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Abstract

Vibrio cholerae is a bacterial pathogen that colonizes the chitinous exoskeleton of zooplankton as well as the human
gastrointestinal tract. Colonization of these different niches involves an N-acetylglucosamine binding protein (GbpA) that
has been reported to mediate bacterial attachment to both marine chitin and mammalian intestinal mucin through an
unknown molecular mechanism. We report structural studies that reveal that GbpA possesses an unusual, elongated, four-
domain structure, with domains 1 and 4 showing structural homology to chitin binding domains. A glycan screen revealed
that GbpA binds to GlcNAc oligosaccharides. Structure-guided GbpA truncation mutants show that domains 1 and 4 of
GbpA interact with chitin in vitro, whereas in vivo complementation studies reveal that domain 1 is also crucial for mucin
binding and intestinal colonization. Bacterial binding studies show that domains 2 and 3 bind to the V. cholerae surface.
Finally, mouse virulence assays show that only the first three domains of GbpA are required for colonization. These results
explain how GbpA provides structural/functional modular interactions between V. cholerae, intestinal epithelium and
chitinous exoskeletons.
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Introduction

Vibrio cholerae is a Gram-negative bacterial pathogen that causes

excessive watery diarrhea in humans [1,2]. The number of

reported cases of cholera worldwide averages over 100000 per

annum for the last 10 years [1,3], and is presumed to be exceeded

by the number of unreported cases [3,4]. Most of these cases occur

in countries with poor sanitation [5,6]. V. cholerae strains are

classified into more than 200 serogroups, with only the serogroups

O1 and O139 possessing epidemic potential. It has been shown

that the survival of Vibrio cholerae in the intestine is dependent on its

ability to adhere to and colonize cell surfaces [7,8]. In aquatic

environments, attachment to fish, crustacea and algae enables the

bacteria to obtain nutrients, thereby provide a competitive

advantage compared to other free-swimming bacteria [8,9,10].

Adherence to aquatic organisms is believed to involve a different

set of genes and recognition molecules as compared to those used

for intestinal colonization. For example, plankton surface

colonization by the bacteria is more dependent on the mannose

sensitive hemagglutinin (MSHA) [11,12].

Recent studies have suggested that Vibrio cholerae secretes a

protein that mediates adhesion in aquatic environments, e.g. to

plankton, as well as adhesion to human intestinal cells [7,10]. This

protein, GlcNAc binding protein A (GbpA) binds to N-acetylglu-

cosamine (GlcNAc)- containing carbohydrates, such as chitin, and

is secreted by the type 2 secretion system [7]. In addition to chitin,

GbpA has been shown to bind to mucins [13] that also contain

GlcNAc as part of their densely packed network of O-linked

glycans (reviewed in [14,15]). The importance of GbpA for

bacterial colonization has been demonstrated for the O395 [7]

and N16961 Vibrio cholerae strains [16] (representing classical [17]

and El Tor [18] biotypes, respectively).

Here, we have studied the molecular basis of the function of

GbpA as a colonization factor, using a combination of approaches.

Firstly, we determined the three-dimensional structure of GbpA

using a combination of X-ray crystallography and small angle X-

ray scattering, revealing an unusual, elongated four-domain fold.

Two domains appear to be structurally similar to known chitin

binding modules, and we show these domains to be responsible for

the ability of GbpA to bind chitin. The other two domains possess
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distant structural homology to bacterial pili binding proteins and

serve to bind the V. cholerae surface. Finally, complementation

studies with truncated forms of GbpA identify the domains

responsible for mucin binding and virulence in a V. cholerae mouse

infection model.

Results

GbpA is a multi-domain protein
Full-length GbpA and a range of truncated forms of GbpA (see

Supplemental Table S1 in Text S1 for a summary of all constructs

used in this study) were cloned and expressed in E. coli. The

mature form of the protein (residues 24 to 485, GbpAfl) was

extracted from the periplasm and purified by chromatography.

Two C-terminally truncated forms of mature GbpA, comprising

amino acids 24–203 (GbpAD1), and 24–414 (GbpAD1–3), were also

produced. Two N-terminally truncated forms of GbpA comprising

amino acids 210–414 (GbpAD2–3), and 423–485 (GbpAD4) were

expressed as GST fusion proteins and purified to homogeneity.

Although extensive efforts were made to crystallise full-length

GbpA, GbpAD1–3 was the longest construct that could be

crystallised. The GbpAD1–3 structure was solved by SAD phasing,

and refined against 1.8 Å synchrotron diffraction data (Supple-

mental Table S2 in Text S1). The structure of GbpAD1–3 reveals

three distinct domains rich in b-structure, linked by disordered

loops (Figure 1A,B). These three domains, and their similarities to

previously reported protein structures, are discussed separately.

Domain 1 is structurally similar to a CBM33 chitin binding
protein

Domain 1 (GbpAD1) comprises a four-stranded and a three-

stranded b-sheet forming a b-sandwich (Figure 1B,C). Between b-

strands 1 and 3, a 65-residue loop forms a pseudo-domain, which

consists of short a-helices, a b-strand, and loops. There are also

two disulphide bonds formed: one in the loop/helical region (Cys-

42 and Cys-56) and one linking b-strands 4 and 5 (Cys-152 and

Cys-169) (Figure 1B). A structural similarity search with the Dali

server [19] identified chitin binding protein 21 (CBP21) from S.

marcescens, which is part of the CAZy Carbohydrate Binding

Module family 33 (CBM33 [20]) as a structural homologue

(Figure 2, RMSD = 0.9 Å for 168 Caatoms, 47% sequence

identity). Previous work has shown that CBP21 facilitates chitin

degradation in the presence of chitinases [21]. Previous work

[21,22] has shown that residues Y54, E55, E60, H114, D182 and

N185 are important for chitin binding by CBP21. Interestingly,

most of these are conserved in GbpA domain 1 (Figure 2), except

N185, equivalent to GbpA A191. Y54 in CBP21 has been shown

to play a role in determining binding specificity as well as affinity

for different types of chitin [22]. Residue 191 of GbpA is an

alanine, and mutation of the equivalent N185 in CBP21 to alanine

resulted in a three-fold reduction in chitin affinity [22]. A

noticeable difference between CBP21 and GbpAD1 are the lengths

of two loops: one located between b-strand 1 and a-helices 1

(amino acids 29 to 39), and another between a-helices 1 and a-

helices 2 (amino acids 44 to 56) of GbpA (Figure 1B Figure 1C).

These loops form a continuous patch on the opposite side from the

proposed chitin binding face of domain 1 (Figure 2).

GbpA domains 2 and 3 possess distant structural
similarity to bacterial surface proteins

Structural similarity searches with DALI revealed only distant

structural similarities between domain 2 of GbpA and the b-

domain of the flagellin protein p5 (Z = 4.0, RMSD = 2.9 Å for 68

Ca atoms, Figure 2). According to Maruyama et al., this domain

interacts with the bacterial surface, and functions to project an

alginate binding domain of the protein from the cell surface [23].

A more significant structural match was observed for domain 3 of

GbpA. This domain has an immunoglobulin fold (Figure 2) with

significant structural similarity to over 200 structures in the PDB.

The best hit was SFAE (Z = 9.8, RMSD = 2.4 Å for 91 Ca atoms),

a chaperone that functions to fold and transport components of

Escherichia coli surface pili to the cell surface [24]. Structures similar

to SFAE have been solved in complex with pili subunits; for

instance, the protein FimC (the 4th best DALI hit, Z = 9.4,

RMSD = 2.2 Å for 91 Ca atoms, Figure 2) has been solved in

complex with the pili subunit FimH [25,26] (Figure 2).

Domain 4 is similar to a chitinase chitin binding domain
The crystal structure of GbpAD1–3 lacks the C-terminal domain

4, comprising residues 415–485 (Figure 1). Sequence alignments

revealed that this domain shows 26% sequence identity with the

C-terminal chitin-binding domain of S. marcescens chitinase B

(SmChiB), whose structure is almost devoid of helices and contains

32% b-strands (Supplemental Figure S1 in Text S1, [27]). Indeed,

when this GbpA domain (GbpAD4) was expressed and purified,

circular dichroism experiments showed that it also possesses an

essentially all-b secondary structure (Supplemental Figure S1 in

Text S1). Interestingly, the sequence alignment suggests that only

one (W479) of two aromatic residues (W479 and Y481 [27]) that

are thought to be important for SmChiB-chitin interactions is

conserved in GbpA (W463). However, the aromatic residues that

form the hydrophobic core of the SmChiB chitin binding domain

(Y470, Y473, W492) are conserved in GbpA. Taken together, it is

likely that GbpA possesses an additional C-terminal domain 4,

with structural similarity to the SmChiB C-terminal chitin binding

domain.

GbpA exists as an elongated monomer in solution
To determine the position of domain 4 in the context of the

complete GbpA structure, we studied the solution shapes of full

length GbpA and GbpAD1–3 with Small Angle X-ray Scattering

Author Summary

Vibrio cholerae is the bacterium that causes cholera, a
disease endemic in developing countries with poor
sanitation. The bacterium colonizes aquatic organisms
that serve as a reservoir of transmission to humans. Our
work has focused on GbpA, a protein that is secreted by V.
cholerae and appears to facilitate growth of the bacteria
both in the human intestine and on the exoskeletons of
marine organisms. We show that the protein possesses an
unusual three-dimensional structure consisting of four
separate domains. Two of the domains are similar to
proteins that are known to bind chitin, an exoskeleton
biopolymer, and our data show that these domains indeed
harbour the chitin binding properties of GbpA. One of
these domains is also capable of binding intestinal mucus.
The two remaining domains are required for interacting
with the bacterium itself, creating a stable interface
between the bacterium and the human/marine host,
facilitating colonization. Finally, work with a cholera mouse
model shows that only the first three domains of GbpA are
required for colonization. These results show how GbpA
provides structural/functional modular interactions be-
tween V. cholerae, the intestinal epithelium and chitinous
exoskeletons.

GbpA Is a Modular Colonization Factor
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(SAXS). The scattering curves yielded estimated molecular masses

for GbpAfl (6065 kDa) and GbpAD1–3 (4665 kDa) samples that

are compatible with their monomeric structures (theoretical masses

of 54 kDa and 44 kDa, respectively). This finding is further

corroborated by the excluded volumes of GbpAfl (100610 nm3)

and GbpAD1–3 (80610 nm3), since for sufficiently large globular

proteins the hydrated volume in nm3 should numerically be about

twice the molecular mass in kDa [28]. The experimental radius of

gyration Rg (3.9060.05 nm for GbpAfl and 3.5560.05 nm for

GbpAD1–3) and maximum diameter Dmax (13.561.0 nm for GbpAfl

Figure 2. Comparisons of domains 1–3 of GbpA with structural homologues. The space filled models for each domain of the crystal
structure of GbpAD1–3 are shown superimposed onto the corresponding ribbon models. For each ribbon models, the secondary structure was
coloured in the same scheme as Figure 1B. Each domain of GbpAD1–3 was parse through a structural alignment server (DALI, [19]). The protein
domains giving the best alignment to each domain of GbpA are presented on the right as space filled models superimposed onto their
corresponding ribbon models. The individual domains of GbpA are also presented in the same orientation as the structural homologues. For the first
row CBP21 (2BEM.pdb) aligned the best to Domain 1 of GbpA. The magenta-coloured surfaces of domain 1 and CBP21 indicate areas of high
sequence conservation, with side chains specifically discussed in the text shown as sticks and labelled. The position of CBP21 Y54 (and the GbpA
equivalent Y61) that is critical for chitin binding is coloured in pink. Arrows indicate the position of the extended loops in GbpA that are absent in
CBP21. For the second row, the flagellin protein p5 (2ZBI.pdb) showed the closest structural alignment to domain 2 of GbpA. For the third row, the
pili-binding chaperone FimC (1QUN.pdb) was shown to be structurally similar to domain 3 of GbpA. The structure of FimC was solved in complex
with part of the Type 1 pili FimH. In the figure, FimH is shown in magenta.
doi:10.1371/journal.ppat.1002373.g002

Figure 1. Structure of GbpA. A. Schematic representation of the functional domains of GbpA. The residue boundaries for each domain of the
determined structure of GbpA are numerically labelled above the diagram. The N-terminus SP box refers to the signal peptide that signals the protein
for secretion through the type-2 secretory pathway. B. Stereo images of the crystallised structure of GbpAD1–3. The structure is coloured according to
the secondary structure for each domain. For domain 1, the a-helices are coloured blue, b-sheets are coloured in red. For domain 2, the a-helices are
coloured in brown, and the b-sheets are coloured in cyan. For domain 3, the b-sheets are coloured in yellow. All strands are coloured in grey. The
residues defining domain boundaries are labelled accordingly. The disulfide bonds are coloured as two yellow coloured sticks. The first and last b-
strands for each domain, and all a-helices are labelled. C. Topology diagram of GbpAD1–3 drawn using TOPDRAW [52]. The b-stands and the a-helices
are numbered sequentially. D. The ab initio SAXS model of GbpAfl (gray spheres) is superimposed onto the structure of GbpAD1–3 and the modelled
structure of GbpAD4 (ribbon models) as determined by rigid body refinement using SASREF.
doi:10.1371/journal.ppat.1002373.g001

GbpA Is a Modular Colonization Factor
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and 11.561.0 nm for GbpAD1–3) ) indicate that the proteins behave

as extended particles. The solution shapes of GbpAfl and GbpAD1–3

were reconstructed ab initio using the program DAMMIF [29], with

good discrepancy factors (x= 1.16 for GbpAfl and x= 1.22 for

GbpAD1–3). For each protein, ten independent reconstructions

produced similar shapes and these were averaged using DAMA-

VER [30]; the ab initio structure is represented in Figure 1D as a

wired mesh. To determine the relative orientations of the domains,

a model of GbpAfl was generated by rigid-body refinement with the

separate GbpA domain structures taken from the domain 1–3

crystal structure (Figure 1B), and the model of domain 4

(Supplemental Figure S1 in Text S1), fitting simultaneously to the

experimental SAXS data of GbpAD1–3 with x= 1.41 and of GbpAfl

with x= 1.53. GbpAfl and GbpAD1–3 adopt a rod shape with the

domains twisted along the long axis (Figure 1D). There are no direct

inter-domain interactions, and the surface of each domain appears

to be completely exposed to the external environment, suggesting a

certain degree of flexibility in the orientation of each domain of

GbpA.

GbpA selectively binds chito-oligosaccharides through
domains 1 and 4

Previous work has suggested that GbpA binds N-acetylglucosa-

mine (GlcNAc) sugars [7]. To investigate whether this extends to

GlcNAc-containing glycans, we studied the binding specificity of

GbpA by screening a well-established library of mammalian N/O-

linked glycans that also includes a range of linear oligosaccharides

[31,32]. Interestingly, GbpAfl selectively binds chito-oligosaccha-

rides of varying length (Figs. 3A, S5) To quantify chitin binding

and identify the domains responsible, direct binding assays were

carried out with a range of polysaccharides (Figure 3B). GbpAD4

binds to all chitin forms tested with the highest affinity for

amorphous forms of chitin (colloidal chitin and chitin beads).

GbpAD1 shows significant binding only to a- and b-chitin

(Figure 3B). GbpAD2–3 does not bind chitin. For GbpAfl strong

binding to all forms of chitin was observed. None of the GbpA

proteins showed binding to GlcNAc-beads or cellulose. Although

this is in apparent contrast with a previously published report

showing that GbpA-expressing V. cholerae bind to GlcNAc beads

[7], it could also suggest that additional bacterial factors may be

required for the reported GlcNAc binding. Together, these data

show that the two terminal chitin-binding domains in GbpA

endow the protein with the ability to bind different types of

GlcNAc oligomers and polymers.

Domain 1 of GbpA is required for mucin binding
V. cholerae GbpA has been shown to interact with intestinal

mucin [13]. To identify the domain(s) involved, GbpAfl and its

truncated variants were tested for their ability to bind to mucin,

mucin coupled to sepharose beads, intestinal epithelial cells and

brush border membranes of the intestine (Table 1). GbpA with a

Tyr61Ala (GbpA(Y61A)) mutation was also tested to assess whether

Tyr61 is important for mucin binding as has been shown for chitin

binding in the case of the equivalent Tyr54 in CBP21.

Interestingly, only GbpAfl, GbpA(Y61A), and GbpAD1–3 bind to

mucin with mM affinity, further confirmed by ELISA for those

domains that tested positive in the initial mucin-binding test. Thus,

domain 1 is essential for mucin binding and domain 4 is

dispensable for mucin binding. Tyr61 on domain 1 of GbpA is

not essential for mucin binding.

To further investigate mucin binding to domain 1, competitive

mucin binding assays were carried out with recombinant truncated

versions of GbpA and wild type V. cholerae (N16961) (Figure 4A).

Increasing concentrations of purified GbpA variants added to

mucin-coated wells showed varying abilities of the proteins to

prevent bacteria from binding the immobilized mucin. GbpAfl,

GbpA (Y61A), GbpAD1 and GbpAD1–3 could inhibit binding of

N16961 to mucin in a concentration-dependent, saturating

manner (Figure 4A). At saturation, GbpAfl and the GbpA(Y61A)

mutant inhibited binding of V. cholerae to mucin by 83%.

Truncated GbpA variants comprising only domains 2, 3, and/or

4 could not inhibit the binding of V. cholerae to mucin, in agreement

with the direct binding assays.

GbpA domains 1–3 are essential for intestinal
colonization and pathogenesis

In order to understand which domains of GbpA are essential for

colonization, we first studied the surface expression of these

domains in complemented GbpA knockout V. cholerae strain

N16961 (N1RB3 or DgbpA). Immunoblot analysis revealed that the

DgbpA strain complemented with GbpAfl, GbpA(Y61A), or

GbpAD1–3 displays these proteins on the bacterial surface

(Supplemental Figure S2 in Text S1). For the strains comple-

mented with GbpAD1, GbpAD2, GbpAD2–3, or GbpAD4, no

protein could be detected on the bacterial cell surface (Supple-

mental Figure S2 in Text S1). These results suggest that the

presentation of domain 1 on the cell surface is dependent on the

presence of domains 2 and 3.

To probe the role of domains 1–3 in intestinal colonization, the

pathogenicity of the complemented strains was analyzed by

studying intestinal fluid accumulation and colonization in a mouse

model (Figure 4B and Figure 5A). All complemented strains were

similar to the wild type strain, with the exception of the GbpAD2–3

complemented strain (N1RB3-GbpAD2–3), which was affected in

its ability to colonize the mice, similar to the DgbpA N16961

control (N1RB3).

Domains 2 and 3 of GbpA interact with V. cholerae
surface

As shown earlier, GbpA domains 1 and 4 are mainly responsible

for chitin, mucin and intestinal epithelium binding. However,

GbpA is a secreted protein, and some of the domains must

therefore be capable of interacting with V. cholerae surface to form a

stable host-pathogen interface. To test this, we investigated

binding of recombinant full length, mutant and truncated versions

of GbpA to the DgbpA strain (Figure 5B). The results suggest that

domains 2 and 3, but not domains 1 or 4, are required for binding

to the bacterial surface.

Discussion

Since the discovery of GbpA, little progress has been made

towards an understanding of the molecular properties governing

the protein’s ability to mediate interactions between the bacteria

and the host surfaces, both in the marine environment and the

mammalian host. While it has been reported that the protein binds

to chitin and intestinal epithelia, the chitin specificity was not

probed, nor was it understood how the protein interacts with

intestinal epithelial cells. Here we have reported the crystal and

solution structures of GbpA, showing an unusual 4-domain

elongated structure. Remarkably, the modular domain structure

translates to modular interaction properties with different

substrates/surfaces. For instance, the first domain has a pseudo-

fibronectin type 3 fold that shares considerable similarity with the

chitin-binding protein CBP21. Our chitin binding studies showed

that this domain, like CBP21, binds to a/b chitin. Furthermore,

we were able to demonstrate the interaction of the domain 1 with

mucin, a key surface component of intestinal epithelial cells. Thus,

GbpA Is a Modular Colonization Factor
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the first domain of GbpA harbours the ability to bind to both

mucin and certain types of chitin. It is not uncommon that

carbohydrate binding modules (CBMs) bind to several substrates

or that the same CBM scaffold is used for various binding

specificities [20].

For GbpA domains 2 and 3, virtually no sequence similarity to

any proteins of experimentally defined function exists. Obtaining

the crystal structure of these two domains has given suggestions as

to their possible function. Domains 2 and 3 bear some

resemblance to proteins such as SFAE and FIMC, chaperones

Figure 3. Glycan microarray analysis and chitin binding studies of GbpA. A. GbpAfl was screened against an array of glycans. For greater
clarity, only those with high signal intensity are presented, and the remaining glycans can be seen in the supplementary section (Supplemental
Figure S3 in Text S1). The glycan structures are presented on top of the bar chart, and their abbreviated numbers are shown on the X-axis. The
glycans showing the highest binding by GbpAfl are ranked accordingly with penta-GlcNAc (Glycan 1) showing the highest binding by GbpAfl and
glucose showing the lowest (Glycan 30). B. GbpAfl and truncations were screened for their binding to different forms of chitin/cellulose. Briefly,
GbpAfl and various truncations were incubated with chitin or cellulose insoluble substrates. The insoluble substrates were separated by
centrifugation, and the amount of protein left in solution (percentage unbound) was measured by Bradford assay. Presented here is the percentage
of bound GbpA to the substrate after subtraction of the percentage of the protein unbound in the supernatant.
doi:10.1371/journal.ppat.1002373.g003

GbpA Is a Modular Colonization Factor
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that interact with pili and form part of the chaperone-usher

pathway of pili biosynthesis. Both these chaperones reside in the

periplasm, but in the case of FimC, reports have shown that the

proteins can interact with pili subunits, such as FimH, in vitro

[33,34]. Interestingly, our in vivo studies show that domains 2 and 3

of GbpA are required for interaction with the bacterial surface. It

is also possible that the two domains may facilitate transportation

of GbpA to the cell surface via the type II secretion system.

The structure of domain 4 has so far not been obtained, despite

numerous attempts to crystallize either the full-length GbpA, this

domain alone or as a complex with short chain chitin. The

sequence of the domain is distantly related to the chitin binding

domain of SmChiB (Supplemental Figure S1 in Text S1) suggesting

a chitin binding function [7]. In our chitin binding assay, we show

that domain 4 has greater binding affinity to colloidal chitin and to

chitin beads than domain 1. However, domains 1 and 4 together

conferred greater binding to chitin of all forms. In contrast to a

previously published report [7], no binding of domains 1 and 4

was observed to single GlcNAc residues. Also, domain 4 cannot

bind to mucin and is dispensable for V. cholerae colonization of

intestinal epithelial cells and pathogenesis.

We also attempted to identify the core glycan unit of mucin that

GbpA interacts with; however, none were detected in the

glycomics screen that includes simple single O-linked core

structures that are commonly found present on mucins. It is

possible that GbpA binding to mucin depends on the glycan-

protein linkage, as is not uncommon for other glycan binding

proteins [35], or the binding avidity of GbpA for mucin that

cannot be simulated on the glycan binding array [36].

In light of our results, we propose the following mechanism for

GbpA-mediated bacterial colonization of intestinal epithelial cells.

V. cholerae constitutively produces GbpA prior to colonization,

mainly as a secreted protein. Once in the host intestine, GbpA

attaches itself via domain 1 to mucin, thereby marking the surface

for V. cholerae colonization. Domains 2–3 of the protein then bind to

the V. cholerae surface, enhancing microcolony formation. In a

marine environment, domains 1 and 4 provide GbpA with versatile

binding properties to different types of crystalline chitin, allowing

the bacterium to attach to, and colonize, a range of crustacea.

Materials and Methods

Ethics statement
All animal experiments were conducted following the standard

operating procedure as outlined by Committee for the Purpose of

Supervision and Control of Experiments on Animals (CPCSEA)

Govt. of India. The animal experimental protocol was approved

by the Institutional Animal Ethics Committee of National Institute

of Cholera and Enteric Diseases (NICED) (Registration No. 68/

1999/CPCSEA dated 11-03-1999). New Zealand white rabbits

weighing about 2 kg were used for intestinal mucin preparation. 4

to 5 days old BALB/c mice were used for fluid accumulation

studies. For intestine harvesting, the animals were euthanized in a

CO2-chamber. All efforts were made to minimize suffering during

euthanasia.

Cloning and sequencing
The gene coding for full-length gbpa (1–485 amino acids,

accession number VCA0811) was cloned from genomic DNA of V.

cholerae into the plasmid pET-22b between the NdeI and XhoI sites

(Novagen). The primers used to amplify the gene were 59-

GCGGAATTCCATATGAAAAAACAACCTAAAATGACCG-

C-39 for the forward primer carrying the NdeI restriction site, and

59-CCTCGAGTCATTAACGTTTATCCCACGCCATTTCC-

C-39 with the XhoI restriction site. From this clone, several

truncated versions of GbpA were made either by introducing a

stop codon in the original expression vector (pET22b) through the

use of the QuickChange mutagenesis kit (Stratagene, La Jolla,

CA), or by subcloning into pGEX6P vector (GE Healthcare)

through the BamHI and XhoI restriction sites. All constructs used

are summarised in Supplemental Table S1 in Text S1. Constructs

in the pET22b vector (containing the natural transit signalling

peptide for secretion) include GbpA comprising of the following

amino acids: 1–485 , 1–414, and 1–203. The mature forms of

these proteins produced by the bacteria would comprise of the

following amino acids: 24–485 (GbpAfl), 24–414 (GbpAD1–3), and

24–203 (GbpAD1). A mutant form of full length GbpA was also

generated to introduce a substitution at amino acid position 61

from tyrosine to alanine (GbpA(Y61A)). The constructs in the

pGEX6P vector consisted of GbpA with N-terminal truncations

and covered amino acids 210–315 (GbpAD2), 210–414 (GbpAD2–

3), and 423–485 (GbpAD4). The constructs were verified by DNA

sequencing (Dundee Sequencing Service).

Protein production
The constructs of GbpA were transformed into E. coli C43. To

induce protein expression, the bacteria were grown in LB medium

to an OD600 of 0.6 before induction with isopropyl-b-D-

thiogalactoside (IPTG) at a final concentration of 0.2 mM, and

Table 1. Binding of GbpAfl, GbpA(Y61A) and various truncated versions of GbpA to mucin, intestinal epithelial cells (IEC), and brush
border membranes (BBM).

GbpA proteins
Kd (mM) of mucin
binding by ELISA

Kd (mM) of direct mucin
binding by Scatchard plot

Kd (mM) of
IEC binding

Kd (mM) of BBM
binding

GbpAfl 7.861.3 9.462.0 11.962.1 12.560.7

GbpA(Y61A) 14.760.6 14.161.0 18.560.6 16.460.1

GbpAD1–3 13.260.7 12.561.0 15.460.9 13.160.3

GbpAD1 8.760.4 ND ND ND

GbpAD2 NB* ND# ND ND

GbpAD3 76.468.3 ND ND ND

GbpAD4 NB NB ND ND

Values are the means of triplicate determinations from two separate experiments.
*No binding was detectable.
#Not determined.
doi:10.1371/journal.ppat.1002373.t001
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incubation for 16 h at 20uC. Depending on the vector used

(pET22b or pGEX6P), two methods were employed to extract the

recombinant protein from the bacterial lysate. GbpAfl, GbpAD1–3,

and GbpAD1 were prepared from a periplasmic fraction prepared

by osmotic shock. The method involved centrifuging (45506g) the

cells and then resuspending them in periplasmic buffer (200 mM

Tris/HCl pH 7.5, 20% sucrose, 1 mM EDTA and 0.5 mg/ml

lysozyme) for 30 minutes at room temperature. The suspension

was then cold shocked on ice for 10 minutes, and the periplasmic

content isolated by centrifugation at 4000 g (4uC). The proteins

Figure 4. Mucin binding and in vivo colonisation assays of GbpA. A. Competition binding assays of wild type V. cholerae for surface mucin.
Mucin-coated plates were pre-treated with various concentrations of either GbpAfl, GbpA(Y61A), or truncated versions of GbpA prior to the addition of
labelled wild type V. cholerae. The amount of bacteria bound was measured at OD 492. B. In vivo colonisation studies of wild type and GbpA-
complemented V. cholerae strains. Mice were orally inoculated with either wild type (N16961), GbpA knock out (N1RB3), or complemented V. cholerae
strains at varying amount. The intestines of the infected mice were extracted, and the degree of V. cholerae colonisation measured. Data represent
means 6 SEM of at least 4 independent experiments.
doi:10.1371/journal.ppat.1002373.g004
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were further purified by anion exchange chromatography

(Amersham, Q sepharose) in 25 mM Tris/HCl (pH 7.5) at a flow

rate of 2 ml/min, and eluted with a NaCl gradient (0–500 mM)

over a volume of 100 ml. Fractions containing GbpA (GbpAfl,

GbpAD1–3, or GbpAD1) were identified by SDS-PAGE and

pooled.

GbpAD2, GbpAD2–3, and GbpAD4 were purified from the

cytoplasmic fraction of the bacterial cell lysates. The lysis method

Figure 5. In vivo infectivity assays and bacterial surface binding assays of GbpA. A. Fluid accumulation assays of mice infected with wild
type or GbpA complemented V. cholerae. Mice were infected with either wild type (N16961), GbpA knock out (N1RB3), or complemented V. cholerae
strains. At various times (incubation time) after infection, the mice were sacrificed, and the intestinal weight relative to the whole body without the
intestine was measured (FA ratio). Data represent means 6 SEM of six independent experiments. B. Binding of recombinant GbpA to V. cholerae
surface. 400 ng of recombinant full length GbpA, or various truncations of GbpA were incubated with 100 ml of GbpA knockout V. cholerae strain
(N1RB3) at 107 CFU/ml. The amount of each protein that bound to the bacteria was detected using antibodies raised against the recombinant
protein.
doi:10.1371/journal.ppat.1002373.g005
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involves harvesting the induced cells by centrifugation (4550 g),

and subsequently resuspending the bacteria in lysis buffer (25 mM

Tris/HCl pH 7.5, 150 mM NaCl). Lysozyme (0.1 mg/ml) and

DNAse (0.1 mg/l) were added, and the mixture was incubated on

ice for 20 minutes. The lysate was then sonicated before

centrifugation at 50000 g for 30 minutes. The soluble fraction

was collected, passed through a 0.2 mm filter, and incubated with

glutathione beads (pre-equilibrated with lysis buffer) for 2 h. Beads

containing GbpA were washed with lysis buffer followed by

digestion with PreScission protease. Proteins were further purified

by gel filtration (26/60 Superdex 200) in lysis buffer.

Crystallization, structure solution and refinement
Purified GbpAD1–3 was concentrated to 25 mg/ml, and used for

sitting drop vapor diffusion crystallization experiments using a

mother liquor containing 0.2 M Mg(HCO3)2, 50% (w/v) PEG

3350, 3.33% (w/v) D-sorbitol. For phasing, crystals were soaked

with mother liquor containing 20 mM zinc chloride for 12 h.

Crystals were cryoprotected with mother liquor containing 5%

glycerol (v/v) and then frozen in a nitrogen cryostream. Data were

collected on beamline BM14 at the European Synchrotron

Radiation Facility and processed with the HKL suite [37]

(Supplemental Table S2 in Text S1). Six zinc atoms sites were

located by SOLVE, yielding phases to 2.25 Å with an overall

figure of merit of 0.30 (Supplemental Table S2 in Text S1) [38].

Combination of the SAD phases with the native amplitudes,

solvent flattening and two-fold averaging using DM [39] resulted

in an interpretable map. WarpNtrace [40] was used to build a total

of 624 (our of 782) residues. The model, excluding 203–208 and

313–318, was completed using Coot [41] interspersed with

refinement with REFMAC [42] (Supplemental Table S2 in Text

S1). The asymmetric unit contained two monomers, with an

RMSD of 0.6 Å. In the interest of simplicity, monomer A was used

throughout the data analysis and discussion in this manuscript.

Small angle X-ray scattering (SAXS)
Synchrotron SAXS data of GbpA were collected according to

the standard protocols established at the X33 beam line at the

Deutsches Elektronen-Synchrotron DESY (Hamburg, Germany),

as detailed in the supplementary material. Briefly, twenty low-

resolution models of GbpAfl were built by the program DAMMIF

[29] and averaged. A model of GbpAfl was also constructed by

rigid body modelling using the program SASREF [43], employing

the individual GbpA domain structures.

Glycan and chitin binding experiments
Recombinant GbpAfl and truncated forms of GbpA were

screened for glycan binding against a library of 264 natural and

synthetic glycans (100 mM) with amino linkers, and printed onto

chemically-modified glass microscope slides. The facility to carry

out the experiment (Core H, Printed Array Version 2) was kindly

provided by the Consortium of Functional Glycomics (http://

www.functionalglycomics.org). The method used to prepare the

samples for glycan binding analysis has been reported previously

[44]. Six measurements were made and the values averaged

(reported here as average Relative Fluorescence Units). Additional

results from the screen are available from the supplementary

section (Supplemental Figure S2 in Text S1).

Chitin binding experiments
GbpAfl, GbpAD1–3, GbpAD1, GbpAD2–3, and GbpAD4 (all 5 mM)

in PBS buffer (pH 7.5) were incubated for 24 hours at 21uC with

various chitin substrates (5 mg/ml) in a total volume of 300 ml per

sample. All samples were run in triplicate, including controls that

contained only buffer and substrate. The chitin substrates used were

a-chitin (from shrimpshells, Hov-Bio, Tromsø, Norway), b-chitin

(from squid pen, France Chitin, Marseille, France), colloidial chitin

(made from crab a-chitin from Sigma), chitin-beads (New England

BioLabs), GlcNAc-coated agarose beads (Fluka), and Avicel

(microcrystalline cellulose, Sigma). The binding experiment was

carried out in Eppendorf tubes where protein and substrate were

mixed by axial rotation. After incubation, samples were centrifuged

for 5 minutes at 25,5006 g, followed by separation of the pellet

(substrate) and supernatant. The protein concentration of the

supernatant (unbound protein) was estimated using the Bio-Rad

Bradford microassay. The substrate pellets containing bound

protein were washed twice with 1.5 ml of PBS, and subsequently

boiled for four minutes in 50 ml SDS-PAGE sample buffer. After

centrifugation proteins bound to the substrates, now solubilized and

denatured were analyzed by SDS-PAGE, using Coomassie protein-

stain and methanol/acetic acid (10% v/v) de-stain for visualization

of the protein bands.

Binding studies of GbpA with mucin by ELISA
Rabbit mucin was prepared by intestine scraping as described

previously [13]. Briefly, mucin was prepared from by isopyknic

ultracentrifugation in cesium chloride [45]. Primary intestinal

epithelial cells (IEC) and their brush borders were isolated by

previously described methods [46,47]. IEC were used at a

concentration of 26106 cells/ml and were stimulated for different

time points in 5% CO2 at 37uC with recombinant GbpAfl and

truncations of GbpA. 100 ng of rabbit mucin was coated on the

wells of a microtitre plate. The coated plate was kept at 4uC
overnight. The unbound mucin was washed with phosphate

buffered saline containing 0.5% tween-20 (PBS-T) the next

morning. The wells were then blocked with 5% milk in PBS-T

for 2 hours. 1–25 mM of recombinant GbpA or its mutant proteins

was prepared in PBS, and then applied into the wells in triplicate.

After 1.5 hours of incubation, unbound proteins were washed with

PBS-T, and anti-GbpA antibody was added to the wells in 1:250

dilution (prepared in 5% non-fat milk containing PBS-T), prior to

incubation for 1.5 hours. Excess antibody was washed in PBS-T,

and HRP conjugated anti-mouse antibody (1:400 dilution) in 5%

non-fat milk containing PBS-T was added, and further incubated

for 45 minutes. The unbound secondary antibody was washed

with PBS-T, and o-phenylenediamine H2O2 was applied to

develop the colour. The absorbance of each well was measured at

492 nm using an automated ELISA reader (Beckman Coulter).

The absorbance reading and the maximum binding was assigned

the value 1. Data fitting was done using Kyplot version 2.0 Beta15

(32 bit) to obtain the best-fit curves and to obtain the dissociation

constant (Kd). Values are the means of triplicate determinations

from two separate experiments.

Binding studies of GbpA with immobilized mucin
Rabbit mucin was diluted in binding buffer (0.2 M NaH-

CO3+0.5 M NaCl, pH 8.3) at a protein concentration of 2.6 mg/

ml, and then coupled to NHS-activated sepharose resin (GE

Healthcare). The unbound mucin was washed with buffer A

(0.5 M triethanolamine+0.5 M NaCl pH 8.8) followed by buffer B

(0.2 M NaOAc+0.5 M NaCl pH 3.8) following manufacturer’s

protocol. Different amounts of GbpAfl, truncations or its mutants

were added in equal volumes to 400 ml of mucin-coupled resin,

and the mixtures were incubated for 2 hours at room temperature

with shaking. Unbound protein was removed by centrifugation

and was measured by protein assay reagent. Kd was calculated by
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plotting bound vs. bound/free for each fraction in a Scatchard

plot.

Inhibition of bacterial binding to mucin
100 ng of rabbit mucin was coated on the wells of a microtitre

plate as described above. The wells were then blocked with 5% milk

in PBS for 2 hours. Different concentrations of GbpAfl and

truncations of GbpA were applied to the wells in triplicate. After

1.5 hours of incubation unbound proteins were washed with PBS.

V. cholerae N16961O1 El Tor was biotinylated as described

previously [48]. 16104 CFU/ml of biotinylated V. cholerae were

added to each well. After 1.5 hours of incubation, unbound bacteria

were washed with PBS, and HRP-conjugated avidin (1:250 in PBS)

was applied to each well. The unbound HRP conjugated avidin was

washed with PBS, and o-phenylenediamine H2O2 was added. The

absorbance of each well was measured at 490 nm.

Transformation of gbpA and its mutant constructs into
N1RB3 strain

The gbpA knockout strain, N1RB3, was grown overnight as

described previously [13]. Briefly, 100 ml of overnight culture were

inoculated into 100 ml of LB, and incubated at 37uC to A600 = 0.5.

The cells were harvested, and washed five times in total 100 ml of

sucrose buffer (272 mM sucrose, 1 mM HEPES, 10% glycerol,

pH 8). Subsequently, the cells were resuspended in 1/100 of its

original volume in buffer containing 272 mM sucrose and 10%

glycerol. 50 mL of this cell suspension were used for electropora-

tion with 500 ng of each construct. Pulse conditions were as

follows: 2.5 kV voltage, 25 mF capacitance, 200 V resistance, and

time 3–3.5 ms. After electroporation, cells were resuspended in

950 mL of SOC medium, and grown for 1 hour at 37uC. Then

200 mL of each cell suspension was plated on ampicillin-LB agar,

and the plates were incubated for 24 hours at 37uC.

Isolation of the outer membrane proteins (OMP)
Bacterial cells were harvested from 150 ml of culture of different

complemented N1RB3 strains [49]. The cells were washed twice

with 0.1 M HEPES (pH 7) before resuspension in 7.5 ml in the

same buffer. Then, each preparation was sonicated (intermittent

pulse of 15 seconds for 18 pulses) whilst maintaining temperature

at 4uC to disrupt the cells. Intact cells were removed by

centrifugation at 70006 g for 10 minutes. Each supernatant was

further centrifuged at 1000006 g for 1 hour, and the pellet was

resuspended in 0.5% (w/v) N-laurylsarcosine-Na salt for 15 min-

utes with gentle agitation. As before, each sample was centrifuged

at 1000006g for 1 hour to collect the outer membrane protein as

pellet. The pellets were resuspended in 0.1 M HEPES.

Detection of GbpA on the surface of V. cholerae
Transformation of GbpAfl, truncations of GbpA, and its mutant

constructs into N1RB3 was performed as reported previously [13].

For ELISA surface expression tests, the complemented strains

were grown and fixed, as described previously [50]. The wells were

coated with 107 bacterial cells overnight at 4uC. Wells were

blocked with 5% non-fat milk in PBS-T. After 2 h of blocking,

antibodies against different GbpA truncation mutants were added

to the well at a 1:300 dilution. Excess antibodies were washed off

with PBS-T, and HRP-conjugated anti mouse IgG (1:800) was

added. The reaction was developed with o-phenelynediamine and

H2O2. The absorbance was read at 490 nm.

Intestinal colonization and fluid accumulation assays
Fluid accumulation was assayed as described previously [51].

The assay is a technique used to measure the amount of water and

electrolyte accumulation when V. cholerae colonizes the intestinal

and induces severe diarrhea. Briefly, 4 to 5 days old BALB/c mice

were intragastrically inoculated with bacterial inoculum

(16105 CFU) of the appropriate V. cholerae strain. Infected mice

were sacrificed after 4, 8, 12, 16, 20 and 24 hours post-infection in

a CO2-chamber. The mice were weighed, and their entire

intestines were removed. Each of the separated intestines was

weighed, and the FA ratios were calculated as described earlier

[51]: FA ratio = intestinal weight/(whole body weight- intestinal

weight). PBS-fed mice were used as negative control. All animal

experiments were conducted following the guidelines of the

Institutional Animal Ethical Committee.

Binding studies of full length, mutant and truncated
GbpA to N1RB3

N1RB3 was grown overnight as described previously [13]. The

bacteria were washed twice with PBS. The bacteria were fixed

with 0.5% formalin as described previously [50]. After overnight

fixation, the bacteria were again washed twice with PBS, and then

resuspended in PBS. These bacteria were diluted to 108 CFU/ml

(OD600 = 0.1), and 100 mL (107 cells) from this suspension was

coated in each well, and incubated overnight at 4uC. GbpAfl,

truncations of GbpA, and its mutants were applied to the wells at a

fixed concentration of 400 ng. After 1.5 hours of incubation,

polyclonal antibodies against full length, mutant or truncated

versions of GbpA were added to the wells at a concentration 1:300

(v/v) in PBS-T. The amount of recombinant GbpA bound was

detected with HRP-conjugated anti-mouse IgG (H+L) at a

concentration 1:800 and o-phenelynediamine+H2O2. The absor-

bance at 490 nm was measured in a microplate reader (BIORAD

550 CA).

Accession numbers
The Protein Data accession number for the coordinates and

structure factors of GbpA is 2XWX.

Supporting Information

Text S1 Supplementary data. Three figures (S1-3), two

tables (T1-2) and additional Materials and Methods providing

additional data to the experiments described in the main text.

(DOC)
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