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Abstract

A genetic absence of the common IFN- a/b signaling receptor (IFNAR) in mice is associated with enhanced viral replication
and altered adaptive immune responses. However, analysis of IFNAR-/- mice is limited for studying the functions of type I IFN
at discrete stages of viral infection. To define the temporal functions of type I IFN signaling in the context of infection by
West Nile virus (WNV), we treated mice with MAR1-5A3, a neutralizing, non cell-depleting anti-IFNAR antibody. Inhibition of
type I IFN signaling at or before day 2 after infection was associated with markedly enhanced viral burden, whereas
treatment at day 4 had substantially less effect on WNV dissemination. While antibody treatment prior to infection resulted
in massive expansion of virus-specific CD8+ T cells, blockade of type I IFN signaling starting at day 4 induced dysfunctional
CD8+ T cells with depressed cytokine responses and expression of phenotypic markers suggesting exhaustion. Thus, only
the later maturation phase of anti-WNV CD8+ T cell development requires type I IFN signaling. WNV infection experiments in
BATF3-/- mice, which lack CD8-a dendritic cells and have impaired priming due to inefficient antigen cross-presentation,
revealed a similar effect of blocking IFN signaling on CD8+ T cell maturation. Collectively, our results suggest that cell non-
autonomous type I IFN signaling shapes maturation of antiviral CD8+ T cell response at a stage distinct from the initial
priming event.
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Introduction

Type I interferons (IFN) comprise a family of cytokines that that

were identified originally for their ability to render cells resistant to

virus infection [1]. Type I IFN binds to a common IFN-ab
receptor (IFNAR), which initiates a signaling cascade that results

in phosphorylation and nuclear translocation of STAT1 and

STAT2, and induction of expression of hundreds of interferon-

stimulated genes (ISG) [2]. These ISG control viral infections

through a diverse range of direct antiviral effector functions [3]

and by modulating adaptive immune responses [4].

Type I IFN responses are essential for the controlling infection by

West Nile virus (WNV) [5,6], an encephalitic positive strand RNA

virus of the Flaviviridae family that has emerged over the past decade

as a significant cause of neuroinvasive disease [7]. IFNAR-/- mice are

exquisitely vulnerable to WNV infection, with expanded tissue

tropism, uncontrolled viral replication, and rapidly uniform death,

with all animals succumbing within four days of infection after

inoculation with a single plaque forming unit (PFU) of virus [8].

Apart from its function in controlling viral infection through

cell-intrinsic antiviral gene induction, type I IFN has an

established role in priming of B and T cell responses (reviewed

in [9,10]). Signaling through IFNAR regulates early innate and

adaptive B cell activation in the lymph node and spleen [11–13]

and induces dendritic cells to mature, express higher levels of co-

stimulatory molecules, and present antigen more efficiently, which

is required for optimal induction of a functional T cell response

(reviewed in [14]). Diminished effector functions of memory CD8+

T cells in IFNAR-/- mice have been described after infection with

influenza and vaccinia (VV) viruses [15,16]. This could be due in

part, to defects in cross-priming of CD8+ T cells, which is believed

to require both virus-induced type I IFN [9,13,17] and CD8-a
dendritic cells [18].

Although cell-type and tissue-specific conditional deletions of

IFNAR have been described [19–22], the function of type I IFN at

discrete stages of viral infection remains unknown. To define the

temporal functions of type I IFN signaling in the context of

infection by WNV, we utilized a previously reported blocking anti-

IFNAR monoclonal antibody (MAb MAR1-5A3), which prevent-

ed type I IFN-induced intracellular signaling in vitro, was non-cell-

depleting, and inhibited antiviral, antimicrobial, and antitumor

responses in mice [23].

By administering MAR1-5A3 antibody at different times after

viral inoculation, we separated the early innate from the later
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innate-adaptive functions of type I IFN. Treatment prior to WNV

infection resulted in massive expansion of virus-specific CD8+ T

cells by day 9. However, blockade of type I IFN signaling

beginning at day 4 after WNV infection was associated with

defects in virus-specific effector CD8+ T cells at day 9 including

depressed IFN-c and TNF-a responses and changes in phenotypic

markers suggesting altered activation status and CD8+ T cell

exhaustion that is usually seen during chronic viral infection [24].

This phenotype was not due to direct signaling effects through

IFNAR on CD8+ T cells and was also observed after vaccinia virus

(VV) infection under similar experimental conditions. Experiments

in BATF3-/- mice, which lack CD8-a dendritic cells and have

impaired antigen cross-presentation and CD8+ T cell priming

capacity, showed a similar effect of temporal blockade of type I

IFN signaling on CD8+ T cell maturation. Collectively, our results

suggest that cell non-autonomous type I IFN signaling shapes

maturation of antiviral CD8+ T cell response at a stage distinct

from the initial priming event.

Results

Blocking the type I IFN receptor at different times results
in enhanced susceptibility to WNV

Previous studies established a critical requirement for type I

IFN in controlling WNV-NY (strain New York, 2000) as infected

IFNAR-/- mice showed expanded tissue tropism, uncontrolled

viral replication, and rapidly uniform death within four days [8].

While these experiments suggested a dominant antiviral function

of type I IFN in vivo, key roles in modulating adaptive B and T

cell responses against viruses also have been described [13,17].

One caveat of the antiviral and immunologic studies is that they

have been performed primarily in complete or cell-type IFNAR-/-

mice, which limits insight into the temporal function of IFN

signaling in modulating immune responses. Also, because many

viruses replicate to substantially higher levels in IFNAR-/- mice, it

can be difficult to separate how enhanced antigen burden and

lack of type I IFN signaling differentially impact adaptive

immune responses in the context of live virus infection. To begin

to define the temporal functions of type I IFN signaling, we

utilized MAR1-5A3, a previously described MAb that potently

blocks type I IFN receptor signaling and is non cell-depleting

[23].

IFNAR-/- mice succumb to lethal WNV-NY infection within 4

days of infection after a dose of 102 PFU of virus [8]. We assessed

whether treatment with the MAR1-5A3 MAb recapitulated this

phenotype. We performed a dose titration of MAR1-5A3, in

which mice were treated one day prior to infection with 102 PFU

of WNV-NY and monitored for survival (Figure 1A). Similar to

IFNAR-/- mice, all wild type mice treated with a single dose of

MAR1-5A3 but not the isotype control GIR-208 MAb ranging

from 0.3 to 2.5 mg succumbed to WNV-NY infection, although

the mean time of death (MTD) was delayed (6.5 days versus 4

days, P,0.0001). Given this data, we chose a MAR1-5A3 dose of

1 mg per mouse for the remainder of the study. The difference in

MTD was not unexpected as MAR1-5A3 is not expected to cross

the blood-brain-barrier efficiently and type I IFN has direct

antiviral effects on neurons in the central nervous system

[8,25,26].

We hypothesized that type I IFN signaling may have distinct

functions at different stages of viral infections. To test this, mice

were treated with a single 1 mg dose of MAb at different days after

infection and survival was monitored (Figure 1B). We observed a

significant difference (P,0.0003) in survival of mice treated with

MAR1-5A3 as late as four days after infection as compared to the

isotype control MAb treated mice. The MTD after WNV-NY

infection for mice receiving MAR1-5A3 between days 0 and 2 was

,8 days whereas those receiving MAb on days 3 or 4 survived on

average between 10 and 11 days.

To further characterize the impact of type I IFN signaling at

different stages, we compared viral titers from organs of mice at

day 6 after infection in mice treated with the MAR1-5A3 or the

control GIR-208 MAb at days 2 or 4 post infection (Figure 1C to
G). In mice treated with MAR1-5A3 two days after infection, we

observed an increase in viremia (739-fold, P,0.02), and infection

in the spleen (242-fold, P,0.02) and kidney (240-fold, P,0.002)

compared to the isotype control MAb. This corresponded with

markedly higher viral titers in the brain (325-fold, P,0.006) and

spinal cord (2,650-fold, P,0.001) compared to the control group.

In contrast, mice treated with a single dose of MAR1-5A3 at day 4

after infection showed substantially smaller increases in the spleen

(4.4-fold, P,0.03) and brain (13-fold, P,0.006) with no detectable

elevation in serum, kidney, or spinal cord (P.0.19) at day 6. Thus,

although the relative timing (day 2 or 4) of MAR1-5A3

administration did not differentially affect clinical outcome, it

impacted viral spread and tropism; earlier blockade of type I IFN

signaling resulted in enhanced replication in all tissues examined,

whereas later administration had a small effect in only a subset of

organs.

Temporal effects of MAR1-5A3 on adaptive immunity
against WNV

Several groups have observed differences in antibody and CD8+

T cell responses in IFNAR-/- and STAT1-/- mice after infection or

vaccination [13,15–17,19,27,28]. Because administration of

MAR1-5A3 at day 4 had relatively minor effects on viral burden

at day 6 (Figure 1) or day 8 (data not shown) yet still resulted in

complete lethality, we hypothesized that blockade of type I IFN

receptor signaling at later stages might impact early adaptive

immune responses.

The development of an antibody response is critical for

surviving WNV infection [29,30]. To study the temporal effects

of type I IFN signaling on the humoral response, wild type mice

were infected with WNV-NY, treated with MAR1-5A3 or isotype

control antibody two or four days later, and serum was harvested

Author Summary

Although it is well established that type I IFN responses
protect against viral infections by inducing expression of
antiviral genes and modulators of adaptive immune
responses, its function at different stages of viral infections
has remained poorly studied. In this paper, we adminis-
tered a monoclonal antibody that blocks the common
type I IFN signaling receptor to mice at different times
after WNV infection to dissect the temporal functions of
IFN. Administration of the blocking antibody at day -1
resulted in a massive increase in viral replication and the
number of WNV-specific -CD8+ T cells. In contrast,
treatment with a single dose of antibody at day 4 had
limited effects on viral dissemination, but instead promot-
ed development of dysfunctional CD8+ T cells that
produced lower levels of cytokines and expressed proteins
implicated in T cell exhaustion. Thus, we show a stage-
specific effect of type I IFN in optimal maturation of
antiviral CD8+ T cell responses. Our study provides new
insight as to how and when innate immune signals affect
maturation of antiviral CD8+ T cells after the initial priming
event with viral antigen.

Type I IFN and Antiviral CD8+ T Cell Responses
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at day 6 or 9 after infection. We detected no statistically significant

difference in WNV-specific IgM or IgG response between the

MAR1-5A3 and control antibody-treated groups at any of the

time points tested (Figure S1, P.0.2). Thus, blockade of type I

IFN signaling at day 2 or 4 after infection had no major impact on

induction of WNV-specific antibody responses during the acute

phase of infection.

CD8+ T cells contribute to the rapid clearance of WNV

infection from peripheral and central nervous system (CNS) tissues

[31–34]. Analysis of CD8+ T cells at day 9 in the spleen of wild

type mice treated with the MAR1-5A3 or control antibody at day

4 after infection showed a similar percentage and total number of

WNV-specific CD8+ T cells when measured by intracellular IFN-c
and TNF-a staining after ex vivo incubation with an immunodo-

minant Db-restricted NS4B peptide (Figure 2A) or direct tetramer

staining (data not shown). Nonetheless, blockade of type I IFN

signaling at day 4 resulted in a decrease in the amount of

intracellular IFN-c (P,0.0001) and TNF-a (P,0.006) produced

by individual antigen-specific CD8+ T cells as judged by

differences in the geometric mean fluorescence intensity of the

positive cells. Correspondingly, the amount of granzyme B in

NS4B tetramer positive cells was less (P,0.003) in MAR1-5A3

treated mice (Figure 2B). The differences in intracellular

cytokines and granzyme B protease establish a late temporal role

for type I IFN signaling in the maturation of the antigen-specific

CD8+ T cells, even though initial priming, as reflected by the total

percentage and number of WNV-specific IFN-c+ CD8+ or TNF-

a+ CD8+ T cells, remained intact.

To determine whether a similar effect on T cell maturation was

observed if type I IFN was neutralized throughout infection, we pre-

treated mice with MAR1-5A3 prior to infection with an attenuated

lineage 2 WNV strain from Madagascar (WNV-MAD) [35,36]. We

used this less virulent WNV strain because mice treated with

MAR1-5A3 and infected with WNV-NY did not survive past day 6

(see Figure 1). In comparison, mice treated with MAR1-5A3

before or after infection with attenuated WNV-MAD showed very

limited mortality (data not shown). Accordingly, mice were treated

with MAR1-5A3 or isotype control mAb one day prior to and four

days after infection with WNV-MAD, and CD8+ T cells were

analyzed at day 9. Notably, depletion of type I IFN signaling

throughout the course of infection resulted in a substantial increase

in the percentage (6 to 49%, P,0.008) and number (P,0.008) of

WNV-specific IFN-c+ CD8+ T cells (Figure 2C). Similar results

were observed when intracellular TNF-a was measured

(Figure 2D). The large increase in CD8+ T cell priming may be

attributed to the greater WNV antigen burden in lymphoid tissues

in mice lacking type I IFN signaling [8]. However, and consistent

with that observed with MAR1-5A3 treatment at day 4 only with

WNV-NY infection, the amounts of intracellular IFN-c and TNF-a
present in WNV-specific CD8+ T cells were lower (P,0.008) when

type I IFN signaling was blocked throughout infection.

Blockade of type I IFN receptor at day 4 also modulated the

CD4+ T response after WNV-NY infection. The percentage of

IFN-c+ or TNF-a+ CD4+ T cells, as measured after ex vivo

stimulation with anti-CD3 antibodies, was decreased (P,0.007) in

mice receiving MAR1-5A3 compared to the GIR-208 isotype

control MAb (Figure S2). While we observed a significant

decrease (P,0.004) in the total number of TNF-a+ producing

CD4+ T cells in MAR1-5A3 treated mice, this was not observed in

IFN-c+ CD4+ T cells. Analogous to that seen with WNV-specific

CD8+ T cells, decreased amounts (P,0.01) of IFN-c and TNF-a
were produced by activated CD4+ T cells in animals treated with

MAR1-5A3.

Temporal effect of MAR1-5A3 on regulatory T cell
induction

Given that a blockade of type I IFN signaling resulted in WNV-

specific CD8+ T cells that expressed lower levels of intracellular

Figure 1. Effect of blockade of type I IFN signaling on WNV-NY infection. A. Dose titration of the MAR1-5A3 MAb in mice. Mice (n = 10 per
group) were treated with increasing doses of MAR1-5A3 MAb, infected one day later with 102 PFU of WNV-NY, and survival was monitored. All MAR1-
5A3 treatment doses shown were statistically different compared to GIR-208 treatment (P,0.05). B. Time course of MAR1-5A3 addition after WNV
infection. Mice (n = 5 to 10 per group) were infected with 102 PFU of WNV-NY, treated with 1 mg of MAR1-5A3 or an isotype control (GIR-208 (GIR)) at
different times after infection, and survival was determined. Treatment with MAR1-5A3 at days 0, 1, 2, 3, and 4 were statistically different (P,0.004)
compared to treatment with GIR-208. C–G. Effect of MAR1-5A3 on viral burden. Mice (n = 5 to 10 per group) were infected with 102 PFU of WNV-NY,
treated with 1 mg of MAR1-5A3 or GIR at day 2 or day 4 after infection. (C) Serum, (D) spleen, (E) kidney, (F) brain, and (G) spinal cord were harvested
at day six and viral titers were determined by plaque assay or qRT-PCR. Asterisks indicate differences that are statistically significant (*, P,0.05;
**, P,0.01, ***, P,0.001).
doi:10.1371/journal.ppat.1002407.g001
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cytokines, we speculated that this could be due to an increase in

CD4+CD25+FoxP3+ regulatory T cells. Type I IFN has been

reported to alter regulatory T cell activity, which impacts CD8+ T

cell function [37,38], and decreased regulatory T cell levels

augment WNV-specific CD8+ T cell responses [39]. However, we

observed no difference in the percentage or numbers of

CD4+CD25+FoxP3+ cells at day 9 in the blood (data not shown)

or spleen (P.0.6), when MAR1-5A3 or control GIR-208 MAb

was administered at day 4 after WNV-NY infection (Figure S3).

Temporal effect of MAR1-5A3 on CD8+ T cell responses
after VV infection

Our data suggested that type I IFN signaling at a later stage

modulated WNV-specific T cell responses despite having limited

effects on viral replication or initial priming. To determine

whether this finding was typical of other viral infections, we

repeated MAR1-5A3 treatments at day 4 after infection with an

unrelated DNA (VV, Western reserve strain) virus. Mice were

harvested eight days after infection (four days after treatment) and

T cell populations were analyzed. Similar to that seen with WNV,

the amount of intracellular IFN-c produced by CD8+ T cells from

the MAR1-5A3 treated mice was lower (P,0.02) after re-

stimulation ex vivo with two different VV-peptides (A47L or

B8R) compared to the isotype control GIR-208 treated mice

(Figure 3A and B). Notably, and in contrast to WNV infection,

we also detected a decrease in the percentage (P,0.02) and

number (P,0.04) of IFN-c producing VV-specific CD8+ T cells,

suggesting that for VV infection, type I IFN signaling at day 4 or

after also contributed to initial priming. Similar results were

observed with TNF-a production with VV-specific CD8+ T cells

after MAR1-5A3 treatment (Figure 3A and B). Thus, a

temporal blockade of type I IFN signaling impairs antigen-specific

CD8+ T cell maturation in the context of infection by WNV and

VV, two unrelated RNA and DNA viruses.

Type I IFN receptor signaling, CD8-a dendritic cells, and
CD8+ T cell responses

Recent studies have suggested that type I IFN enhances the

CD8+ T cell response during antigen cross-presentation

[17,22,40,41]. To evaluate whether the temporal effect of type I

IFN signaling on CD8+ T cell responses occurred in mice with

impaired cross-presentation capacity, we utilized BATF3-/- mice,

which lack CD8-a and CD103+ dendritic cells [18,42]. Consistent

with earlier results from BATF3-/- 129SvEv mice [18], we

observed a decrease in the percentage and number (P,0.008)

WNV-specific CD8+ T cells in BATF3-/- mice on the C57BL/6

background although no substantive difference (P.0.06) in

intracellular IFN-c levels was detected (Figure 4A).

To determine whether mice with priming defects due to

impaired cross-presentation still required late stage type I IFN for

CD8+ T cell maturation, MAR1-5A3 or control GIR-208 MAb

was administered to wild type or BATF3-/- mice at day 4 after

WNV-NY infection. As expected, associated with the absence of

CD8-a dendritic cells, the magnitude (percentage and number) of

IFN-c+ and TNF-a+ NS4B-specific CD8+ T cells at day 9 was

markedly lower in MAR1-5A3 or GIR-208 MAb treated BATF3-/-

mice compared to wild type animals (data not shown). Nonethe-

less, reduced intracellular levels of IFN-c and TNF-a (P,0.009) in

Figure 2. Effect of treatment of MAR1-5A3 on WNV-specific CD8+ T cell responses. A-B. Mice were infected with 102 PFU of WNV-NY and
treated with 1 mg of MAR1-5A3 or GIR-208 (GIR) at day 4 post infection. A. Analysis of the CD8+ T cell from the spleen of infected MAb-treated mice
(n = 20 to 25 per group). Splenocytes were harvested on day 9 after WNV infection, and intracellular cytokine staining of IFN-c and TNF-a was
analyzed in CD8+ T cells after ex vivo restimulation with NS4B peptide. (Top left) Total number of splenic CD8+ T cells after infection and treatment
with MAbs. (Top right) A representative contour plot showing intracellular IFN-c levels on CD8+ T cells after MAb treatment is shown. The percentage,
number, and relative staining of WNV-specific IFN-c+ CD8+ T cells (middle panels) or WNV-specific TNF-a+ CD8+ T cells (bottom panels) are shown.
Relative intracellular cytokine staining reflects pooling of data from independent experiments after normalization within a given experiment. B. The
levels of intracellular granzyme B in WNV-specific CD8+ T cells were assessed by co-staining with Db-NS4B tetramer and antibodies to granzyme B
(n = 6 mice per group). A representative contour plot showing intracellular granzyme B levels on CD8+ T cells after MAb treatment is shown. C–D.
Mice were infected with 102 PFU of WNV-MAD and treated with 1 mg of MAR1-5A3 or GIR-208 (GIR) at day -1 and +4 relative to infection. The
percentage, number, and relative staining of WNV-specific (C) IFN-c+ CD8+ T cells or (D) TNF-a+ CD8+ T cells are shown (n = 5 mice per group).
Asterisks indicate differences that are statistically significant (*, P,0.05; **, P,0.01, ***, P,0.001).
doi:10.1371/journal.ppat.1002407.g002

Figure 3. Effect of MAR1-5A3 on VV-specific CD8+ T cell responses in the spleen. Mice were infected with 104 PFU of VV (Western reserve
strain), treated at day 4 with 1 mg of MAR1-5A3 or GIR-208 MAb, and splenocytes were harvested on at day 9 for intracellular cytokine staining of IFN-
c and TNF-a of CD8+ T cells after peptide restimulation with immunodominant A47L (A) or B8R (B) peptides (n = 9 mice per group). Relative
intracellular cytokine staining reflects pooling of data from independent experiments after normalization within a given experiment. Asterisks
indicate differences that are statistically significant (*, P,0.05; **, P,0.01, ***, P,0.001).
doi:10.1371/journal.ppat.1002407.g003
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WNV-specific CD8+ T cells were still observed in BATF3-/- mice

treated with MAR1-5A3 at day 4 compared to control MAb-

treated animals (Figure 4B). Thus, the temporal effect of type I

IFN blockade on CD8+ T cell maturation occurred both in the

presence or absence of CD8-a dendritic cells and efficient antigen

cross-presentation.

Cell-extrinsic effect of type I IFN modulates CD8+ T cell
functional development

Studies with IFNAR-/- bone marrow chimera or conditionally

deleted IFNAR on T cells showed reduced cross-presentation of

ovalbumin peptides to CD8+ T cells, suggesting that direct

stimulation of T cells by type I IFN enhances the antigen-specific

CD8+ T cell response, at least for soluble antigens [22]. Blockade

of type I IFN signaling four days after WNV infection results in a

dysfunctional antigen-specific CD8 T cell population that

nonetheless appeared to undergo a relatively normal priming

phase. In comparison, MAR1-5A3 treatment at days -1 and 4

(essentially throughout infection) resulted in a dysfunctional

antigen-specific CD8+ T cell population, but with a massive

increase in the fraction and number of antigen-specific T cells. To

establish whether the effect of type I IFN on CD8+ T cell

functional development was cell-intrinsic in the context of viral

infection, we adoptively transferred naı̈ve purified IFNAR-/-

(CD45.2) or B6.SJL (CD45.1) CD8+ T cells into RAG1-/- recipient

mice. Immediately after WNV infection, blood was sampled to

confirm transfer of T cell populations in the recipient mice (data

not shown). At day nine after infection, spleens were harvested and

the CD8+ T cell activation profiles analyzed. Notably, we did not

detect a significant difference (P.0.06) in the intracellular levels of

IFN-c or TNF-a between the IFNAR-/- (CD45.2) and B6.SJL

(CD45.1) CD8+ T cells donor cells in the IFNAR+/+ RAG1-/- mice

(Figure S4). This result suggests that at least in the context of

WNV infection, the effect of type I IFN on the development of a

functional CD8+ T cell response is largely T cell non-autonomous

in nature.

Effect of MAR1-5A3 on antigen-presenting cells
As our adoptive transfer experiments suggested that efficient

WNV-specific CD8+ T cell activation did not require cell

autonomous type I IFN signaling in CD8+ T cells, we assessed

whether antigen-presenting cells in the spleen were differentially

affected by MAR1-5A3 treatment. MAR1-5A3 was administered

2 or 4 days after WNV infection and APC were examined on days

6 and 9 after infection (Figure 5A, B, and C). When MAR1-5A3

was given on day 2 and splenocytes analyzed on day 6, no

difference was observed in the percentage of CD11c+ cells or their

relative expression of the co-stimulatory molecules CD80 and

Figure 4. Effect of deletion of BATF3 and loss of CD8-a dendritic cells on CD8+ T cell responses after WNV infection. A. Wild type or
BATF3-/- mice were infected with 102 PFU of WNV-NY, spleens were harvested on day 9 after infection, and intracellular IFN-c responses in CD8+ T cells
were measured by flow cytometry after ex vivo stimulation with NS4B peptide (n = 5 mice per group). B. Wild type or BATF3-/- mice were treated with
MAR1-5A3 or GIR-208 (1 mg per dose) at day 4 after infection with 102 PFU of WNV-NY. Spleens were harvested on day 9 after infection, and
intracellular IFN-c (top panels) and TNF-a (bottom panels) responses in CD8+ T cells were measured by flow cytometry after ex vivo stimulation with
NS4B peptide (n = 5 mice per group). Relative intracellular cytokine staining reflects pooling of data from independent experiments after
normalization within a given experiment. Asterisks indicate differences that are statistically significant (*, P,0.05; **, P,0.01, ***, P,0.001).
doi:10.1371/journal.ppat.1002407.g004
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CD86 (Figure 5B). We did however, observe an increased

percentage of CD11b+ splenocytes at this time point, and this was

associated with reciprocal decreases and increases in expression of

CD80 and CD86, respectively. In comparison, when MAR-5A3

was administered on day 4 after WNV-NY infection and

splenocytes analyzed on day 6, we observed a reduced percentage

of CD11b+ (P,0.01) and CD11c+ (P,0.02) cells, and this was

associated with decreased expression of CD86 only on CD11c+

cells (Figure 5B, P,0.008). When MAR-5A3 was administered

on day 4 after WNV-NY infection and splenocytes analyzed on

day 9, we also observed a decrease in surface expression of CD86

on CD11b+ (P,0.05) and CD11c+ (P,0.007) cells relative to the

control MAb treatment (Figure 5A and C). In comparison,

MAR1-5A3 treatment had no effect on CD80 expression on

CD11c+ cells although an increase (P,0.005) was noted in

CD11b+ cells at this time. Thus, blockade of type I IFN signaling

at day 4 after infection resulted in a distinct antigen-presenting cell

activation phenotype compared to MAR1-5A3 treatment at day 2;

this suggests that disruption of type I IFN signaling pathways at

particular stages of infection might limit the ability of antigen-

presenting cells to provide key temporal signals that allow optimal

generation of antigen-specific effector CD8+ T cells.

Effect of MAR1-5A3 on cytokine levels
We speculated that a specific absence of type I IFN signaling in

amtigen-presenting cells impaired development of a WNV-specific

CD8+ T cell response because of an altered production of

cytokines required for maturation. To assess this, we measured the

cytokine levels in mice that were treated with MAR1-5A3 at day 4

after WNV-NY infection. Two or five days after MAb treatment

(day 6 or 9 after infection), serum was harvested and levels of

relevant cytokines (IFN-c, TNF-a, IL-10, IL-12 p40, IL-17, and

IL-18) were measured by bioplex assay (Figure 6A–F). Two days

after MAR1-5A3 treatment, significantly (P,0.04) reduced levels

of IL-12 p40 were observed (Figure 6D). Within five days of

MAR1-5A3 treatment, serum levels of IFN-c, TNF-a, and IL-12

p40 were reduced significantly (P,0.01) and IL-10 was elevated

(P,0.02). The increased level of IL-10 in mice treated with the

blocking type I IFN MAb may be particularly relevant as IL-10

negatively impacts CD8+ T cell activation and function [37,38].

Phenotype of CD8+ T cells in MAR1-5A3 treated mice
Because blockade of IL-10 in chronic lymphocytic choriomen-

gitis virus (LCMV) infection prevents functional exhaustion of

CD8+ T cells and promotes viral clearance [43,44], we

hypothesized that the increased IL-10 levels in serum of MAR1-

5A3 treated mice after WNV-NY infection might cause the CD8+

T cells to acquire an exhausted phenotype. To assess this, at day 5

after MAb treatment (day 9 after infection), we profiled Db-NS4B-

tetramer+ CD8+ T cells for expression of PD-1, CTLA-4, CD43,

CD44, CD127, and CD11a (Figure 7A). Notably, treatment with

MAR1-5A3 compared to the control MAb resulted in reduced

expression of CD11a (P,0.001) and increased expression of

CD127, CD43, CD44, CTLA-4 and PD-1 (P,0.007). Thus,

CD8+ T cells from mice treated at day 4 with MAR1-5A3 not only

showed altered intracellular cytokine patterns (see Figure 2) but

also displayed some of the phenotypic hallmarks of exhaustion.

Similarly, BATF3-/- mice treated with MAR1-5A3 at day 4 after

WNV infection also expressed elevated (P,0.02) levels of the

exhaustion markers CTLA-4 and PD-1 on WNV-specific CD8+ T

cells at day 9 compared to control MAb (Figure 7B). Whereas

prior studies described CD8+ T cell exhaustion at later time points

during chronic LCMV infection [24,45], blockade of type I IFN

signaling independent of the mode of priming appears to exhaust

WNV-specific CD8+ T cells during the acute effector phase.

One of the earliest stages of CD8+ T cell exhaustion is

characterized by a reduced capacity to lyse target cells [45,46].

Although we observed reduced levels of granzyme B in Db-NS4B

tetramer positive CD8+ T cells (Figure 2), we questioned whether

WNV-specific effector cells during the acute immune response

displayed a fully exhausted phenotype. We assessed how MAR1-

5A3 treatment affected CD8+ T cells ability to lyse peptide pulsed

targets in vivo (Figure S5). Splenocytes from naı̈ve B6.SJL

(CD45.1) mice were divided into two groups: one group was

pulsed with NS4B immunodominant peptide and labeled with

500 nM carboxyfluorescein diacetate succinimidyl ester (CFDA),

and the other was not pulsed with peptide and labeled with 5 nM

CFDA. The two groups were mixed in equal numbers and

injected into WNV-infected C57BL/6 (CD45.2) mice at day 9 that

had undergone treatment with either MAR1-5A3 or control GIR-

208 MAb at day 4. Six hours after labeled cells were transferred,

splenocytes were harvested and in vivo killing was assessed.

Notably, we observed no difference in killing between the MAR1-

5A3 and the control MAb-treated mice (P.0.3). Thus, type I IFN

blockade at a later stage of WNV infection produces an

intermediate exhaustion phenotype with skewed cytokine produc-

tion, surface expression of exhaustion markers, yet relatively intact

cytolytic potential.

Discussion

In this study, we evaluated the antiviral and immunomodulatory

roles of type I IFN signaling after viral infection. While past studies

in IFNAR-/- mice with virulent or attenuated WNV strains

revealed enhanced susceptibility, dissemination, and lethality

compared to congenic wild type mice [8,36,47], they did not

address the temporal functions of type I IFN during infection.

While administration of MAR1-5A3 at day 2 after infection

resulted in markedly enhanced viral burden in multiple tissues as

seen in IFNAR-/- mice [8], treatment at day 4 had more subtle

effects on viral replication. Instead, detailed analysis established a

key role for later type I IFN signaling in the maturation of effector

CD8+ T cells. Blockade of type I IFN signaling at day 4 after

infection with WNV resulted in depressed cytokine responses and

changes in phenotypic markers suggesting altered activation and

exhaustion.

Prior studies have reported that type I IFN signaling primes

adaptive immune functions including cross-presentation of CD8+

T cells, enhancement of antibody responses, and maintenance of

dendritic cells in a state competent for antigen-presentation

[9,13,17,48]. Depending on the experimental system, type I IFN

can act directly on CD8+ T cells or indirectly on antigen-

presenting cells to influence the fate of CD8+ T cells during the

initial phases of antigen recognition (reviewed in [49]). Many of

these studies used IFNAR-/- mice [50], adoptive transfer of wild

type or IFNAR-/- immune cells into IFNAR-/- or wild type mice

[27], or cell-type specific deletion of IFNAR [51]. While they have

provided significant insight into the immunomodulatory effects of

type I IFN and defined key cells involved in priming, they have not

elucidated the stage-specific effects of type I IFN. In our

experiments, when type I IFN signaling was blocked with

MAR1-5A3 prior to infection with an attenuated WNV strain,

we observed at day 9 paradoxically enhanced numbers of antigen-

specific effector CD8+ T cell responses that had deficits in IFN-c
or TNF-a production, results that are consistent with prior

infection experiments [52]. The increased numbers of WNV-

specific CD8+ T cells in mice treated with MAR1-5A3 at day -1
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could be due to increased antigen burden or a failure to produce

IL-10 and negatively regulate T cell expansion [37].

Administration of a single dose of MAR1-5A3 at day 4 after

infection with virulent or attenuated WNV strains revealed a

distinct phenotype. Although the absolute percentage and number

of NS4B-specific CD8+ T cells was similar compared to isotype

MAb-treated or unmanipulated animals, the geometric mean

fluorescence intensity of IFN-c or TNF-a was consistently lower.

Thus, in the context of WNV infection, the initial priming phase of

virus-specific CD8+ T cells does not absolutely require type I IFN

signaling whereas the later maturation phase does. In addition,

MAR1-5A3 treatment on day 4 was associated with lower

granzyme B expression, decreased surface levels of the adhesion

molecule CD11a (LFA-1), and increased expression of CD44,

CD127 (IL-7R a-chain), and CD43 on WNV-specific CD8+ T

cells. These markers are significant because in mice activated, lytic

CD8+ T cells display a CD44hi CD43hi CD127lo granzyme Bhi

phenotype whereas memory CD8+ T cells express a CD44hi

CD43lo/int CD127hi granzyme Blo phenotype [53-55]. Thus,

stage-specific blockade of type I IFN signaling alters intracellular

cytokine production of antigen-specific CD8+ T cells and promotes

a transitional phenotype during the acute (day 9) phase that

appears to fall somewhere between effector and memory

populations.

Consistent with functionally dysregulated CD8+ T cells when

type I IFN signaling was blocked at day 4, we observed increased

expression of PD-1 and CTLA-4, two markers of T cell exhaustion

[24,56], which were originally described in the context of chronic,

persistent infection of LCMV [46]. In chronic LCMV infection,

there is a hierarchy to CD8+ T cell exhaustion with some functions

exhausted early (IL-2 production, cytotoxicity, and proliferation)

and others persisting longer (intracellular pro-inflammatory

cytokines) [45]. In comparison, blockade of type I IFN signaling

at day 4 resulted in WNV-specific CD8+ T cells at day 9 that

retained the ability to kill targets in vivo although they expressed

lower quantities of IFN-c and TNF-a. Thus, stage-specific

blockade of type I IFN results in dysfunctional CD8+ T cells with

loss of some but not all effector functions during the acute phase.

Although we cannot address what happens during later stages

(evolution and maintenance of memory CD8+ T cells) in the

context of type I IFN blockade and virulent WNV-NY infection

because of complete lethality in the model, kinetic studies are

planned with the attenuated WNV-MAD strain and MAR1-5A3

to determine how and when type I IFN signaling affects the

transition to and establishment of memory phenotypes.

The dysfunctional CD8+ T cell phenotype observed after

MAR1-5A3 treatment and WNV infection also was observed after

VV infection. The change in CD8+ T cell profile with type I IFN

blockade at day 4 was even more marked after VV infection, as

the percentage, number, and mean fluorescence intensity of

antigen-specific CD8+ T cells were all significantly reduced at day

9 for two independent immunodominant epitopes. Thus, for VV,

late stage type I IFN blockade affected both priming and

subsequent maturation.

Cross-priming of CD8+ T cells occurs after dendritic cells pick

up soluble molecules or cellular debris [57] and are licensed by

additional cellular or inflammatory signals [58]. Although type I

IFN can license dendritic cells for cross-priming of CD8+ T cells

with soluble ovalbumin [17], it remains unknown if it is essential in

the context of the inflammatory milieu associated with viral

Figure 5. Effect of MAR1-5A3 treatment on costimulatory molecule expression of antigen-presenting cells. Mice were infected with 102

PFU of WNV-NY and treated with 1 mg of MAR1-5A3 or GIR-208 at days 2 or 4 post infection. At days 6 or 9 after infection, CD11b+ and CD11c+

splenocytes were analyzed for expression of CD80 and CD86 by flow cytometry. A. Gating strategy and representative histograms are shown from
animals treated with MAR1-5A3 or GIR-208 at day 4 and harvested at day 9. B-C. Summary of data showing the percentage of CD11c+ and CD11b+

splenocytes and the mean fluorescence intensity of CD80 and CD86 staining (n = 7 to 9 mice per group) from animals (B) treated at days 2 or 4 and
harvested at day 6 or (C) treated at day 4 and harvested at day 9. Asterisks indicate differences that are statistically significant (*, P,0.05; **, P,0.01,
***, P,0.001).
doi:10.1371/journal.ppat.1002407.g005

Figure 6. Effect of MAR1-5A3 treatment on serum inflammatory cytokines. Mice were infected with 102 PFU of WNV and treated with 1 mg
of MAR1-5A3 or GIR-208 at day 4 post infection. Serum was harvested at day 6 or 9 after infection and analyzed for the (A) IFN-c, (B) TNF-a, (C) IL-10,
(D) IL-12 p40, (E) IL-17, and (F) IL-18 using a Bio-Plex pro cytokine assay (n = 6 mice per group). Asterisks indicate differences that are statistically
significant (*, P,0.05; **, P,0.01, ***, P,0.001).
doi:10.1371/journal.ppat.1002407.g006
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infection. We speculated that stage-specific blockade of type I IFN

signaling might have dominant effects on CD8+ T cells maturation

if CD8-a dendritic cells and cross-presentation were required for

priming and activation. To evaluate this, we infected BATF3-/-

mice, which lack CD8-a dendritic cells, are defective in antigen

cross-presentation, and fail to optimally prime CD8+ T cell

responses [18]. While the percentage and number of WNV-

specific IFN-c+ CD8+ T cells was blunted in BATF3-/- mice, the

remaining CD8+ T cells that were presumably primed by a distinct

antigen presentation pathway showed reduced intracellular

cytokine levels and enhanced expression of CTLA-4 and PD-1.

Thus, at least during WNV infection, the temporal effects of type I

IFN signaling on effector CD8+ T cell maturation occur regardless

of the initial priming pathway.

Although prior studies have suggested that direct stimulation of

T cells by type I IFN enhances ovalbumin-specific CD8+ T cell

responses during cross-priming [22], we did not observe this in the

context of WNV infection. CD45.2 CD8+ T cells lacking IFNAR

showed roughly equivalent WNV-specific responses compared to

congenic CD45.1 CD8+ T cells after transfer into and infection of

RAG1-/- recipient mice. An analogous small impact of direct

stimulation by type I IFN on CD8+ T cells was observed after

infection with VV [59] but not with LCMV [27,50]. The

differential requirement for direct signaling on CD8+ T cells

may be due to differences in local and systemic type I IFN

production during infection with different pathogens [50].

Blockade of type I IFN at day 4 after WNV infection was

associated with decreased expression of CD86 on antigen-

presenting cells, which likely influences optimal antigen presenta-

tion to CD8+ T cells [14,60]. Indeed, lower levels of pro-

inflammatory dendritic cell-produced cytokines (IL-12) [61] that

regulate CD8+ T cell expansion and activation state were observed

in mice treated with MAR1-5A3 at day 4. Alternatively, blockade

of type I IFN signaling at day 4 could affect CD8+ T cell activation

because of the elevated levels of the inhibitory cytokine IL-10.

Although our results point to a critical temporal role of type I IFN

signaling in the functional activation of CD8+ T cells in the context

of infection by WNV, future studies are required to define the

precise spatial and cell-type specific cues that govern this process.

The administration of a neutralizing anti-IFNAR antibody at

day 2 after infection limited the ability of the host to control WNV

replication and spread to target tissues, thus confirming a

dominant antiviral effect of type I IFN during the early stages of

pathogenesis. In comparison, administration of the anti-IFNAR

antibody at day 4 after WNV infection had marginal effects on

viral replication, no effect on the magnitude of CD8+ T cell

priming, yet profoundly impacted the functional CD8+ T cell

responses during the acute effector phase, resulting in blunted

cytokine production, and changes in phenotypic markers associ-

ated with altered activation status and CD8+ T cell exhaustion.

Given that several studies have established a protective clearance

role for CD8+ T cells in the brain after WNV infection with

Figure 7. Effect of MAR1-5A3 treatment on expression of markers of CD8+ T cell activation and exhaustion. A. Wild type mice were
infected with 102 PFU of WNV-NY and treated with 1 mg of MAR1-5A3 or GIR-208 at day 4 post infection. Splenocytes were harvested on day 9, co-
stained for CD8b and Db-NS4B tetramer, and the gated cells analyzed by flow cytometry for relative expression of PD-1, CTLA-4, CD44 CD127, CD11a
and CD43 (n = 18 mice per group). B. BATF3-/- mice were treated with MAR1-5A3 or GIR-208 at day 4 after infection with 102 PFU of WNV-NY. Spleens
were harvested on day 9 after infection, co-stained for CD8b and Db-NS4B tetramer, and the gated cells analyzed by flow cytometry for relative
expression of PD-1 and CTLA-4 (n = 5 mice per group). Relative staining reflects pooling of data from independent experiments after normalization
within a given experiment. Asterisks indicate differences that are statistically significant (*, P,0.05; **, P,0.01, ***, P,0.001).
doi:10.1371/journal.ppat.1002407.g007
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virulent North American strains [31,33,34,62], it is not surprising

that a temporally defective type I IFN response that affects optimal

CD8+ T cell maturation resulted in enhanced lethality.

Future studies that administer neutralizing antibodies against

IFNAR, other individual IFN subtypes, or other anti- or pro-

inflammatory cytokines at different phases of acute virus infection

may reveal stage-specific requirements for shaping effector CD8+

T cells, the contraction phase, and the transition to central and

effector memory. Such studies, coupled with experiments in mice

with cell-type specific deletions of IFNAR, will provide new insight

into the spatial-temporal dynamics of CD8+ T cell expansion and

development during infection by different viruses.

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Institutional Animal Care and Use

Committee at the Washington University School of Medicine

(Assurance Number: A3381-01). All inoculation and experimental

manipulation was performed under anesthesia that was induced

and maintained with ketamine hydrochloride and xylazine, and all

efforts were made to minimize suffering.

Viruses and cells
The lineage 1 WNV strain 3000.0259 (WNV-NY) was isolated

in New York in 2000 [63] and passaged twice in C6/36 Aedes

albopictus cells. The lineage 2 WNV strain from Madagascar

(DakAnMg798, WNV-MAD) was isolated in 1978 and passaged

on C6/36 cells [35]. BHK21-15 cells were used for plaque assay

experiments with WNV. VV (Western Reserve) was grown in

Vero cells and purified by ultracentrifugation through a 36%

sucrose cushion.

Mice
Wild type and RAG1-/- C57BL/6 mice were obtained

commercially (Jackson Laboratories). C57BL/6.SJL-Ptprca/Boy-

AiTac (B6.SJL, CD45.1) mice were purchased (Taconic). IFNAR-/-

mice were obtained from J. Sprent (Scripps Institute, San Diego

CA) and were backcrossed ten times onto the C57BL/6

background. BATF3-/- mice [18] were backcrossed onto a

C57BL/6 background for ten generations. All mice were housed

in the pathogen-free mouse facility at the Washington University

School of Medicine. Mice (8 to 12 week-old) were inoculated

subcutaneously via footpad injection with 102 plaque-forming

units (PFU) of WNV-NY or WNV-MAD. VV (104 PFU) was

injected via an intraperitoneal route. MAR1-5A3 (mouse anti-

mouse IFNAR, IgG1) or isotype control GIR-208 (mouse anti-

human IFN-c receptor 1, IgG1) MAbs [23] were administered as a

single dose at 1 mg per mouse unless otherwise indicated by

intraperitoneal (IP) injection at specific times with respect to viral

infection. MAR-5A3 and GIR-208 MAbs were purchased (Leinco

Technologies) and certified as free of endotoxin contamination

and aggregates. The half-life of MAR1-5A3 is reported as 5.2 days

when a sufficient amount is administered to saturate the receptor

pool [23].

Quantification of viral burden
For analysis of viral burden MAR1-5A3 or GIR-208 was

administered two or four days after infection, and organs were

recovered on day 6 after cardiac perfusion with 10 ml of PBS.

Tissues were weighed, homogenized using a bead-beater appara-

tus, and titrated for WNV by plaque assay on BHK21-15 cells as

described previously [29]. Serum was obtained from whole blood

after phlebotomy of the axillary vein immediately before sacrifice

and viremia was measured by analyzing WNV RNA levels using

fluorogenic quantitative RT-PCR (qRT-PCR) as described [25].

WNV-specific antibody analysis
WNV-specific IgM and IgG levels were determined using an

envelope (E) protein–specific ELISA as described [64].

CD4+ and CD8+ T cell analysis
Intracellular staining of TNF-a and IFN-c from splenocytes

was performed as described previously [33]. Briefly, spleens were

harvested and homogenized to form a single cell suspension. Cells

(26106 cells) were added to a 96 well plate and incubated with

2 mg/ml brefeldin A (Sigma) for 6 h at 37uC with 1026 M of

immunodominant T cell peptides (WNV: Db-restricted NS4B

2488–2496 (SSVWNATTA) [33]; and VV: Kb-restricted A47L

138–146 (AAFEFINSL) and B8R 20–27 (TSYKFESV) [65]) or

2 mg/ml anti-CD3 (145-2C11) (BD Biosciences). After incuba-

tion, the cells were stained with directly labeled antibodies (all

from BD Biosciences unless indicated) against CD4 (GK1.5),

CD19 (6D5), CD43 (1B11), CD127 (SB/199), CD8b
(YTS156.7.7), CD44 (MI7), PD-1 (RMP1-30), and CTLA-4

(UC10-4B9, Biolegend). Db-NS4B tetramer was obtained from

the NIH tetramer core facility. Cells were washed, fixed, and

permeabilized with FixPerm Buffer (eBioscience), and stained

intracellularly for anti-IFN-c (XMG1.2), anti-TNF-a (MP6-

XT22, eBioscience), or anti-granzyme B (GB12, Invitrogen).

Lymphocytes were processed on an LSRII (BD Bioscience) using

FACSDiva 6.1.1 software (BD Bioscience) and analyzed with

FlowJo (Treestar). The total numbers of IFN-c or TNF-a
expressing CD4+ or CD8+ T cells was determined by multiplying

the percentage of IFN-c+ or TNF-a+ CD4+ or CD8+ T cells by

the total numbers of splenocytes. CD4+CD25+FoxP3+ regulatory

T cells were measured using a specific staining kit (eBioscience)

following manufacturer’s protocol.

Adoptive transfer experiments. Splenocytes from naı̈ve

wild type (CD45.1) or IFNAR-/- (CD45.2) mice were harvested.

CD8+ T cells were isolated by negative selection after mixing

splenocytes with biotinylated antibodies specific for CD4, NK1.1,

B220, and MHC class II (eBioscience). After incubation with anti-

biotin beads (Miltenyi Biotec), CD8+ T cells were collected (,85

percent purity) in the flow-through fraction. Wild type or IFNAR-/-

CD8+ T cells (36106) were transferred into RAG1-/- recipient

mice. One day later, mice were inoculated with 102 PFU of WNV,

and nine days post-infection, splenocytes were harvested and

analyzed by flow cytometry as described above.

Cytokine bioplex assay
The cytokine bioplex assay was performed on serum samples

from mice at day 6 and day 9 post-infection from WNV-infected

mice that had received either MAR1-5A3 or GIR-208 (1 mg/

mouse) at day 4 after infection. The BioPlex Pro Assay was

performed according to the manufacturer’s protocol (BioRad).

The cytokine screen included IL-2, IL-4, IL-10, IL-12p40, IL-

12p70, IL-15, IL-17, IL-18, IFN-c, and TNF-a.

In vivo cytolysis assay
In vivo killing of target cells was performed as previously

described [66]. Briefly, splenocytes from B6.SJL (CD45.1) mice

were isolated. Half of the cells were labeled with carboxyfluor-

escein diacetate succinimidyl ester (CFDA) at 500 nM and the
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remainder was labeled with 5 nM CFDA. After labeling, cells

labeled with 500 nM CFDA were pulsed for one hour at 37uC
with 1 mM NS4B 2488–2496 peptide, whereas the 5 nM CFDA

cells were not pulsed with peptide. Both sets of cells were counted

and equal numbers were mixed and injected intravenously (107

cells total per mouse) into recipient WNV-infected (at day 9 after

infection) or naı̈ve mice that had received either MAR1-5A3 or

GIR-208 (1 mg/mouse) at day 4 post-infection. After 8 hours, the

mice were sacrificed and splenocytes were gated on CD45.1 cells

(donor cells). The percent killing of target cells was calculated: (1 –

(ratio immune/ratio naive)) x 100. Ratio equals the number of

NS4B peptide-coated targets/number of reference targets [67].

Statistical analysis
For survival analysis, Kaplan-Meier curves were analyzed by

the log rank test. Statistical significance of viral burden, antiviral

antibody titers, and number of activated T cells were analyzed by

the Mann-Whitney test. All statistical analysis was performed using

Prism software (GraphPad Prism).

Supporting Information

Figure S1 Effect of MAR1-5A3 treatment on WNV-
specific B cell responses. Mice were infected with 102 PFU

of WNV and treated with 1 mg of MAR1-5A3 or GIR-208 at day

2 or 4 post infection (n = 5 to 9 mice per group). Serum was

harvested at day 6 or 9 after infection and analyzed for WNV-

specific IgM and IgG reactivity by ELISA using recombinant E

protein. The differences in antibody levels were not statistically

significant. WNV-specific IgG was not analyzed at day 6, as titers

are not evident until day 7 after infection.

(TIF)

Figure S2 Effect of day 4 treatment of MAR1-5A3 on
WNV-specific CD4+ T cell responses. Mice were infected

with 102 PFU of WNV and treated with 1 mg of MAR1-5A3 or

GIR at day 4 post infection (n = 23 mice per group). Intracellular

IFN-c (top, histograms; and middle, data summary) and TNF-a
(bottom, data summary) responses were measured after ex vivo

stimulation with anti-CD3 MAb. Asterisks indicate differences that

are statistically significant (*, P,0.05; **, P,0.01, ***, P,0.001).

(TIF)

Figure S3 Effect of MAR1-5A3 on Treg development in
WNV-infected mice. A. Mice were infected with 102 PFU of

WNV and treated with 1 mg of MAR1-5A3 or GIR-208 at four

days post infection (n = 8 to 9 mice per group). At day nine after

infection, the percentage and number of Tregs from the spleen was

determined after staining for CD4, CD25, and FoxP3 and flow

cytometric analysis.

(TIF)

Figure S4 Cell-extrinsic effect of type I IFN signaling in
CD8+ T cells on IFN-c and TNF-a production. An equal

number (106 cells) of naı̈ve CD45.2 IFNabR-/- or CD45.1 B6.SJL

purified CD8+ T were adoptively transferred into RAG1-/-

recipient mice (n = 5 mice per group). The following day the mice

were infected with 102 PFU of WNV and also phlebotomized to

confirm CD8+ T cell transfer (data not shown). At day nine,

spleens were harvested and intracellular IFN-c responses in

CD45.1 and C45.2 CD8+ T cells were measured by flow

cytometry after ex vivo stimulation with the Db-restricted NS4B

peptide. (Top panel) Adoptive transfer strategy. (Middle panels)

Gating strategy to distinguish cells from different donors in

recipient mice. (Bottom panels) Percentage and relative mean

fluorescence intensity of IFN-c+ and TNF-a+ CD8+ T cells.

(TIF)

Figure S5 Effect of MAR1-5A3 treatment on CD8+ T cell
cytotoxicity in vivo. At day 9 after infection, CFDA-labeled

peptide-pulsed CD45.1 naive target cells (splenocytes from B6.SJL

mice) were transferred to MAR1-5A3 or GIR-208-treated WNV-

infected or naı̈ve mice (n = 6 per group), and six hours later, mice

were sacrificed and splenocytes analyzed for the ratio of peptide

pulsed to non-pulsed cells by interrogating cells in the CD45.1

gate. The percentage of target cell killing in vivo was calculated by

determining the ratio of peptide-pulsed versus unpulsed cells for

each mouse, and by normalizing to that seen in naive mice.

(TIF)
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