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Abstract

Parvoviruses exploit transferrin receptor type-1 (TfR) for cellular entry in carnivores, and specific interactions are key to
control of host range. We show that several key mutations acquired by TfR during the evolution of Caniforms (dogs and
related species) modified the interactions with parvovirus capsids by reducing the level of binding. These data, along with
signatures of positive selection in the TFRC gene, are consistent with an evolutionary arms race between the TfR of the
Caniform clade and parvoviruses. As well as the modifications of amino acid sequence which modify binding, we found that
a glycosylation site mutation in the TfR of dogs which provided resistance to the carnivore parvoviruses which were in
circulation prior to about 1975 predates the speciation of coyotes and dogs. Because the closely-related black-backed jackal
has a TfR similar to their common ancestor and lacks the glycosylation site, reconstructing this mutation into the jackal TfR
shows the potency of that site in blocking binding and infection and explains the resistance of dogs until recent times. This
alters our understanding of this well-known example of viral emergence by indicating that canine parvovirus emergence
likely resulted from the re-adaptation of a parvovirus to the resistant receptor of a former host.
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Introduction

The interactions between viral pathogens and their hosts present

a longstanding evolutionary challenge for both participants. Viruses

are continuously selected for improved replication and spread in

host populations, while hosts are reciprocally selected for increased

resistance to infection. Thus, the viruses that exist today have been

shaped by a sustained interplay with hosts over long periods of

evolutionary time [1]. Much attention has been focused on the

evolution of viruses, but less is known about the corresponding

variation and selection of relevant host genes. However, it is clear

that pathogen-driven selective pressures can also drive genetic

change in the host genes that control susceptibility and disease

progression. The analysis of these evolutionary interplays helps

elucidate the factors that control viral emergence, defined here as

the establishment of an existing virus in a novel host species.

Canine parvovirus (CPV) arose in the mid-1970s, and spread

world-wide in 1978 as the cause of a new disease pandemic in dog,

and that virus was clearly a variant of feline panleukopenia virus

(FPV). CPV has continued to circulate among dogs throughout the

world, causing significant clinical disease [2]. Parvoviruses are

single-stranded DNA viruses, and the CPV- and FPV-like viruses

are ubiquitous in nature, infecting most animals among the order

Carnivora [3]. Viruses of the family Parvoviridae have circulated

widely amongst many animal hosts for millions of years, as was

revealed through the identification of ancient parvovirus genomes

and genome fragments captured by vertebrate genomes tens of

millions of years ago [4–6]. A group of parvoviruses closely related

to feline panleukopenia virus (FPV) infects many hosts among the

order Carnivora (carnivores), but domestic dogs, wolves, coyotes

and some related carnivores resisted infection by those viruses until

the emergence of CPV in 1978 [7]. The emergence of CPV in

dogs was associated with the virus acquiring the ability to bind the

canine transferrin receptor type-1 (TfR) [8].

While parvoviruses have certainly been evolving and changing

over evolutionary time, it seems that they could also be providing a
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selective pressure that would conversely shape the evolution of key

host genes that modulate their success, such as the TFRC gene that

encodes TfR. Indeed, there is clear evidence of selection on host

receptors in other viral-host systems, including MHC [9]; CD4

[10], and Toll-Like Receptors [11], and we wondered if the same

could be true for TfR. This is important to address because viral

and host controls of infection sit at the heart of our understanding

of how novel viruses can emerge.

The TfR is a dimeric type II membrane protein, where each

monomer is comprised of carboxypeptidase-like, helical, and

apical domains, as well as stalk, transmembrane and cytoplasmic

sequences. The normal function of TfR is to bind iron-loaded

transferrin (Tf) via the carboxypeptidase-like and helical domains

[12,13] and mediate clathrin-mediated endocytosis. The TfR also

binds to the hemochromatosis (HFE) protein which competes with

the binding of Tf to regulate the uptake of iron from the intestine

[14]. In our previous studies of CPV and FPV binding to the feline

and canine TfR, apical domain residues were seen to be critical for

controlling parvovirus binding [15,16]. One key mutation in this

domain, present in dog TfR, introduces a novel N-linked

glycosylation site at Asn384 of that TfR (equivalent to feline

TfR Lys383). This glycan, together with other sequence determi-

nants in the apical domain, collectively create the block to FPV

binding observed for dog cells, with the Asn384 mutation having

the greatest effect [15]. As such, changing only residue 384 in the

canine TfR from Asn to the feline encoded Lys allows efficient

FPV binding, while the replacement in the equivalent position in

the feline TfR reduces but does not eliminate FPV binding

[15,16]. However, in support of additional amino acid substitu-

tions in the apical domain of TfR also being important,

substitution of apical domain residue Leu221 in the feline TfR

also reduce virus binding and cell infection by CPV and FPV [16].

Those studies raise questions about how TfR has evolved to

modulate its propensity to mediate infection. However, little is

know about the evolutionary history of the TFRC gene among

animals in the order Carnivora, many of which are hosts to viruses

closely related to the FPV. Two major suborders are present

within the Carnivora, the Feliformia and the Caniformia, and

those represent 16 families in total [17]. Confirmed or likely

parvovirus infections have been reported for members of most

families, although less commonly or not at all among pinnipeds

[18].

Here we examined the diversity of TFRC gene sequences among

some hosts distributed across the order Carnivora and find

evidence for positive selection of this gene, more specifically in the

Caniformia. Some variable sites, including some that were under

positive selection, are located in the structural region of the apical

domain that influences parvovirus binding. When some of these

historical mutations were introduced into the apical domain of

TfR they reduced binding by parvoviruses, making parvovirus a

plausible selective force for the retention of these mutations when

they occurred in nature. This suggests that there may have been

viral pressure on this receptor before CPV emerged, some of

which was exerted by ancient parvoviruses. A glycosylation site

mutation present in the TfR of dogs that appears to protect dogs

against FPV infection arose in a common ancestor of dogs and

coyotes, suggesting that it is a recent change in that lineage.

Results

Acquisition of protein-altering mutations in the TfR apical
domain in dogs and closely related species

Because of the recent emergence of CPV, it was previously

thought that parvoviruses have been infecting Feliforms and some

Caniforms for much longer than they have infected domestic dogs

and closely related coyotes and wolves. We therefore wished to

examine how the evolution of TfR reflected this history of

infection in these different species. The sequences of the complete

TFRC genes from 17 different carnivores, and of the apical domain

from Otocyon megalotis (bat-eared fox), were determined by cDNA

sequencing or obtained from sequence databases (Table 1). These

orthologous sequences differed by up to 10% at the nucleotide

level, but were easily aligned so that patterns of non-synonymous

and synonymous mutational accumulation could be analyzed. The

dN/dS ratio captures the number of non-synonymous mutations

present per non-synonymous site (dN) compared to the number of

synonymous mutations present per synonymous site (dS) [19].

Most protein-encoding genes accumulate far fewer non-synony-

mous mutations than synonymous mutations (dN/dS%1) due to

selective constraints [1]. In evolutionary arms race scenarios such

as the ones that can develop between hosts and viruses, continued

selection of each party for evolutionary dominance can cause

accelerated evolution of proteins involved in the host-virus

interaction. In such situations, the recurrent positive selection for

non-synonymous mutations that provide a selectable advantage to

each party results in relevant genes acquiring a dN/dS.1

signature [20].

Because the apical domain is the binding site for parvoviruses,

we first analyzed the evolutionary history of this domain by

calculating the dN/dS value on each branch of the tree (Figure 1).

Surprisingly, given that CPV is thought to have been in dogs for

less than 40 years, the branch leading to dog has the highest value

of dN/dS on the entire tree (dN/dS = 1.7). On that branch the

region of TFRC encoding the apical domain is estimated to have

accumulated 8 non-synonymous and 2 synonymous changes since

dog and red fox shared their last common ancestor 9 to 10 million

years ago [17,21,22]. In contrast, the apical domain encoding

region of the red fox TFRC has acquired 0 non-synonymous

changes and 2 synonymous changes over the same time period. To

investigate this further, we examined the apical domain region of

the TFRC genes of other Caniform species closely related to

domestic dogs, the coyote, black-backed jackal, and bat-eared fox

(Figure 1B). This provided increased resolution to the timing of the

acquisition of the 8 non-synonymous mutations that separate the

TfR apical domains of dog and red fox, showing that they

accumulated along the long lineage leading to dogs (red branches

labeled 1–3 in Figure 1B). The specific non-synonymous TfR

mutations predicted to have occurred along key branches in the

Author Summary

Parvoviruses in cats and dogs have been studied as a
model system to understand how viruses gain the ability
to infect new host species. By studying the evolution of
the transferrin receptor, which the virus uses to enter a
cell, we discovered that the ancestors of dogs were likely
infected by a parvovirus millions of years ago until they
evolved and became resistant; this was caused by their
transferrin receptor changing so it no longer bound the
virus. When a variant virus that infects dogs emerged in
the 1970s, it had adapted to overcome this block. This
story suggests that diseases which were once eliminated
from a species can evolve and regain the infectivity for that
host, therefore having high potential to be emerging
diseases. We identified features of the receptor that were
important to the evolution of this host-virus interaction
and confirmed their role in regulating virus binding in cell
culture.

An Ancient Arms Race between Parvoviruses and TfR
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genus Canis (branches 1,2,3) are listed below the phylogenetic tree

(Figure 1B). These include K384N (canine TfR numbering), which

resulted in the novel glycosylation in the apical domain of the

canine TfR which controls FPV binding [15]. Thus, the greatest

rate of protein evolution observed in the apical domain occurred

on the branches leading to dogs and their closest ancestors, species

that are thought to have harbored parvoviruses for only around 36

years.

Positive selection of the TFRC gene in carnivores and in
Caniforms

The accelerated accumulation of non-synonymous mutations on

the lineage leading to dogs could simply reflect relaxed selection on

the apical domain of TfR in those species. In order to test the

hypothesis that TFRC has evolved under positive selection for non-

synonymous mutations, the sequences were fit to models that both

allow and disallow some codons to have evolved under positive

selection (dN/dS.1) using PAML [23,24]. Null models were

rejected in favor of models of positive selection in an analysis of all

full-length carnivore sequences, both with and without the horse

TFRC as an outgroup sequence (p,0.001 for both analyses;

Table 2). In these analyses, between 9 and 14% of codon sites were

assigned to a dN/dS class of approximately 2.0, indicating that

non-synonymous mutations have been fixed at a rate approxi-

mately twice that of synonymous mutations at these codon sites.

These rapidly evolving codon positions are listed in the final

column of Table 2.

We then analyzed the evolution of TFRC sequences from

Feliform and Caniform species separately. In an analysis of the

Caniform TFRC sequences (7 species), the null model could be

rejected in favor of a model of positive selection (p,0.001;

Table 2). Interestingly, although fewer codon sites were identified

as evolving under positive selection (only 5% of sites), those had a

higher dN/dS value (4.0) than when Feliforms had previously

been included in the analysis. When Feliform TFRC sequences

were analyzed separately, the null model of could not be rejected

in favor of a model of positive selection (p = 0.23; Table 2). Even

though more Feliform sequences were analyzed than in the

Caniforms-only analysis (10 versus 7 species), the Feliform species

analyzed are less diverged from each other and thus the tree length

of this dataset was only 0.55 (Table 2). The optimal tree length for

PAML analysis has been shown to be ,1 [25], so the lack of

support for positive selection in this group must be considered with

that in mind. To formally test the hypothesis of Caniform-specific

positive selection, we analyzed our full dataset with a ‘‘branch-site’’

model of evolution [26] to determine if there are codon positions

evolving under positive selection specifically in the Caniform

clade. This analysis supported caniform-specific positive selection

(p,0.006, Table S1), consistent with the higher dN/dS value for

the class of positively selected codons that was observed when

Feliforms were removed in the previous analysis. These data show

that TFRC has evolved under positive selection during the

speciation of Caniforms, particularly in species closely related to

modern dogs.

Reconstructed evolutionary adaptations at positively
selected sites in the TfR apical domain support an
ancient arms race between parvoviruses and TfR

We next wished to test whether the variable sites in TfR affected

parvovirus binding, and therefore whether ancestors of these

viruses could have been responsible for driving a least some of the

rapid evolution observed in TfR. Many positively selected codons

were identified in the TFRC sequences (Table 2), and they were

mapped onto the crystal structure of the human TfR [27,28,29]

(Figure 2). We found seven residues under positive selection in the

apical domain, which is the primary binding site for FPV and CPV

Table 1. Host species examined in this analysis.

Common name Scientific name Source of sequence Region sequenced Accession number

Cat Felis catus [43] Coding sequence NM_001009312

Jungle cat Felis chaus Frozen primary culture Coding sequence JN887439

Pallas’s cat Otocolobus manul Frozen primary culture Coding sequence JN887440

Asian leopard cat Prionailurus bengalensis Frozen primary culture Coding sequence JN887441

Cougar Puma concolor Frozen primary culture Coding sequence JN887442

Canada lynx Lynx canadensis Frozen primary culture Coding sequence JN887443

Ocelot Leopardus pardalis Frozen primary culture Coding sequence JN887444

Caracal Caracal caracal Frozen primary culture Coding sequence JN887445

Clouded leopard Neofelis nebulosa Frozen primary culture Coding sequence JN887446

Lion Panthera leo Frozen primary culture Coding sequence JN887447

Raccoon Procyon lotor Frozen tissue Coding sequence JN600499

Mink Neovison vison Immortalized cell line Coding sequence JN887448

Giant Panda Ailuropoda melanoleuca [44] Coding sequence NW_003217444

Red fox Vulpes vulpes Primary culture in TRIzol Coding sequence JN887449

Bat-eared fox Otocyon megalotis Frozen tissue Apical domain JN967655

Black-backed jackal Canis mesomelas Frozen tissue Coding sequence JN967654

Coyote Canis latrans Frozen tissue Coding sequence JN887450

Dog Canis lupus familiaris [8] Coding sequence NM_001003111

Horse Equus caballus [46] Coding sequence NM001081913

TFRC sequences were determined from cDNA prepared from mRNA isolated from the samples indicated.
doi:10.1371/journal.ppat.1002666.t001

An Ancient Arms Race between Parvoviruses and TfR
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Figure 1. Analysis of dN/dS along each branch of the carnivore TFRC phylogeny. A) dN/dS was calculated along each branch of the
carnivore phylogeny. In this analysis, only the apical domain was analyzed. The number of estimated non-synonymous and synonymous DNA
mutations that have occurred along each branch are shown in parentheses (N:S) after the dN/dS value. B) A secondary analysis was performed with
additional canid sequences, and the relevant clade is shown. The lineage leading to dog is highlighted with red branches. Below the phylogeny, key
mutations predicted to have occurred along the branches leading to dog (branches 1–3) are shown.
doi:10.1371/journal.ppat.1002666.g001

Table 2. PAML analysis of the carnivore TFRC gene.

Dataseta 2Dlb p-valueb dN/dSc % sitesc Tree lengthd dN/dS.1 Codonse

Caniform+Feliform 13.8 p,0.001 1.9 14% 0.79 56H, 111G**, 112T, 120T, 124F**,
145S**, 150T**, 155W**, 181R, 184E**,
185F**, 190S**, 207Q**, 216E, 218D**,
301V, 304R**, 379S**, 381K**, 411R,
448L**, 502S**, 582L**, 585N, 587N**,
588Q**, 635M**, 733K

Caniform, Feliform, +Horse outgroup 20.8 p,0.001 2.5 9% 1.1 145S, 155W, 190S, 304R, 379S**, 448L,
502S, 582L**, 585N, 587N

Caniform+Horse outgroup 26.8 p,0.001 4.0 5% 0.92 145S, 190S, 304R, 379S, 582L, 585N,
587N

Feliform+Horse outgroup 1.4 p = 0.23 - - 0.55 -

a)Datasets consisted of the aligned sequences of Felis catus, Felis chaus, Otocolobus manul, Puma concolor, Lynx canadensis, Leopardus pardalis, Caracal caracal, Neofelis
nebulosa, Prionailurus bengalensis, Panthera leo, Canis lupus familiaris, Canis latrans, Canis mesomelas, Vulpes vulpes, Neovison vison, Procyon lotor, and Ailuropoda
melanoleuca, or the indicated subset of these. In some cases, the sequence from horse (Equus caballus) was used as an outgroup.
b)Twice the difference in the natural logs of the likelihoods (2Dl) of the two models (M8a-M8) being compared. The p-value indicates the confidence with which the null
model (M8a) can be rejected in favor of the model of positive selection (M8).
c)dN/dS value of the class of codons evolving under positive selection in M8, and the percent of codons falling in that class.
d)The tree length is the number of substitutions per site along all branches in the phylogeny. It is calculated as the sum of the branch lengths, and is a representation of
total diversity in the dataset.
e)Codons assigned to the class evolving under positive selection in M8 with a posterior probability .0.95 by naive empirical Bayes (NEB) analysis (** p.0.99).
Coordinates correspond to the dog protein.
doi:10.1371/journal.ppat.1002666.t002

An Ancient Arms Race between Parvoviruses and TfR
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(Figure 2A). Interestingly, of those seven residues, three (379S,

218D, 304R (canine numbering)) have experienced a non-

synonymous mutation on the lineage leading to dog during the

9 to 10 million years since the last common ancestor of fox and

dogs (Figure 1B).

Sites of positive selection are also identified on other parts of the

protein, which may be the result of selection by other pathogens,

extant or extinct. Indeed, in rodents, two distinct viruses, New

World arenaviruses and the retrovirus MMTV, bind the TfR

receptor on distinct interaction interfaces [28,30,31]. Outside the

apical domain, three features were observed which contained

residues under positive selection (Figure S1). First, several residues

of the stalk region were under selection in Caniformia; O-linked

glycosylation of this region regulates proteolytic cleavage of the

stalk and release of a soluble ectodomain [32,33]. Second, the aI-3

helix, whose function is not yet known, contains a cluster of

selected residues. Third, the aII-9 helix contains four residues

under selection; mutation of this helix in a previous study reduced

FPV infection but not binding [16]. The aII-9 helix lies under a

disordered apical domain loop which has been implicated in

parvovirus binding, and future structural studies could reveal

whether these residues could be involved in binding to this virus.

Signatures of positive selection were also detected in other, isolated

residues. For example, a methionine at residue 635 in the helical

Figure 2. The positions of the positively selected residues in the TfR structure. A) A listing of the TfR residues in the apical domain under
positive selection as revealed by PAML analysis, showing the positions in the different TfRs, and the alternative residues found. B) Residues found to
be under positive selection mapped in red onto the crystal structure of the human TfR ectodomain, and those in the apical domain were labeled with
the corresponding feline TfR coordinates [28]. The 3 domains of the ectodomain are shown in green (apical domain), blue (protease-like domain), and
yellow (helical domain). Strands of the apical domain b-sheet which influence virus binding are labeled. Some residues under positive selection are
close to the host-range determinant (feline 383/canine 384) (shown in black) and the leucine at residue 221 (shown in orange) which can be mutated
to block capsid attachment, and to discriminate between FPV and CPV in vitro [15,16].
doi:10.1371/journal.ppat.1002666.g002

An Ancient Arms Race between Parvoviruses and TfR
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domain is near residues involved in Tf and HFE binding, and

canine residue 150 aligns next to human polymorphism S142G

which is associated with type 2 diabetes [34,35]. Further studies

would be required to assign a function to any residues under

positive selection outside the apical domain.

To address the possibility that an ancient arms race with

parvoviruses has been responsible for the positive selection of

TFRC, we tested whether the changes of the positively selected

residues in the apical domain of TfR alter parvovirus binding.

Three of the seven sites of positive selection are located in surface-

exposed loop regions near the border of the apical and protease-

like domains. One of these (T300; feline coordinate) was mutated

in a previous study and reduced parvovirus binding and infection

[16]. Four of the positively selected residues are located within two

adjacent b-turns comprising the lateral tip of the apical domain,

the bII-1 to bII-2 turn and the bII-7b to bII-8 turn (Figure 2B). In

previous studies, residues of the bII-1 to bII-2 turn were mutated

to alanines with no effect [15,16]. Two sites under positive

selection are located in or adjacent to the bII-7b to bII-8 turn.

This turn is also close to the glycosylation site mutation (residue

384 in the canine TfR (383 in the feline TfR); black in Figure 2B),

a critical determinant in controlling specific binding of FPV or

CPV capsids. When this turn was mutated previously, many of the

changes prevented cell-surface expression [15,16]. Because no

information existed on the bII-7b to bII-8 turn, we focused our

attention on this structural feature using evolutionarily-informed

substitutions to solve the problem of expression.

To test the functional affect of the observed mutations,

mutations were made in the background of the feline TfR since

this receptor can be utilized by both FPV and CPV [8,36], so it

can serve as a platform for testing Caniform-specific evolutionary

adaptations. We mutated three residues within the bII-7b to bII-8

turn in the feline TfR, as predicted from homology modeling of

the feline receptor onto the human TfR structure (positions 378,

379, and 380 (feline numbering)) to each three-residue combina-

tion found among the carnivore species for which we had

sequences (Figure 3). Some of these recapitulate key mutations that

were acquired by lineages in Feliformia (Pallas cat, puma, and

lion), while others were mutations acquired in lineages in

Caniformia (mink, fox, and coyote) (Figure 3). After expressing

each mutant TfR on TRVb cells, they were tested for binding of

CPV and FPV (measured at 4uC), or for binding and uptake

(measured at 37uC) (Figure 3A and B). In a previous study in CHO

cells (from which TRVb are derived), it was shown that holding

cells at 4uC inhibited uptake in an assay modeling virus-cell fusion

[37]. An antibody against the conserved cytoplasmic tail of the

receptor was used to verify that each mutant TfR expressed to

similar levels (Figure S2), and Tf binding was not significantly

different between the various mutant TfRs (results not shown).

Interestingly, several of the mutational combinations tested

showed reduced parvovirus binding and uptake, consistent with

the idea that naturally occurring mutations could have been

selected for this purpose (Figure 3A and B). Mutations that

represented combinations from Caniform species had bigger

effects on binding to both viruses than those from other Feliform

species.

Importantly, this indicates that there are effects from mutational

differences other than the glycosylation site (Asn 384 in canine

TfR) that distinguish the Feliform and Caniform TfRs with regard

to virus interactions. Caniform-specific mutations reduced bind-

ing, consistent with these mutations providing an adaptive

advantage against virus infection. However, the binding patterns

seen were similar for both CPV and FPV, indicating that these two

viruses interact with a common region of the receptor, although

Figure 3. Determining the effects of varying residues in the
feline TfR apical domain on parvovirus binding. CPV (A) or FPV
(B) and Tf were incubated with TRVb cells expressing receptors with
different combinations of the residues 378, 379, and 380 (feline TfR
numbering). The name of one host species which contains the
combination of residues shown is also given. Ligands were incubated
with the cells at 37uC (white) or 4uC (black). Fluorescence of the labeled
capsid was divided by fluorescence of the bound Tf to account for
differential receptor expression. The mean of this ratio among all
receptor-expressing cells was evaluated for each of three trials. The mean
and standard deviation of the three trials is shown. Brackets connect
groups of receptors that were statistically different in pairwise
comparisons by Tukey’s HSD at a= 0.05; i.e. samples not covered by a
bracket did not differ at the a= 0.05 level in any comparisons. C) Effects
of variant residues in the feline TfR on FPV infection. Cells expressing
exogenous TfR with different three-amino acid combinations at residues
378–380 were inoculated and the ratio of infected cells (expressing NS1)
and those expressing TfR is shown. The expressed receptors were
compared for infection percentage by fitting a generalized linear mixed
model to the binomial data and considering replication as a random
effect, and those differed at the p = 0.034 level. Only one pairwise
comparison was statistically significant after controlling for multiple
testing by the Tukey-Kramer method: 34% of cells expressing TfR
containing QNR (as seen in the mink TfR) were infected by FPV, while 26%
of cells containing RNS (as Pallas’ cat) were infected.
doi:10.1371/journal.ppat.1002666.g003

An Ancient Arms Race between Parvoviruses and TfR
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this is perhaps not surprising given the these two viruses are .99%

identical in sequence [38]. We also tested for FPV infection of cells

expressing these mutant receptors, and only small differences were

observed, from a minimum of 26% to a maximum of 34%

(Figure 3C), and the biological relevance of the differences is

unclear. However, an ancient arms race between TfR and

parvoviruses is also supported by the observation that the

complementary region in the parvovirus capsid associated with

receptor binding shows strong evidence of positive selection

[38,39].

A glycosylation site in the TfR apical domain potently
inhibited infection by FPV-like viruses

The N-linked glycosylation site in the apical domain of the

canine TfR (at position 384 in that sequence) is critical for

preventing FPV binding and infection of canine cells and dogs

[36]. Among the carnivore species surveyed, only the domestic dog

and coyote TFRC sequences encoded an Asn at this position, and

we assume that it predates their speciation. However, the TFRC

sequence of the closely related black-backed jackal does not possess

this mutation. This allowed us to present the hypothesis that this

single mutation could have been potent enough to end the arms

race and prevent infection of the ancestors of dogs by parvoviruses

for millions of years, until the emergence of CPV in 1978

(Figure 1B). We therefore introduced the Lys to Asn change into

codon 384 of the black-backed jackal TfR, which diverged just

before the acquisition of this K384N and four other non-

synonymous mutations found in dogs and coyotes. In a previous

study in which TfR was expressed in TRVb cells, the Asn to Lys

change was introduced into a wild type canine TfR background

and resulted in a gel shift consistent with the loss of a glycan at this

site, so the mutated jackal TfR should be glycosylated in this

system [15]. As can be seen in Figure 1B, there are no mutational

differences in the TfR apical domain between the black-backed

jackal and the most recent common ancestor of this jackal and the

domestic dog, so the jackyl sequence can be thought of as an

ancestral representation of the apical domain as it existed before

this glycan-introducing mutation appeared. Cells expressing wild-

type jackal TfR bound both FPV and CPV capsids, and were also

susceptible to infection by both viruses (Figure 4, Figure S3). When

the black-backed jackal TfR with the K384N change was tested,

that showed significant reductions in FPV binding, uptake, and

infection compared to the wildtype jackal or the feline TfR

(Figure 4). However, these levels, while low, were still higher than

seen for the wildtype canine TfR (Figure 4), indicating an

additional role of other sequence changes in the canine TfR in

controlling binding and infection by FPV. The K384N mutation

in the jackal receptor did not affect CPV as much as FPV in any of

Figure 4. Effect of Lys or Asn at position 384 in the black-backed jackal TfR on FPV and CPV binding and infection, compared to
feline or canine TfRs under the same conditions. A) Fluorescently labeled CPV or FPV and Tf were bound to cells expressing empty vector,
feline TfR, canine TfR, wild-type jackal TfR, or Lys384Asn mutant jackal TfR at 37uC. The binding of FPV to the 384Asn black-backed jackal TfR exhibits
the profile of CPV binding for canine TfR on multiple occasions [15,16]. B) Fluorescently labeled FPV or CPV capsids were incubated with cells
expressing feline TfR, canine TfR, wild type or mutant black-backed jackal TfR at 37uC. The binding was compared to that of fluorescently labeled Tf.
C) Cell expressing these receptors were inoculated with FPV or CPV, and then infection measured by staining for the parvoviral NS1 expression, and
the expression of TfR determined by staining for the cytoplasmic tail of the receptor. Error bars = mean 61SD of three replicates. The wild-type and
mutant black-backed jackal receptors were compared by fitting a generalized linear mixed model to the binomial data and considering replication as
a random effect; * indicates statistically significant difference in frequency of binding or infection.
doi:10.1371/journal.ppat.1002666.g004
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the assays, and it is known that CPV successfully compensates for

this novel glycosylation in the TfR to allow infection of dog cells

[15,36].

Discussion

Here we show that there has been significant adaptive evolution

of the host TFRC gene over the ,54 million years of evolution of

the members of the order Carnivora, and particularly in the

Caniforms. One of the suggestions of this work is that parvoviruses

with properties similar to those infecting hosts now were also

infecting them millions of years ago, which has implications for

parvovirus in the new field of ‘‘paleovirology,’’ the study of ancient

viruses [40]. Natural selection has sampled a number of mutations

in TfR over evolutionary time, and by introducing these into the

background of the feline TfR we showed that some of those likely

modified parvovirus interactions when they occurred. Dogs,

coyotes and wolves were not infected by the FPV-related viruses

until CPV emerged in the mid-1970s, and we therefore expected

that the TFRC orthologs from those hosts would show the lowest

amount of variation in the region of the apical domain which

contacts the parvovirus capsid. We were surprised to find that the

lineage leading to dogs showed a relatively rapid acquisition of

non-synonymous mutations, most likely during the period between

about 9 and 3 million years ago [22]. One of these mutations

introduced a novel glycosylation site at residue 384 in the canine

TfR, and that receptor was subsequently able to resist binding and

infection by the FPV-like viruses, as illustrated by the reconstruc-

tion of this evolutionary event in the background of the jackal

receptor. The sequence of the black backed jackal was very close

to that of the ancestor of the lineage leading to dogs, and therefore

this was very similar to the event that arose in the common

ancestor of these hosts. The appearance of the K384N variation in

the lineage leading to dogs, wolves, and coyotes likely occurred

around less than six million years ago, and that may have been a

potent enough mutation to inhibit parvovirus infection and

extinguish the arms race. CPV subsequently arose when an

FPV-like virus acquired mutational changes that made it able to

efficiently infect cells expressing TfR with the canid-specific

glycosylation site [8,15].

Glycans play an important role in the biology of many pathogen

receptors, and this study yields the new perspective that these

glycans might sometimes be adaptively gained during host-

pathogen arms races. One idea is that post-translational modifi-

cations such as glycans may provide physical distance between

pathogen and receptor, explaining why mutations that introduce

new glycosylation sites can be so potent. This also modifies our

previous understanding of this well-known example of viral

emergence, introducing the idea that canine parvovirus was a

re-adaptation of the virus to the resistant receptor of a former host.

Selection on the TfR likely resulted in both the reduced binding

to FPV-like ancestors through the acquisition of non-synonymous

mutations, and the complete resistance through acquisition of the

novel glycosylation site mutation. That resistance was clearly

overcome in the 1970s when the CPV-ancestor gained the small

number of capsid mutations that re-established binding of the

canine TfR, allowing the emergence of CPV as a new pandemic

pathogen. Therefore, the CPV host-switching event was the re-

adaptation of a pathogen that had previously infected the

ancestors of dogs. One question is why CPV emerged only

recently, given the length of time that dogs have apparently been

resistant. The size of the dog population has increased significantly

in the ,10,000 to 20,000 years since they were domesticated, and

it is possible that CPV-like viruses emerging before dog

domestication would not have maintained sustained transmission

up to the present.

It is difficult to connect the host evolution occurring over

geological timescales with the more rapid evolution of the viruses.

This parvovirus model therefore provides a particularly clear

description of both the host and viral sides of a long-standing

interaction. An uncertainty in all studies of this type is a lack of

knowledge of the viruses or other pathogens that were responsible

for the selection that occurred millions of years ago. However,

integrated viral sequences in various vertebrate genomes show

definitively that related ancestral parvoviruses were infecting

mammals millions of years ago [4,5,6]. While these viral sequences

are 40–60% or more diverged from modern viruses in amino acid

sequence, it is plausible that ancient parvoviruses could have

bound the TfR and imposed the selection seen. Could an FPV-like

ancestor have imposed a sufficiently strong pressure on a host

population to select for variants of this key factor involved in

susceptibility to infection and disease? This appears to be likely

based on the few studies that have examined the effects of FPV on

wild populations, where losses of up to 90% of the young each year

may be due to these infections [18,41,42].

After mutations reducing pathogen infection become widely

distributed in a host population, the development of viral

adaptation to those changes is to be expected, resulting in the

development of an evolutionary arms race. For viruses this has

been seen in the cases of retroviruses and the cellular factors that

control their infection, and in the selection of viral-controlling

immune properties of the hosts and their viral countermeasures.

Although the rates of mutation of hosts and their viruses are many

thousand-fold different, the complexity of the processes required to

overcome the host changes may cause significant delays in the

acquisition of the necessary combinations of mutations [1]. In the

case examined here, it may have taken millions of years for the

FPV-like viruses to overcome the virus-blocking adaptations in the

canine TfR, indicating the complexities of the biological and

evolutionary mechanisms involved in host shifting even when only

a small number of changes in the virus are required.

Methods and Materials

Isolate collection and sequencing
We examined a total of 19 TfR sequences (Table 1). Of those,

we determined the sequences of the TFRC gene open reading

frame of 14 host species, as listed in Table 1. In 13 cases, RNA was

isolated from frozen primary cultures of cells, from frozen tissues,

or from immortalized mink cells (the CCL64 cell line) using an

RNeasy kit (QIAGEN Inc., Valencia, CA). RNA was isolated from

Vulpes vulpes (red fox) tissue which had been frozen in TRIzol by

the manufacturer’s protocol (Invitrogen, Carlsbad, CA). One-step

RT-PCR was performed using SuperScript reverse transcriptase

and Platinum Taq DNA polymerase (Invitrogen), using primers in

the 59 and 39 non-translated regions of the TfR mRNA. PCR

products were purified using a QIAquick kit (QIAGEN) and either

directly sequenced or cloned into the plasmid pCR-2.1-TOPO,

and the cloned fragment sequenced.

Sequence analysis
In addition to the 14 sequences determined here, we analyzed

previously published Felis catus and Canis lupus familiaris TFRC

sequences [8,43] as well as the Giant Panda (Ailuropoda melanoleuca)

TFRC derived from the panda genome project [44]. The raccoon

(Procyon lotor) TFRC sequence was obtained from a raccoon cell line

and from a raccoon tissue sample [45], while the horse (Equus

caballus) TFRC sequence used as an outgroup was previously
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PLoS Pathogens | www.plospathogens.org 8 May 2012 | Volume 8 | Issue 5 | e1002666



published [46]. The multiple sequence alignment generated for

TFRC was analyzed for positive selection with the ‘‘codeml’’

program in PAML [24]. This offers several models for gene

evolution, some where no codons are allowed to evolve with dN/

dS.1 (NSsites models M1a, M7 and M8a), and others where

positive selection of some codons is allowed (NSsites models M2a

and M8). A likelihood ratio test allows comparison of positive

selection models to null models.

Cells and receptor expression
TRVb cells (Chinese hamster ovary cells, which do not express

endogenous TfR) were cultured in Ham’s F12 medium with 5%

fetal calf serum [47]. The black-backed jackal TfR was amplified

as described above, cloned in the pCDNA3.1(2) vector for

expression. The feline and canine TfR constructs used are

previously described [43]. Mutations were introduced into the

jackal and feline TfRs using the Phusion mutagenesis protocol, as

previously described [16]. Receptor expressing plasmids were

transfected into TRVb cells seeded in 9 cm2 trays at a density of

26104 cells per cm2 and transfected with 1.5 mg (for infection

assays) or 2 mg (for binding assays) of TfR plasmid or pCDNA

3.1(2) using Lipofectamine (Invitrogen).

Analysis of infection
Two days after transfection, TRVb cells were detached with

trypsin/versene and seeded at a 1:5 dilution on coverslips. The

next day the cells were washed and incubated for one hour with

FPV, CPV, or virus-free medium. Five days after transfection, cells

were fixed in 4% paraformaldehyde and stained with mouse anti-

human TfR cytoplasmic tail antibody (clone H68.4, Invitrogen)

followed by Alexa 488-conjugated goat anti-mouse secondary

antibody to detect TfR, and then with Alexa 594-conjugated

mouse anti-NS1 antibody [48].

Virus and Tf binding assays
Two days after transfection, TRVb cells were washed with cold

Dulbecco’s PBS and detached using Accutase (Innovative Cell

Technologies, San Diego, CA). Cells were pelleted and washed in

PBS containing 1% ovalbumin. Cells were then incubated for one

hr at 37uC or at 4uC with iron-loaded canine Tf conjugated to

PerCP dye, and Alexa488-conjugated genome-free CPV-2 or FPV

capsid. After washing with PBS with 1% ovalbumin, 10,000 cells

were analyzed by a Guava EasyCyte Plus (Millipore, Billerica,

MA). Cells were gated based on forward and side scatter and

compensated in FlowJo 9 (TreeStar Inc, Ashland, OR). Tf-positive

cells were gated in FlowJo and exported to JMP for statistical

analysis because Tf labels the transfected cells expressing the

receptors. All receptors are expressed to similar levels on TRVb

cells, as revealed by staining with an antibody against the

cytoplasmic tail of the receptor (Figure S2). Since Tf does not

compete with parvovirus for TfR binding [15,16] and the

mutations introduced are far removed from the TfR binding site,

the relative Tf-PerCP fluorescence of cells reflected the expression

of the receptor on that cell. For each cell, the fluorescence intensity

of parvovirus binding was normalized to the fluorescence intensity

of Tf. One way analysis of variance of the mean ratio of

fluorescence intensities of each receptor was performed to

determine the degree of parvovirus binding, or binding and

uptake. Since the choice of the domestic cat TfR for this study is

arbitrarily chosen as the background for the mutation analysis,

Tukey’s HSD was used to detect significantly different levels of

binding and uptake instead of pairwise comparisons to the feline

TfR.

Supporting Information

Figure S1 Analysis of dN/dS in the apical and non-apical

domains of TFRC. dN/dS was calculated along each branch of the

carnivore phylogeny for A) the apical domain, and B) the

concatenated remainder of the gene. The number of estimated

non-synonymous and synonymous DNA mutations that have

occurred along each branch are shown in parentheses (N:S) after

the dN/dS value. On each branch in Caniformia, we highlight in

red the part of the gene with the highest dN/dS value. C and D)

A secondary analysis was performed on additional canid sequences

closely related to dogs. Both in these analyses, and in the feliformia

species in panels A and B, the branches are too short (too few

evolutionary changes have taken place) to draw clear conclusions.

(TIF)

Figure S2 Expression of variant TfRs in TRVb cells. Cells

transfected with various TfRs were fixed, permeabilized, and

stained with antibody against the conserved, cytoplasmic tail of the

receptor and quantitatively analyzed by flow cytometry. Cells were

gated for receptor expression and the mean fluorescent intensity of

receptor-expressing cells is shown. No comparisons were statisti-

cally significant at p = 0.05.

(TIF)

Figure S3 Effect of residue 383 (feline) or 384 (canine and jackal)

in the TfR on virus binding at 4uC. Fluorescently labeled FPV or

CPV capsids were incubated with cells expressing feline TfR,

canine TfR, wild type or mutant black-backed jackal TfR at 4uC,

and the virus binding was compared to that of fluorescently

labeled Tf.

(TIF)

Table S1 Branch-site test for positive selection in the Caniformia

clade for the carnivore TFRC gene. a. Datasets consisted of the

aligned sequences of Canis lupus familiaris, Canis latrans, Canis

mesomelas, Vulpes vulpes, Neovison vison, Procyon lotor, Ailuropoda

melanoleuca, Felis catus, Felis chaus, Otocolobus manul, Puma concolor,

Lynx canadensis, Leopardus pardalis, Caracal caracal, Neofelis nebulosa,

Prionailurus bengalensis, and Panthera leo, with Equus caballus used as an

outgroup. The Caniformia clade (the first 7 species listed) is

defined as the foreground clade in the models. b. To implement

the branch-sites test (Zhang et al., 2005), multiple alignments were

fit to the branch-sites models Model A (positive selection model,

codon values of dN/dS along background branches are fit into two

site classes, one (v0) between 0 and 1, and one (v1) equal to 1; on

the foreground branches a third site class is allowed (v2) with dN/

dS.1), and Model A with fixed v2 = 1 (null model, similar to

Model A except the foreground v2 value is fixed at 1). Thus, the

branch-sites model for positive selection (Model A) allows certain

codons to evolve with dN/dS.1 exclusively along the lineages of

the foreground clade. The likelihood of this model is compared to

the likelihood of the null model, where dN/dS.1 is disallowed

along both foreground and background lineages. A likelihood ratio

test was performed to assess whether Model A gives a significantly

better fit to the data (branch-site test 2). The f61 codon model was

used, and for Model A an initial seed value of v= 1.5 was used. c.
Twice the difference in the natural logs of the likelihoods (Dl62) of

the two models being compared. The p-value indicates the

confidence with which the null model can be rejected.

(DOC)
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