airway cells, respectively, by expressing hTERT and HPV E6/E7

genes [44]. Primary Clonetics normal human bronchial/tracheal

epithelial cells (NHBE) were purchased from Lonza (Walkersville,

MD). Cells were cultured in media following instructions provided

by the supplier.

Human airway epithelium cultures. Polarized primary

HAE, termed as primary B-HAE, was generated by growing

isolated human airway (tracheobronchial) epithelial cells (three

HAE cultures were generated from different donors) on collagen-

coated, semipermeable membrane inserts (0.6 cm2, Millicell-PCF;

Millipore, Billerica, MA), and then allowing them to differentiate

at an air-liquid interface (ALI); this was carried out at the Tissue

and Cell Culture Core of the Center for Gene Therapy, University

of Iowa [44,58,75,76]. After 3–4 weeks of culture at an ALI, the

polarity of the HAE was determined based on the transepithelial

electrical resistance (TEER) using an epithelial Volt-Ohm Meter

(Millipore) and the relationship to infectability was assessed; a

value of over 1,000 V.cm2 was required for HBoV1 infection.

CuFi- and NuLi-HAE were generated following the same method

as above, but using the immortalized airway epithelial cell lines,

CuFi-8 and NuLi-1, respectively. The primary B-, CuFi-, and

NuLi-HAE were cultured, differentiated and maintained in

(50%:50%) DMEM:F12 medium containing 2% Ultroser G (Pall

BioSepra, Cergy-Staint-Christophe, France).

Isolation of virus and extraction of viral DNA
A nasopharyngeal aspirate was obtained from a child with

community-acquired pneumonia in Salvador, Brazil, who had an

acute HBoV1 infection (seroconversion, viraemia, and over 104 gc

of HBoV1 per ml of aspirate) [17]. Viral DNA was extracted

according to a method described previously [77].

Primers used and sequence amplification by the
Polymerase Chain Reaction (PCR)

The sequence of the head-to-tail junction of the HBoV1

episome suggests that HBoV LEH and REH share similarities

both in structure and sequence with that of the BPV LEH and

MVC REH, respectively [27,29]. Based on this information [28],

we designed primers to amplify the HBoV1 termini, which are

shown in Table 1 and Figure 1. The Phusion high fidelity PCR kit

(NEB, Ipswich, MA) was used following the manufactures’

instructions, to amplify the left-end hairpin (LEH) and the right-

end hairpin (REH) of HBoV1. Briefly, the DNA denaturation at

98uC for 30 s was followed by 35 cycles of: denaturing at 98uC for

10 s; annealing at 55uC for 15 s; and extension at 72uC for 30 s.

Following the final cycle, extension was continued at 72uC for

10 min. The PCR products were analyzed by electrophoresis in a

2% agarose gel. DNA bands were extracted using the QIAquick

gel extraction kit (Qiagen, Valencia, CA), and the extracted DNA

was directly sequenced at MCLAB (South San Francisco, CA),

using primers complementary to the extended sequences on the

forward and reverse amplification primers. PCR-generated DNA

was cloned in pGEM-T vector (Promega, Madison, WI), and

DNAs isolated from cultures of individual clones were subse-

quently sequenced.
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Construction of a full-length HBoV1 clone and its
mutants

Construction of the pBB vector. We first constructed a

pBBSmaI vector by inserting a linker of 59-SalI-SacII-KpnI-SmaI-

ApaI-SphI-KpnI-HindIII-XhoI-39 into a vector backbone

(pProEX HTb vector; Invitrogen) generated from the B19V

infectious clone pM20 [78] by removing all of the B19V sequence

(SalI-digestion). All cloning work was carried out in the Escherichia

coli strain of Sure 2 (Agilent, La Jolla, CA). All the nucleotide

numbers of HBoV1 refer to the HBoV1 full-length genome

(GenBank accession no.:JQ923422).

Cloning of the left-end hairpin (Figure S2B). The DNA

fragment SalI-BglII-nt93-518(BspEI)-576-XhoI-HindIII (contain-

ing the HBoV1 sequence nt 93–576), was amplified from the viral

DNA and inserted into SaII/HindIII-digested pBBSmaI, to

produce pBB2.1. Another DNA, SalI-nt1-86-BclI (containing

HBoV1 nt 1–86 sequence), was synthesized according to the

LEH sequence obtained in Figures 1A and 1B, and placed

between the SalI and BglII sites in pBB2.1, with ligation of the BclI

and BglII sites reproducing the HBoV1 sequence nt 87–92. The

resultant plasmid harboring the 59 HBoV1 nt 1–576 sequence

with an intact LEH is designated pBB-LEH.

Cloning of the right-end hairpin (Figure S2C). The DNA

fragment SalI-nt4097-4139(BglII)-5427(KasI)-ApaI (containing

the HBoV1 nt 4097–5427 sequence) was amplified from viral

DNA and inserted into SaII/ApaI-digested pBBSmaI, resulting in

pBB2.2. Another DNA fragment, ApaI-nt5460(KasI)-5543-XhoI

(containing HBoV1 nt 5460–5543 sequence) was synthesized

based on the REH sequence (Figure 1C) and placed between the

ApaI and HindIII sequences in pBB2.2, resulting in pBB-

REH(D5428–5459). The missing short fragment between the

two KasI sites encompassing nt 5428–5459 was recovered by a

synthesized KasI linker based on the REH sequence (Figure 1C)

and inserted into KasI-digested pBB-REH(D5428–5459). The

resultant plasmid harboring the 39 HBoV1 nt 4097–5543

sequence with an intact REH is designated pBB-REH.

Cloning of the pIHBoV1 (Figure S2D). The HBoV1 DNA

fragment SalI-nt1-518(BspEI)-576-XhoI, which was obtained from

SalI/XhoI-digestion of pBB-LEH, was ligated into SalI-digested

pBB-REH, resulting in pBB-LEH(BspEI/BglII)REH. The larger

fragment produced by digestion of this plasmid with BspEI/BglII

was ligated to the HBoV1 DNA fragment nt 518(BspEI)-

4139(BglII), which was amplified from the viral DNA. The final

construct containing the full-length HBoV1 (nt 1–5543) was

designated pIHBoV1.

Construction of pIHBoV1 mutants. pIHBoV1NS1(2) and

pIHBoV1NP1(2) were constructed by mutating HBoV1 nt 542

from T to A, and nt 2588 from G to A, resulting in stop codons

that lead to early termination of the NS1 and NP1 ORFs,

respectively. Similarly, pIHBoV1VP1(2) and pIHBoV1VP2(2)

were generated by mutating HBoV1 nt 3205 from T to A, and nt

3540 from T to G, disrupting VP1 and VP2 ORFs, respectively.

Transfection
Cells grown in 60-mm dishes were transfected with 2 mg of

plasmid as indicated in Figure 2; the Lipofectamine and Plus

reagents (Invitrogen/Life Technologies, Carlsbad, CA) were used

as previously described [79]. For some of the transfection

experiments, HEK293 cells were cotransfected with 2 mg of

pHelper plasmid (Agilent), which contains the adenovirus 5 (Ad5)

E2a, E4orf6, and VA genes, or infected with adenovirus type 5

(Ad) at an MOI of 5 as previously described [79].

Southern blot analysis
Low molecular weight (Hirt) DNA was extracted from

transfected cells, digested with DpnI (or left undigested) and

analyzed by Southern blotting as previously described [80].

Western blot analysis
Cells were lysed, separated by SDS-8% polyacrylamide gel

electrophoresis (PAGE), and blotted with antibodies as indicated

as previously described [81].

Production and purification of HBoV1
HEK293 cells were cultured on fifteen 150-mm plates in

DMEM-10%FCS, and transfected with 15 mg of pIHBoV1 per

dish using LipoD293 (SignaGen, Gaithersburg, MD). After being

maintained for 48 h at 5% CO2 and 37uC, the cells were collected,

resuspended in 10 ml of phosphate buffered saline, pH7.4 (PBS),

and lysed by subjecting them to four freezing (2196uC) and

thawing (37uC) cycles. The cell lysate was then spun at 10,000 rpm

for 30 min. The supernatant was collected and assessed on a

continuous CsCl gradient. In brief, the density was adjusted to

1.40 g/ml by adding CsCl, and the sample was loaded into an 11-

ml centrifuge tube and spun in a Sorvall TH641 rotor at

36,000 rpm, for 36 h at 20uC.

Fractions of 550 ml (20 fractions) were collected with a Piston

Gradient Fractionator (BioComp, Fredericton, NB, Canada), and

the density of each was determined by an Abbe’s Refractometer.

Viral DNA was extracted from each fraction and quantified with

respect to the number of HBoV1 gc, using HBoV1-specific qPCR

as described below. Those fractions containing the highest

numbers of HBoV1 gc were dialyzed against PBS, and then

viewed by electron microscope and used to infect HAE cultures.

Table 1. Sequences of PCR primers designed for amplifying the terminal hairpins of HBoV1.

Name Sequence (59-39)

FHBoV1_nt1 GTATTTTCAGGGCCTCGTCGACGTGGTTGTACAGACGCCATCTTG

RHBoV1_LEH GGAAGGCCTTGGATGTGGAAAGGCCGGATTAGATCATGCGCGC

FHBoV1_LEH CTAGGATCCGTATTTTCAGGGCCTCGTCGACTCAGTCATGCCTGCGCTG

RHBoV1_nt576 CGCAAGCTTCTCGAGTCTAGAAGCCCCAAAATGGCGATCTTCTAAAGA

FHBoV1_nt5201 CTAGGATCCGTTCCTCCTCAATGGACAAGCG

RHBoV1_nt5464 CACTGCAAGCTTGGAAGGCCTTGGATGTGGAAGCCGGCGCCTTAGTTATATAACAT

Note: Nucleotides underlined are HBoV1 sequences or sequences complementary to the HBoV1 sequence, and nucleotides shown in bold fonts are sequences
containing restriction enzyme sites and random sequences used to optimize PCR reactions and cloning.
doi:10.1371/journal.ppat.1002899.t001
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Observation by electron microscopy (EM)
The final purified virus preparation was concentrated by ,5-

fold, and adsorbed for 1 min on a 300-mesh copper EM grid

coated with a carbon film, followed by washing with deionized

water for 5 s and staining with 1% uranyl acetate for 1 min. The

grid was air dried, and was inspected on a 200 kV Tecnai F20 G2

transmission electron microscope equipped with a field emission

gun.

Virus infection
Fully differentiated primary B- (each of the three distinct

subtypes), CuFi- and NuLi-HAE were cultured in Millicell inserts

(0.6 cm2; Millipore) and inoculated with 150 ml of purified HBoV1

(16107 gc/ml in phosphate buffered saline, pH7.4; PBS) from the

apical surface (at a multiplicity of infection, MOI, of ,750 gc/cell;

an average of 26106 cells per insert). For each of the HAE, a 2-h

incubation was followed by aspiration of the virus from the apical

chamber and by three washes of the cells with 200 ml of PBS to

remove unbound virus. The HAEs were then further cultured at

an ALI.

For conventional monolayer cells, cells cultured in chamber

slides (Lab-Tek II; Nalge Nunc) were infected with purified

HBoV1 at an MOI of 1,000 gc/cell.

Immunofluorescence analysis
After HBoV1 infection, ALI membranes were fixed with 3.7%

paraformaldehyde in PBS at room temperature for 15 min. The

fixed membranes were cut into several small pieces, washed in PBS

three times for 5 min, and permeabilized with 0.2% Triton X-100

for 15 min at room temperature. The membranes were then

incubated with primary antibody at a dilution of 1:100 in PBS with

2% FCS for 1 h at 37uC. This was followed by incubation with a

fluorescein isothiocyanate- or rhodamine-conjugated secondary

antibody. Confocal images were taken with an Eclipse C1 Plus

confocal microscope (Nikon, Melville, NY) controlled by Nikon

EZ-C1 software. Primary antibodies used were anti-(HBoV1) NS1,

NP1 and VP1/2 antibodies, as reported previously [82].

For infected cells cultured in chamber slides, IF analysis was

carried out as previously described [83].

Quantitative PCR (qPCR) analysis
Virus samples were collected from both the apical and

basolateral surfaces at multiple time points. Apical washing and

harvesting was performed by adding 200 ml of PBS to the apical

chamber, incubating the samples for 10 min at 37uC and 5%

CO2, and removing and storing the 200 ml of PBS from the apical

chamber. Thereafter, 50 ml of medium were collected from each

basolateral chamber.

Aliquots (100 ml apical or 50 ml basolateral) of the samples were

incubated with 25 units of Benzonase (Sigma, St Louis, MO) for

2 h at 37uC, and then digested with 20 ml of proteinase K (15 mg/

ml) at 56uC for 10 min. Viral DNA was extracted using QIAamp

blood mini kit (Qiagen), and eluted in 100 ml or 50 ml of deionized

H2O. The extracted DNA was quantified with respect to the

number of HBoV1 gc, by a qPCR method that has been used

previously [84]. Briefly, the pskHBoV1 plasmid [82], which

contains the HBoV1 sequence (nt 1–5299), was used as a control (1

gc = 5.4610212 mg) to establish a standard curve for absolute

quantification with an Applied Biosystems 7500 Fast system

(Foster City, CA). The amplicon primers and the PrimeTime dual-

labeled probe were designed by Primer Express (version 2.0.0;

Applied Biosystems/Life Technologies) and synthesized at IDT

Inc. (Coralville, Iowa). Their sequences are as follows (GenBank:

JQ411251): forward primers, 59-GCA CAG CCA CGT GAC

GAA-39 (nt 2391 to 2408); reverse primer, 59-TGG ACT CCC

TTT TCT TTT GTA GGA-39 (nt 2466 to 2443); and PrimeTime

probe, 59 6FAM-TGA GCT CAG GGA ATA TGA AAG ACA

AGC ATC G-39 Iowa Black FQ (nt 2411 to 2441). Premix Ex Taq

(Takara Bio USA, Madison, WI) was used for qPCR following a

standard protocol. 2.5 ml of extracted DNA was used in a reaction

volume of 25 ml.

Histology analysis
On the last day of infection, the HAE on the Millicell inserts

were washed with PBS and fixed in 4% paraformaldehyde for

,30 min. The fixed membranes were cut into several small pieces,

and washed with PBS three times. Each membrane fragment was

transferred to 20% sucrose in a 15-ml conical tube and allowed to

drop to the bottom; it was then embedded vertically in

cryoprotectant OCT in an orientation that enabled sectioning of

the membrane perpendicular to the blade. Cryostat sections were

cut at a thickness of 10 mm, placed onto slides, and stained with

hematoxylin and eosin (H&E). Images were taken with a Nikon

80i fluorescence microscope at a magnification of 660.

Supporting Information

Figure S1 Sequencing of PCR DNA fragments. PCR DNA

fragments indicated by arrowheads in Figure 1D were extracted

and sequenced. A representative result of sequencing is shown in

each chromatogram. The sequences between the arrows in the

chromatograms (A–C) show the sequences which are complemen-

tary to those sequences between the arrows in the hairpin drawings

in Figure 1A–C, respectively.

(TIF)

Figure S2 Construction of a full-length pIHBoV1 clone.
(A) HBoV1 genome. The full-length genome of HBoV1 is

diagramed with structures of the left-end hairpin (LEH) and right-

end hairpin (REH) in a form of negative ssDNA from 39end to

59end. Restriction enzyme sites of BspEI and BglII in the

replicative form (RF) DNA are shown. (B) Cloning of the
LEH. PCR-amplified DNA fragments from the LEH, shown in

red, were ligated into pBBSmaI or its derivative. (C) Cloning of
the REH. PCR-amplified or synthesized HBoV1 DNA fragment

from the REH, shown in blue, were ligated into pBBSmaI or its

derivatives. (D) Cloning of the pIHBoV1. The pIHBoV1 was

constructed by ligating HBoV1 DNA nt 1–517 digested from pBB-

LEH and nt 518–4139 amplified from viral DNA extract (HBoV1

Salvador isolate) into the pBB-REH that contains HBoV1 REH

(nt 4140–5543). All the numbers are nucleotide numbers of the

HBoV1 genome (Genbank JQ923422).

(TIF)

Figure S3 Kinetics of virus release from HBoV1 infec-
tion of primary B31-11 and B29-11 HAE. Primary B-HAE

(donor B31-11 or B29-11) was infected with purified HBoV1 at an

MOI of ,750 genome copy numbers (gc)/cell. Virus was collected

from the apical chamber (A), or from both the apical and

basolateral chambers (B) for detection of nuclease-resistant viral

gc. Averages and standard deviations are shown. ND, not

determined.

(TIF)

Figure S4 Immunofluorescence analysis of HBoV1-
infected HAE polarized from NuLi-1 cells (NuLi-HAE).
NuLi-1 cells were polarized by growth at an ALI for 4 weeks on

Millicell inserts of 0.6 cm2, until a transepithelial electrical

resistance (TEER) of .500 V.cm2 was detected. Polarized HAE
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was infected with purified HBoV1 at an MOI of ,750 gc/cell. At

10 days p.i., infected NuLi-HAE was fixed and stained with an

anti-(HBoV1)NS1 antibody. Nuclei were stained with DAPI and

cells were visualized by confocal microscopy at a magnification of

640.

(TIF)
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(2011) Life-threatening respiratory tract disease with human bocavirus-1

infection in a four-year-old child. J Clin Microbiol 50: 531–532.

24. Meriluoto M, Hedman L, Tanner L, Simell V, Makinen M, et al. (2012)

Association of Human Bocavirus 1 Infection with Respiratory Disease in
Childhood Follow-up Study, Finland. Emerg Infect Dis 18: 264–271.

25. Tijssen P, Agbandje-McKenna M, Almendral JM, Bergoin M, Flegel TW, et al.
(2012) Family Parvoviridae. In: King AM, Lefkowitz E, Adams MJ, Carstens

EB, editors. Virus Taxonomy: Ninth Report of the International Committee on

Taxonomy of Viruses. London: Elsevier. pp. 405–425.

26. Qiu J, Cheng F, Johnson FB, Pintel D (2007) The transcription profile of the

bocavirus bovine parvovirus is unlike those of previously characterized
parvoviruses. J Virol 81: 12080–12085.

27. Sun Y, Chen AY, Cheng F, Guan W, Johnson FB, et al. (2009) Molecular
characterization of infectious clones of the minute virus of canines reveals unique

features of bocaviruses. J Virol 83: 3956–3967.
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