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Abstract

The 2009 H1N1 influenza pandemic (pH1N1) led to record sales of neuraminidase (NA) inhibitors, which has contributed
significantly to the recent increase in oseltamivir-resistant viruses. Therefore, development and careful evaluation of novel
NA inhibitors is of great interest. Recently, a highly potent NA inhibitor, laninamivir, has been approved for use in Japan.
Laninamivir is effective using a single inhaled dose via its octanoate prodrug (CS-8958) and has been demonstrated to be
effective against oseltamivir-resistant NA in vitro. However, effectiveness of laninamivir octanoate prodrug against
oseltamivir-resistant influenza infection in adults has not been demonstrated. NA is classified into 2 groups based upon
phylogenetic analysis and it is becoming clear that each group has some distinct structural features. Recently, we found that
pH1N1 N1 NA (p09N1) is an atypical group 1 NA with some group 2-like features in its active site (lack of a 150-cavity).
Furthermore, it has been reported that certain oseltamivir-resistant substitutions in the NA active site are group 1 specific. In
order to comprehensively evaluate the effectiveness of laninamivir, we utilized recombinant N5 (typical group 1), p09N1
(atypical group 1) and N2 from the 1957 pandemic H2N2 (p57N2) (typical group 2) to carry out in vitro inhibition assays. We
found that laninamivir and its octanoate prodrug display group specific preferences to different influenza NAs and provide
the structural basis of their specific action based upon their novel complex crystal structures. Our results indicate that
laninamivir and zanamivir are more effective against group 1 NA with a 150-cavity than group 2 NA with no 150-cavity.
Furthermore, we have found that the laninamivir octanoate prodrug has a unique binding mode in p09N1 that is different
from that of group 2 p57N2, but with some similarities to NA-oseltamivir binding, which provides additional insight into
group specific differences of oseltamivir binding and resistance.
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Introduction

The 2009 pandemic swine origin influenza A H1N1 virus

(pH1N1) has reminded the world of the threat of pandemic

influenza [1,2,3]. In 2009, the total sales of Tamiflu (oseltamivir

phosphate) increased to over 3 billion US dollars (Annual General

Meeting of Roche Holding Ltd, 2 March 2010). The total sales of

Relenza (zanamivir) in 2009 were over 1 billion (GlaxoSmithKline

Quarter 4 Report, 4 February 2010). Additionally, 5.65 million

packs of Tamiflu were donated to the WHO in 2009 to replenish

their stockpiles (Roche, Annual General Meeting of Roche

Holding Ltd, 2 March 2010). Since the WHO has downgraded

the threat of pH1N1 from the pandemic level in August 2010,

there have still been ongoing reports of pH1N1 outbreaks in south-

eastern states of the USA, India and New Zealand (US CDC).

Furthermore, a new variant of pH1N1 has even been detected in

Singapore, New Zealand and Australia [4]. Throughout the

world, vaccinations have still been strongly advocated and

stockpiles of oseltamivir and zanamivir are on reserve in case of

another severe influenza outbreak in the near future. Both

oseltamivir and zanamivir are excellent examples of modern

structure-based drug-design and function as competitive inhibitors

of the influenza neuraminidase (NA), and are by far the most

commonly used influenza drugs [5,6,7,8].

Influenza A virus contains two proteins on its surface in addition

to the ion channel M2: hemagglutinin (HA) and NA [9]. Both M2

PLoS Pathogens | www.plospathogens.org 1 October 2011 | Volume 7 | Issue 10 | e1002249



and NA are targets for clinically-available influenza drugs, however

M2 drugs are rarely used anymore because M2 develops drug-

resistant mutations very easily [10]. In the influenza virus infection

life cycle, HA binds to terminally linked sialic acid receptors on the

surface of host cells, allowing the virus to gain entry. In order for the

influenza virus to efficiently break free from already infected cells

and to continue replicating, sialic acid containing HA receptors

must be destroyed. NA, which is a sialidase, catalyzes hydrolysis of

terminally linked sialic acid and functions as the receptor-destroying

element of influenza A and B viruses.

Influenza A NA has been grouped into 9 different serotypes,

N1-N9, based upon antigenicity [11]. Additionally, influenza A

NA is further classified into two groups: group 1 (N1, N4, N5 and

N8) and group 2 (N2, N3, N6, N7 and N9), based upon primary

sequence [12]. Group 1 NAs contain a 150-cavity (formed by

amino acids 147–151 of the 150-loop) in their active site, whereas

group 2 NAs lack this cavity [12]. Coordination of the 150-loop

with the 430-loop appears to be critical for the formation of the

150-cavity [13,14]. Soaking experiments of typical group 1 NAs

with inhibitors often result in the closure of the 150-cavity and

indicates some flexibility of the 150-loop [12,15]. Molecular

dynamics simulations also indicate some differences in the

flexibility of the 150-loop between group 1 and group 2 NAs

[14,16]. Structural studies reveal that Asp151 and Arg152 of the

150-loop form key interactions with the 4-group and N-acetyl

group of common NA ligands, respectively. These two residues

move away from the substrate in the open conformation of the

150-loop and closer upon ligand binding [17]. Therefore the 150-

loop plays an essential role in substrate and inhibitor binding [15].

Furthermore, the 150-cavity is currently being successfully

explored as a target for novel NA inhibitors [12,18,19,20].

The design of NA inhibitors is a classic example of structure-

based drug discovery, pioneered by Mark von Itzstein and

colleagues with the advent of the N2, N9 and influenza B NA

structures [5,6,8,21,22,23,24]. Currently there are four NA-

targeting inhibitors that have been approved for use: zanamivir,

oseltamivir, peramivir and laninamivir (laninamivir has recently

been approved in Japan). Additionally, there are many more NA

inhibitors under clinical trials or under vigorous development due

to the public threat of seasonal and pandemic flu and the rise of

drug-resistant viruses [18,19,25,26,27,28]. However, previous

results have indicated that inhibitors which are highly similar to

the natural NA ligand, sialic acid, are less susceptible to the

problem of drug-resistance [29,30,31]. This suggests that drugs

like zanamivir, that are similar to sialic acid and its transition state

analogue 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (Neu5A-

c2en or DANA), have an advantage over oseltamivir, which is less

similar (Figure 1). However, zanamivir must be administered twice

daily over 5 consecutive days to attain its maximum effect.

Therefore, the development of novel inhibitors that possess long

term efficacy and that are also effective against oseltamivir-

resistant influenza viruses is in great demand.

Laninamivir (R-125489) is a very promising, novel influenza

NA inhibitor with high potency and the ability to efficiently inhibit

common oseltamivir-resistant viruses, including those with the

ubiquitous His274Tyr substitution [32,33,34]. Recently, lanina-

mivir and its prodrug, laninamivir octanoate (CS-8958) have been

approved for use in Japan as Inavir (Daiichi Sanko Press Release,

10 Sept. 2010). Clinical studies have confirmed that the prodrug,

laninamivir octanoate, is effective in both children and adults,

however laninamivir octanoate has not yet been demonstrated to

be more effective than oseltamivir against oseltamivir-resistant

His274Tyr H1N1 infection in adult patients [35,36,37]. Like

zanamivir, the core structure of laninamivir is Neu5Ac2en, the NA

transition state analogue (Figure 1). Both laninamivir and

zanamivir contain a 4-guanidino group that is not present in

Neu5Ac2en and laninamivir also contains an additional 7-

methoxy group (Figure 1). Laninamivir octanoate is the octanoyl

prodrug of laninamivir (Figure 1). In a similar manner that

oseltamivir is processed to oseltamivir carboxylate in the liver, it

has been demonstrated that laninamivir octanoate is processed to

laninamivir in the lung [33]. The laninamivir 7-methoxy and its

prodrug octanoyl ester increase the ability to be retained in the

lungs and to function effectively in a single inhaled dose

[32,33,34,37,38]. Moreover, the high similarity of laninamivir to

the NA transition state analogue, Neu5Ac2en, allows for an

effective response against oseltamivir-resistant NA [32,33,34,35].

For these reasons, laninamivir and laninamivir octanoate offer

advantages over both oseltamivir and zanamivir.

In order to comprehensively assess the effectiveness of the novel

NA inhibitors, laninamivir and laninamivir octanoate, in compar-

ison to oseltamivir and zanamivir, and to reveal the structural basis

of their inhibition, we utilized: 1) pandemic A/RI/5+/1957 H2N2

N2 (p57N2) as a typical group 2 NA, 2) p09N1 as an atypical

group 1 NA, and 3) avian H12N5 NA (N5) as a typical group 1

NA. Soluble, active p57N2, p09N1 and N5 were expressed in a

baculovirus expression system and purified based upon previously

reported methods [13,39,40]. NA inhibition assays were carried

out and complex crystal structures were solved for laninamivir,

laninamivir octanoate, zanamivir and oseltamivir in order to

elucidate the structural basis of their inhibition. Our results

indicate that laninamivir is potent against all 3 NAs with a similar

binding mode to zanamivir. Laninamivir and zanamivir were

more effective against group 1 N5, with a 150-cavity, than atypical

group 1 p09N1 and group 2 p57N2, with no 150-cavity. This

indicates that the ability of the bulky 4-guanidino group of

zanamivir and laninamivir to become buried deep beneath the

150-loop is an important factor for their group-specific binding

and inhibition. Furthermore, we confirm the binding of the

prodrug, laninamivir octanoate, to p57N2, with a similar binding

mode to laninamivir. Surprisingly, the p09N1-laninamivir octa-

noate complex shows a completely different binding mode: p09N1

Author Summary

The influenza neuraminidase (NA) enzyme is the most
successful drug target against the seasonal and pandemic
flu. The 2009 H1N1 flu pandemic led to record sales of the
NA inhibitors oseltamivir (Tamiflu) and zanamivir (Relenza).
Recently, a new drug, laninamivir (Inavir), has been
approved for use in Japan can also be administered
effectively using a single dose via its octanoate prodrug
(CS-8958), however its effectiveness against oseltamivir-
resistant influenza infection has not been demonstrated in
clinical studies. In this study we comprehensively evaluate
the effectiveness of laninamivir and its prodrug using NA
from different groups with different active site features.
We expressed and purified a group 2 NA from the 1957
pandemic H2N2, an atypical group 1 NA from the 2009
H1N1 pandemic and a group 1 NA from avian H12N5. NA
inhibition was assayed and NAs were further crystallized
with each inhibitor to determine the structural basis of
their action. We found that laninamivir inhibition is highly
potent for each NA, however binding and inhibition of
laninamivir and its prodrug showed group specific
preferences. Our results provide the structural and
functional basis of NA inhibition using classical and novel
inhibitors, with NAs from multiple serotypes with different
properties.

Laninamivir-NA Group Specific Mechanisms
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adopts a Glu276-Arg224 salt bridge in its laninamivir octanoate

complex, forming a hydrophobic pocket that is also necessary to

accommodate oseltamivir. The observation of different Glu276

rotation in p09N1 and p57N2 offers insight into the group specific

differences of oseltamivir binding and resistance.

Results

Comparison of the active sites of p57N2, p09N1 and N5
In our previous studies, we have successfully obtained both

soluble p09N1 and N5 using a baculovirus expression system

originally developed by Xu et al. [13,15,39]. To determine the

functional and structural basis of NA inhibition and binding by

laninamivir and its prodrug, we first expressed and purified a new

group 2 member from the 1957 pandemic H2N2 virus, p57N2,

using similar methods. In this way, three major types of known

NAs are covered in this comprehensive analysis: typical group 2

p57N2, atypical group 1 p09N1 and typical group 1 N5.

p57N2 was crystallized and its structure was solved by molecular

replacement using A/TOKYO/3/1967 (H2N2) N2 (PDB code:

1IVG) as a search model [41]. As expected, the active site of p57N2

is highly similar to other group 2 NAs in that it has no 150-cavity

(Figure 2 - upper left). Like the available group 2 A/TOKYO/3/

1967 (H2N2) N2 and A/Memphis/31/98 (H3N2) N2 structures

[42,43], p57N2 also contains a 150-cavity deficient active site with a

salt bridge between Asp147 and His150, confirming the presence of

a stable, closed 150-loop (Figure 2 - upper left; Figure 3A).

Although the atypical group 1 p09N1 also has a 150-cavity deficient

active site (Figure 2 - upper right), the 150-loop is quite different from

that of p57N2. The p09N1 150-loop sequence (residues 147–150) is

GTIKD, however p57N2 contains DTVHD with 3 polymorphic

amino acids. The p09N1 therefore contains no Asp147-His150 salt

bridge, but instead contains Ile149, which is commonly found in group

2 NAs, and Ile149 is able to rest closer to the hydrophobic Pro431 than

Val149 is [13]. N5 on the other hand contains Val149 with no 147–

150 salt bridge and displays a 150-cavity like all other structure-known

NAs with Val149 and no 147–150 salt bridge (Figure 2 - lower left)

[15]. Therefore, NAs with the three major styles of the 150-loop are

covered in our comparative analysis.

Differential inhibition of N5, p09N1 and p57N2 by
oseltamivir, zanamivir, laninamivir and laninamivir
octanoate

All NA proteins produced in the baculovirus expression system

displayed stable sialidase activity. IC50 values and 95% confidence

intervals (CIs) are given in Table 1. Oseltamivir inhibited the

activity of N5, p09N1 and p57N2 with IC50 values of 0.83 nM,

0.54 nM and 0.79 nM, respectively. Laninamivir inhibition was

best for group 1 N5, followed by atypical group 1 p09N1 and

worst for group 2 p57N2. Zanamivir was also more effective

against N5 than p09N1 and p57N2, however the difference of

zanamivir inhibition between p09N1 and p57N2 is not statistically

significant (Table 1). Zanamivir inhibited N5, p09N1 and p57N2

with IC50 values of 0.59 nM, 1.11 nM and 1.36 nM, respectively.

Laninamivir was in a similar range with zanamivir for N5, p09N1

and p57N2 with IC50 values of 0.90 nM, 1.83 nM and 3.12 nM,

respectively. However inhibition of laninamivir was 1.53, 1.65 and

2.29 fold lower than zanamivir for N5, p09N1 and p57N2,

respectively. Inhibition of N5, p09N1 and p57N2 by laninamivir

octanoate was not as efficient, with IC50 values of 389 nM,

947 nM, and 129 nM, respectively. Hence inhibition of p57N2 by

laninamivir octanoate was much better than for p09N1.

Group specific NA binding of laninamivir and zanamivir
To determine the structural basis of the inhibition of

laninamivir relative to zanamivir, we solved the very first complex

structures of laninamivir with p57N2, p09N1 and N5 at

Figure 1. The chemical structures of influenza NA inhibitors used in this study. 1, Neu5Ac2en (NA transition state analogue); 2, zanamivir;
3, laninamivir; 4, laninamivir octanoate (CS-8958); and 5, oseltamivir.
doi:10.1371/journal.ppat.1002249.g001

Laninamivir-NA Group Specific Mechanisms
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resolutions of 1.8 Å, 1.8 Å and 1.6 Å, respectively; and the

complex structures of zanamivir with p57N2, p09N1 and N5 at

1.9 Å, 1.9 Å and 1.6 Å, respectively [15]. Like zanamivir, the

binding mode of laninamivir to all 3 NAs is highly similar to that of

the NA transition state analogue, Neu5Ac2en. Some minor

differences in the NA-inhibitor interactions between laninamivir

and zanamivir are observed within each of the 3 NAs due to the

additional hydrophobic 7-methoxy group of laninamivir; however

all of the laninamivir complex structures highly resemble

zanamivir binding (Table 2, Figure 3).

Figure 2. Comparison of the active sites of p57N2, p09N1 and N5. Group 2 p57N2 has a 150-cavity deficient active site with a salt bridge
between Asp147 and His150 which stabilizes the closed conformation of its 150-loop (upper left - green). p09N1 is an atypical group 1 structure and
also has a 150-cavity deficient active site similar to many group 2 structures (upper right - magenta). N5 is a typical group 1 NA and displays a 150-
cavity in its uncomplexed structure (lower left - yellow) that closes upon inhibitor binding (lower right - yellow: N5-laninamivir complex).
doi:10.1371/journal.ppat.1002249.g002

Figure 3. Binding of laninamivir and zanamivir to p57N2, p09N1 and N5. In each panel, zanamivir appears as the same color as the
respective NA active site and laninamivir appears as turquoise. Acidic and basic side chains of key residues are colored red and blue, respectively. The
4-guanidino group of laninamivir and zanamivir is buried deep beneath the 150-loop where it engages many key interactions with NA residues
(Table 2). Although the binding modes of laninamivir and zanamivir are highly similar, the accessibility of the 4-guanidino to its binding site is lowest
in p57N2, with a 147–150 salt bridge in its closed 150-loop (A - green) and highest in group 1 N5, which contains a 150-cavity in its uncomplexed
structure (C - yellow). Inhibition by zanamivir and laninamivir are highest for N5, and lowest for p57N2. p09N1, with its unique 150-loop
characteristics (B - magenta), has intermediate laninamivir inhibition.
doi:10.1371/journal.ppat.1002249.g003

Laninamivir-NA Group Specific Mechanisms

PLoS Pathogens | www.plospathogens.org 4 October 2011 | Volume 7 | Issue 10 | e1002249



Due to the similar binding modes of zanamivir and laninamivr,

we first carried out a detailed analysis of interactions with the 150-

loop in each inhibitor complex. In all of the zanamivir and

laninamivir structures, the 4-guanidino group is buried deep

beneath the 150-loop where it forms many key hydrogen bonds

with Glu119, the Trp178 peptide carbonyl, Glu227, and the

Asp151 side chain and peptide carbonyl (Figure 3, Table 2). This

4-guanidino group is the most buried part of the inhibitor in the

structure (Figure 3), which is emphasized by the absence of any

water molecules beneath the 150-loop and surrounding the 4-

guanidino group. Although the 4-guanidino plays an essential role

for the high affinity of laninamivir and zanamivir to NA,

accessibility of the 4-guanidino to its binding site deep below the

150-loop is a crucial factor for the laninamivir and zanamivir

binding process. The typical group 1 N5 contains a 150-cavity in

its uncomplexed structure and inhibition of N5 by laninamivir and

zanamivir was better than inhibition of p09N1 and p57N2, which

contain no 150-cavity in their uncomplexed structures (Figure 3,

Table 1). Therefore, our data indicate that the group specific

accessibility of the laninamivir and zanamivir 4-guanidino to the

NA active site is a key factor in determining their effectiveness.

Slight differences in the interactions between the binding of

laninamivir and zanamivir were observed due to the additional

laninamivir 7-methoxy group (Table 2). Although this laninamivir

7-methoxy group is oriented away from its own ring oxygen and is

pointed toward the hydrophobic Ile222 side chain, its distance is

relative far at over 5 Å. Interactions between Arg371 and the

inhibitor carboxylate were always highly consistent; however the

carboxylate-Arg118 interactions are closer in zanamivir than

laninamivir in every NA complex (Table 2). On the other hand,

the carboxylate-Arg292 interactions are further in zanamivir than

laninamivir in every NA complex (Table 2). Unlike p09N1 and

p57N2, N5 contains Tyr347, which forms an additional hydrogen

bond with the carboxylate of each inhibitor (Figure 3C).

Differential binding of the octanoate prodrug to p57N2
and p09N1 via enhanced p09N1 Glu276 rotation

Laninamivir octanoate complex structures with p09N1 and

p57N2 (Figure 4) were solved at 1.6 Å and 2.2 Å, respectively,

demonstrating that the laninamivir octanoate prodrug can also

directly inhibit NA without further processing. In p57N2,

Table 2. Comparison of key NA-ligand interactions.

p57N2 Distance p09N1 Distance N5 Distance

Protein
Group Ligand Group zanamivir laninamivir CS-8958 zanamivir laninamivir CS-8958 zanamivir laninamivir

R118 carboxy 2.83/3.14 2.87/3.28 2.96/3.42 2.76/3.46 2.75/3.60 2.83/3.64 2.81/3.51 2.77/3.62

E119 4-X 3.33/3.64 3.26/3.76 3.20/4.03 3.22/3.77 3.24/3.93 3.28/3.88 3.30/3.94 3.27/3.90

D151* 4-X 2.94 2.90 3.00 2.96 2.89 2.92 2.91 2.79

D151** 4-guan 3.15 2.95 2.93 3.01 2.88 2.96 2.93 2.91

R152 5-Ac 2.87 2.84 2.86 2.86 2.82 2.82 2.83 2.88

W178** 4-guan 2.71/3.07 2.68/3.00 2.86/2.99 2.73/3.11 2.69/2.95 2.79/3.16 2.82/3.18 2.76/3.17

R224dN 9-O 3.37 3.41 3.09 3.33 3.45 - 3.43 3.24

R224dN 9-ester*** - - 3.52 - - - - -

E227 4-guan 3.03 3.09 3.48 3.12 3.06 3.04 3.02 3.02

S247 9-ester-O - - - - - 3.50 - -

E276 8-OH 2.80 2.76 2.71 2.72 2.63 - 2.65 2.68

E276 9-O 2.65 2.61 2.80 2.59 2.61 - 2.52 2.59

R292 carboxy 3.36/3.43 3.27/3.29 3.26/3.49 3.19/3.24 3.09/3.16 3.14/3.12 3.14/3.19 3.09/3.11

R292 8-OH 3.52/3.52 3.50/3.62 3.56/3.73 3.43/3.73 3.58/3.82 3.46/3.48 3.64/3.89 3.56/3.71

N294 9-ester-O - - - - - 2.64,3.93 - -

R371 carboxy 2.71/2.79 2.76/2.77 2.43/2.81 2.70/2.94 2.67/2.83 2.80/2.95 2.89/2.93 2.74/2.80

Y406 ring-O 3.00 3.14 2.96 3.14 3.15 3.36 3.25 3.03

All residues are N2 numbered and distances are given in Å. The 4-guanidino group of zanamivir, laninamivir and CS-8958 is abbreviated as ‘4-guan’. Bond distances are
based on the distances between oxygen and nitrogen atoms and do not include hydrogen atoms, which cannot be directly observed using X-ray diffraction. Distances
are given for molecule A in the asymmetric unit of each structure and are highly consistent between molecules. The distance of the unique hydrogen bond between the
laninamivir octanoate 9-ester-O and p09N1 Asn294 is given for both molecules A and B as it varies significantly. Laninamivir octanoate is listed as CS-8958 to save space.
*The Asp151 side chain carboxy hydrogen bonds with the 4-N of all the ligands used in this study.
**The Asp151 and Trp178 backbone carbonyl groups both hydrogen bond with the 4-guanidino group of zanamivir, laninamivir and laninamivir octanoate.
***The laninamivir octanoate 9-ester-carbonyl forms a hydrogen bond with N2 Arg224.
doi:10.1371/journal.ppat.1002249.t002

Table 1. IC50 values and 95% CIs for the inhibition of p57N2,
09N1 and N5.

p57N2 p09N1 N5

IC50 95% CI IC50 95% CI IC50 95% CI

oseltamivir 0.79 0.64 - 0.98 0.54 0.38 - 0.78 0.83 0.62 - 1.10

zanamivir 1.36 1.11 - 1.66 1.11 0.74 - 1.66 0.59 0.40 - 0.86

laninamivir 3.12 2.39 - 4.09 1.83 1.46 - 2.29 0.90 0.64 - 1.28

CS-8958 129 98 - 171 947 751 - 1192 389 329 - 459

Laninamivir octanoate is listed as CS-8958 to save space.
doi:10.1371/journal.ppat.1002249.t001

Laninamivir-NA Group Specific Mechanisms
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laninamivir octanoate binds in a similar manner to laninamivir

with an additional, novel hydrogen bond between the 9-ester

carbonyl and Arg224 (Figure 4A). p09N1, on the other hand, has a

totally different binding mode where the prodrug’s ester is oriented

toward Asn294 rather than Arg224 (Figure 4B). p09N1 Glu276 is

also in a different orientation in the laninamivir octanoate complex

structure than in the zanamivir or laninamivir complex structures

and forms a salt bridge with Arg224 in the same manner as

oseltamivir binding (Figure 4 and 5). The rotation of p09N1

Glu276 places it out of range for hydrogen bonding with the 8-OH

and 9-ester-O of laninamivir octanoate. Instead, the p09N1-

laninamivir octanoate 9-ester-O forms a unique hydrogen bond

with Asn294 (Figure 4B). Additionally, 09N1 Ser247 forms

another hydrogen bond with the laninamivir octanoate 9-ester-

O at 3.4–3.5 Å. Still, the Glu276 rotation results in less hydrogen

bonding in the p09N1-laninamivir octanoate complex compared

to p57N2 (Figure 4C, Table 2).

In both structures, there is no observed electron density

corresponding to the octanoyl carbon chain indicating that this

part of the molecule is highly flexible and does not engage many

stable hydrophobic interactions with p09N1 or p57N2. Still,

electron density surrounding the entire ester can be observed in

both complex structures. Furthermore, in p09N1, the position 7-

methoxy of laninamivir octanoate is also oriented slightly away

from its N-acetyl group relative to laninamivir and there is

additional electron density pointing toward the ring, indicating

lower stability of the p09N1-laninamivir octanoate complex

(Figure 4). In all of our NA complex structures, bond distances

in each molecule of the asymmetric units are very similar, however

in the p09N1-laninamivir octanoate structure some greater

differences are observed between molecule A and B in the

asymmetric unit, which further reflects the lower stability of the

prodrug’s octanoyl ester in p09N1. In p09N1 molecule A, the

distance between the 9-ester-O and Asn294 is 2.64 Å, however in

molecule B the distance is much further at 3.93 Å (Table 2).

An oseltamivir-like binding mode of laninamivir
octanoate with p09N1

To our surprise, the binding mode of the p09N1-laninamivir

octanoate complex structure is similar to all known NA-oseltamivir

complex structures with respect to the Glu276-Arg224 interactions.

Therefore, we also solved the p09N1 oseltamivir complex structure

at a resolution of 1.7 Å. As observed in the other available

oseltamivir-NA complex structures, in the p09N1-laninamivir

octanoate complex structure, Glu276 indeed forms a salt bridge

with Arg224, creating a hydrophobic pocket which accommodates

Figure 4. Binding of the laninamivir octanoate prodrug (CS-8958) to p57N2 and p09N1. A) Binding of laninamivir octanoate to p57N2,
which is similar to laninamivir/zanamivir NA binding, except with a novel hydrogen bond between the 9-ester carbonyl and Arg224. B) Unique
binding mode of laninamivir octanoate to p09N1. Glu276 is rotated to form a salt bridge with Arg224 and there is a novel hydrogen bond between
the laninamivir octanoate 9-ester-O and Asn294. C) Comparison of laninamivir octanoate binding to p57N2 and p09N1. Key residues are labeled.
Tyr252 is group 1 specific and takes part in a hydrogen bond network with His274 and Glu276. The less bulky Thr252 (compared to group 1 Tyr252) is
group 2 specific and allows for greater movement of residue 274 away from Glu276. The His274Tyr substitution results in group 1 specific oseltamivir-
resistance also via Glu276 interactions.
doi:10.1371/journal.ppat.1002249.g004

Figure 5. Comparison of oseltamivir (yellow), laninamivir
octanoate (magenta) and laninamivir (turquoise) binding to
p09N1. Laninamivir binds to p09N1 with a similar active site
conformation to the uncomplexed structure. Both laninamivir octano-
ate and oseltamivir binding to p09N1 induces rotation of Glu276
toward Arg224 where they form a salt bridge. This Glu276 rotation
creates a hydrophobic pocket that accommodates the hydrophobic
pentyl ether side chain of oseltamivir, however results in a weaker
overall binding mode of laninamivir octanoate. The terminal carbon of
the oseltamivir side chain is 3.73 Å from the hydrophobic Glu276 Cb.
doi:10.1371/journal.ppat.1002249.g005
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the hydrophobic oseltamivir pentyl ether group (Figure 5)

[7,29,44,45]. This hydrophobic side chain of oseltamivir is favorably

parallel to the Cb and Cc of Glu276 on one end and at the other

end is pointed toward the hydrophobic Ile222 side chain, which

contributes significantly to the high level of oseltamivir inhibition.

Discussion

Recent studies have demonstrated that the novel influenza A

virus NA inhibitors, laninamivir and laninamivir octanoate, are

highly effective and have some advantages over zanamivir and

oseltamivir [33,34,35,37,38]. In this study we verify that

laninamivir, which highly resembles the NA transition state

analogue, Neu5Ac2en, is indeed effective at inhibiting highly

purified p57N2, p09N1 and N5, representing the three major

types of all structure-known NAs with distinct 150-loop properties.

Zanamivir and laninamivir are clearly more similar to sialic acid

and Neu5Ac2en, than oseltamivir, which renders zanamivir and

laninamivir less susceptible to drug-resistance and effective against

many oseltamivir-resistant viruses [29,30,31]. The high degree of

similarity between the binding modes of zanamivir and laninamivir in

all of the NA complex structures indicates that zanamivir and

laninamivir should be effective against the same drug-resistant

mutations. However, laninamivir contains an additional 7-methoxy

group which is oriented toward Ile222. Although the distance

between the laninamivir 7-methoxy and Ile222 is relative far (over

5 Å), laninamivir may be susceptible to Ile222Arg, a rare drug-

resistant substitution [46]. Moreover, the additional 7-methoxy group

of laninamivir may disrupt hydrogen bonding of the 7-O with water

and likely contributes to a slightly lower inhibition of laninamivir

compared to zanamivir that was observed for all 3 NAs here (Table 1).

Although zanamivir and laninamivir are highly similar to

Neu5Ac2en, they both contain an artificial bulky 4-guanidino

group. Upon binding, this 4-guanidino group becomes buried

deep beneath Asp151 of the closed 150-loop and forms many

hydrogen bonds which contribute to the high affinity of zanamivir

and laninamivir to NA. However, the bulky 4-guanidino must be

able to clear the 150-loop in order to bind NA and therefore a

closed 150-loop may hinder the entry of zanamivir and

laninamivir into the NA active site. In the open state of the 150-

loop, when the 150-cavity is formed, Asp151 shifts over 1.5 Å (the

Asp151 Cc is shifted over 2 Å in N5) away from the ligand binding

site, which should facilitate entry of inhibitors like zanamivir and

laninamivir [12,15,17]. A similar model has recently been

proposed by Wang et al., however this was based on a computer

simulation using only the group 1 H5N1 NA structure [47].

The group specific 150-loop accessibility, based upon our

structures of p57N2, p09N1, and N5, is consistent with the

inhibition efficiency of laninamivir and zanamivir. Group 2 p57N2

contains an Asp147-His150 salt bridge, limiting the flexibility of its

closed 150-loop and inhibition of p57N2 by laninamivir was the

lowest (Figure 3A). p09N1 is an atypical group 1 with no 150-cavity,

but no Asp147-His150 salt bridge, and inhibition of p09N1 by

laninamivir was better than p57N2 (Figure 3B). The typical group 1

N5 contains a 150-cavity in its uncomplexed structure and

inhibition of N5 by both laninamivir and zanamivir was the highest

(Figure 3C). Therefore, we provide structural and functional

evidence that the open 150-loop of a typical group 1 NA may

facilitate the entry of the 4-guanidino group of zanamivir and

laninamivir into the NA active site, relative to the closed 150-loop of

group 2 NAs. The additional hydrogen bond between Tyr347 and

the inhibitor carboxylate is also a key factor in explaining the higher

N5 inhibition relative to p09N1 and p57N2. However, like the

closed 150-loop, this residue also makes the active site cavity smaller

and in this way may also limit access of inhibitors to the N5 active

site. Furthermore, this residue is found only in group 1 NAs which

contain an open 150-loop cavity [12]. Thus, Tyr347 may

compensate for the open 150-loop in regards to substrate binding.

The complex structure of p57N2 with the laninamivir octanoate

prodrug has a similar binding mode to laninamivir and zanamivir,

however laninamivir octanoate in complex with p09N1 is

completely different. This is the first time, as far as we know, that

the same inhibitor has been observed to bind in two completely

different conformations to influenza NAs. Additionally, p57N2

Arg224 forms a unique hydrogen bond with the laninamivir

octanoate 9-ester carbonyl, and p09N1 Asn294 and Ser247 form

unique hydrogen bonds with the laninamivir octanoate 9-ester-O.

However, the novel conformation of the laninamivir octanoate-

p09N1 complex disrupts any hydrogen bonding with Glu276. The

overall lack of hydrogen bonds and instability in the p09N1-

laninamivir octanoate structure relative to p57N2 provides the

structural basis for higher laninamivir octanoate inhibition of

p57N2 observed in our study and a previous report demonstrating

better laninamivir octanoate inhibition of H2N2 and H3N2 viruses

over H1N1 viruses [34]. The absence of any electron density

surrounding the octanoyl carbon chain of laninamivir octanoate

indicates that it is unable to take part in any favorable interactions

with p57N2 and p09N1. The disordered octanoyl carbon chain

likely destabilizes the interactions between the NA active site and

the laninamivir octanoate 8-OH and 9-ester, which is indicated by

the lower electron density surrounding the 9-ester. Therefore, the

lower inhibition efficiency of laninamivir octanoate relative to

laninamivir is not surprising.

Binding of oseltamivir to p09N1 was indeed highly similar to the

binding observed in previous reports and is also similar to the

binding mode of laninamivir octanoate to p09N1. Oseltamivir

contains a 4-amino group, instead of the 4-guanidino group found

in zanamivir and laninamivir, and is actually more similar to the

natural ligand in this regard. Therefore, the orientation of the 150-

loop during oseltamivir binding is not a major factor. Instead, the

binding preference of oseltamivir for p09N1 over p57N2 and N5

may be instead explained by the ability of Glu276 to adopt the

conformation that is critical to accommodate the osetalmivir

pentyl ether side chain, which replaces the glycerol moiety of

zanamivir, laninamivir and sialic acid. The observation that this

Glu276 conformation occurs in the p09N1-laninamivir octanoate

complex, but not the p57N2-laninamivir octanoate complex may

indicate that this conformation is more stable in p09N1 after

ligand binding which may explain why inhibition of p09N1 by

oseltamivir was the best relative to N5 and p57N2.

In addition, this observation of different Glu276 dynamics in

group 1 p09N1 compared to group 2 p57N2 offers some new

insights into the group specificity of the oseltamivir-resistant

His274Tyr substitution. The His274Tyr mutation is easily selected

for N1 viruses, however cannot be selected for N2 virus types as

N2 His274Tyr binding to oseltamivir is not impaired [48]. In

group 2 NAs, Tyr274 is able to move away from Glu276 due to a

small neighboring Thr252 residue, and oseltamivir can still bind

for His274Tyr [30]. The native His274 is also further away from

Glu276 in our p57N2-laninamivir octanoate structure and does

not hydrogen bond with it. In group 1 NA, Tyr274 is not able to

move away from Glu276 because of the bulky neighboring Tyr252

side chain, which prevents it from accommodating oseltamivir

[30]. In a similar manner, the group 1 Tyr252 side chain promotes

the native His274 to occupy a position where it can participate in a

hydrogen bond network with Glu276 and Arg224 as observed in

our 09N1-laninamivir octanoate structure (Figure 4C).
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PLoS Pathogens | www.plospathogens.org 7 October 2011 | Volume 7 | Issue 10 | e1002249



Recently, a clinical study has shown that laninamivir octanoate

is not significantly better than oseltamivir against oseltamivir-

resistant His274Tyr H1N1 infection in adult patients [36]. Since

the laninamivir octanoate prodrug binds to p09N1 in a similar

manner to oseltamivir, this may offer some explanation as to why

laninamivir octanoate has a similar effect as oseltamivir against

His274Tyr H1N1. However, this may indicate that the laninami-

vir octanoate is not processed, or processed slowly, to laninamivir

in the adult patients from this study, since laninamivir has been

clearly demonstrated to be effective against the oseltamivir-

resistant His274Tyr influenza A viruses [32,33,34]. Further

investigation into the efficacy of laninamivir octanoate in adults

in clearly needed.

The results from this comprehensive analysis of group 2 p57N2,

atypical group 1 p09N1 and typical group 1 N5 support the

hypothesis that influenza NA inhibitors which more closely

resemble the NA transition state analogue, Neu5Ac2en, are more

likely to remain effective against NAs from both groups and with

various drug-resistant amino acid substitutions. Most importantly,

we provide mechanisms to explain the group 1 preference of

laninamivir and zanamivir and the differential binding of the

octanoate prodrug to group 1 p09N1 and group 2 p57N2 derived

from pandemic influenza viruses.

Materials and Methods

Reagents
Methylumbelliferyl-N-acetylneuraminic acid (MUNANA) was

purchased from J&K Scientific Ltd. Sialic acid (Neu5Ac) was

purchased from Sigma (Cat. No. 855650) and used without further

purification. Laninamivir, laninamivir octanoate, zanamivir and

oseltamivir were readily synthesized according to the relevant

literatures [49,50,51,52,53]. All products were characterized by

their NMR or MS spectra.

Table 3. Crystallographic X-ray diffraction and refinement statistics.

N2-
zanamivir

N2-
lanamivir

N2-
CS-8958

09N1-
zanamivir

09N1-
laninamivir

09N1-
CS-8958

09N1-
oseltamivir

N5-
lanamivir

Data collection

Space group P21 P21 P21 C2221 C2221 C2221 C2221 P4

Cell dimensions

a, b, c (Å) 90.13 89.93 90.45 118.45 118.26 118.67 118.24 112.56

140.00 140.31 140.18 90.30 136.96 137.09 137.10 137.16 112.56

90.17 89.89 118.47 118.48 118.57 118.65 66.81

a, b, c (u) 90, 101.3, 90 90,101.5,90 90, 101.2, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90

Resolution (Å) 50-1.90
(1.97-1.90)

50-1.80
(1.86-1.80)

50-2.20
(2.28-2.20)

50-1.90
(1.97-1.90)

50-1.80
(1.86-1.80)

50-1.60
(1.66-1.60)

50-1.70
(1.76-1.70)

50-1.60
(1.66-1.60)

Rmerge 0.120 (0.396) 0.126 (0.551) 0.162 (0.491) 0.155 (0.443) 0.147 (0.531) 0.103 (0.317) 0.135 (0.519) 0.082 (0.554)

I/sI 11.0 (2.1) 12.7 (3.0) 9.6 (3.3) 12.8 (4.7) 16.5 (3.6) 20.6 (6.2) 17.1 (4.0) 22.1 (2.8)

Completeness (%) 98.7 (90.0) 99.9 (99.9) 99.9 (99.9) 99.4 (99.6) 99.9 (99.7) 99.6 (99.0) 100.0 (100.0) 100.0 (100.0)

Redundancy 4.1 (3.6) 4.1 (4.1) 3.9 (4.0) 6.5 (5.5) 10.6 (9.6) 7.1 (6.8) 8.1 (7.0) 6.1 (5.8)

Refinement

Resolution (Å) 41.27-1.89 42.99-1.80 43.17-2.20 36.13-1.90 34.60-1.80 25.90-1.60 30.00-1.69 37.80-1.60

No. reflections 160592 190839 103790 71738 86190 122842 103720 105988

Rwork/Rfree 0.1531/0.1838 0.1516/0.1698 0.1548/0.1910 0.1673/0.1933 0.1938/0.2135 0.1400/0.1767 0.1387/0.1833 0.1268/0.1606

No. atoms

Protein 12380 12380 12397 6175 6098 6114 6098 6194

Ligand/ion 96 100 108 51 53 57 45 50

Water 2154 1934 1394 765 1301 1278 802 1162

B-factors

Protein 15.2 13.4 14.3 11.9 9.9 8.2 9.9 14.1

Ligand/ion 12.9 9.5 12.7 13.2 9.6 9.9 10.5 10.5

Water 31.8 31.2 28.4 29.7 26.7 31.4 29.8 33.7

R.m.s. deviations

Bond lengths (Å) 0.005 0.006 0.006 0.003 0.004 0.004 0.003 0.004

Bond angles (u) 1.030 1.127 0.984 0.840 0.935 1.069 0.842 1.008

Ramachandran plot

Most favored (%) 85.7 86.1 84.9 85.2 84.7 85.5 85.3 87.7

Additionally favored (%) 13.6 13.1 14.2 14.5 15.0 13.9 14.4 11.9

Generally allowed (%) 0.8 0.8 0.8 0.3 0.3 0.6 0.3 0.4

Disallowed (%) 0 0 0 0 0 0 0 0

Laninamivir octanoate is listed as CS-8958 to save space.
doi:10.1371/journal.ppat.1002249.t003
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Expression and purification of recombinant NAs
NA was prepared in a baculovirus expression system according to

methods based on an original method reported by Xu et al. [39].

Both N5 and p09N1 were prepared as previously described in our

laboratory [13,15]. For p57N2, the cDNA encoding amino acid

residues 83–469 were recombined into the baculovirus transfer

vector pFastBac1 (Invitrogen), with a GP67 signal peptide, a 6X his-

tag, a tetramerizing sequence and a thrombin cleavage site at the N-

terminus. Recombinant baculovirus was prepared based on the

manufacturer’s protocol (Invitrogen). Sf9 suspension cultures were

grown in Sf-900 II SFM serum-free media (GIBCO) at 28uC and

120 RPM and transfected with high-titer recombinant baculovirus.

After growth of the transfected Sf9 suspension cultures for 3 days,

centrifuged media were applied to a HisTrap FF 5 mL column (GE

Health) which was washed with 20–50 mM imidazole, and then NA

was eluted using 200–300 mM imidazole. After dialysis, thrombin

digestion (Sigma, 3 U/mg NA; overnight at 4uC) and gel filtration

chromatography using a Superdex-200 10/300 GL column (GE

Healthcare), NA fractions were analyzed by SDS-PAGE. High-

purity NA fractions were pooled and concentrated using a

membrane concentrator with a molecular weight cutoff of 10 kD

(Millipore). A buffer of 20 mM Tris-HCl, 50 mM NaCl, pH 8.0

was used for gel filtration and protein concentration.

Competition experiments
A neuraminidase inhibition assay using MUNANA was per-

formed as described by Potier et al. with modifications [54]. Briefly,

10 uL of purified, recombinant NA (10 nM) was mixed with 10 uL

of inhibitor and incubated for 30 min at room temperature. NA and

inhibitors were carefully diluted in fresh PBS buffer. At least 5

concentrations of each inhibitor at an appropriate range were used

for each repeat. Following incubation, 30 uL of 166 uM MU-

NANA in 33 mM MES and 4 mM CaCl2 (pH 6.0) was added to

the solution to start the reaction using a 12-tip pipette (Eppendorf).

A positive and a negative control were included in each 12-well lane.

After starting the reaction for each lane on the plate, the reaction

mixture was immediately loaded on a SpectraMax M5 (Molecular

Devices) where fluorescence was quantified over the course of

30 min at an excitation wavelength of 355 nm and an emission

wavelength of 460 nm. Single time points were chosen where the

positive control produced a fluorescence signal of approximately

1,000. All assays were done in triplicates and IC50 values for each

inhibitor were calculated with sigmoidal fitting of the log[inhibitor]

vs. inhibition percentage using GraphPad Prism.

Crystallization and drug soaking
NA crystals were grown using the hanging-drop vapor diffusion

method. Initial screening was performed using a commercial kit

(Hampton Research). Diffraction quality crystals of p57N2 were

obtained by mixing 1 uL of the concentrated protein at 10 mg/mL

in 20 mM Tris, pH 8.0, and 50 mM NaCl with 0.1M BIS-TRIS

propane (pH 9.0), 10% v/v Jeffamine ED-2001 (pH 7.0). N5

crystals were obtained using 0.1 M HEPES (pH 7.5), 12% w/v

polyethylene glycol 3,350 at 18uC [15]. Quality p09N1 crystals were

obtained as described previously using 0.16 M calcium acetate

hydrate, 0.08 M sodium cacodylate trihydrate, pH 6.5, 14.4%

polyethylene glycol 8000, 20% glycerol at 18uC [13]. NA protein

crystals were first incubated in mother liquor containing 20 mM of

inhibitor, and then flash-cooled at 100 K. Diffraction data for the

p57N2 and N5 were collected at KEK beamline Ne3A, while

p09N1 data were collected at SSRF beamline BL17U.

Data collection, processing and structure solution
Diffraction data were processed and scaled using HKL2000

[55]. Data collection and processing statistics are summarized in

Table 3. The structure of p57N2 was solved by molecular

replacement method using Phaser [56] from the CCP4 program

suite [57] with the structure of A/TOKYO/3/1967 H2N2 N2

(PDB code: 1IVG) as the search model [41]. Initial restrained

rigid-body refinement and manual model building were performed

using REFMAC5 [58] and COOT [59], respectively. Further

rounds of refinement were performed using the phenix.refine

program implemented in the PHENIX package with coordinate

refinement, isotropic ADP refinement and bulk solvent modeling

[60]. The stereochemical quality of the final model was assessed

with the program PROCHECK [61]. The final models have 84%

of the residues in the most favored region of the Ramachandran

plot [62] and no residue in disallowed regions. Structures of

p09N1 and N5 were solved as described previously [13,15].

PDB accession codes
All crystal structures have been deposited into the Protein Data

Bank (PDB, www.pdb.org) with the following PDB codes: N5-

laninamivir - 3TI8, p09N1-zanamivir - 3TI5, p09N1-laninamivir -

3TI3, p09N1-laninamivir octanoate - 3TI4, p09N1-oseltamivir -

3TI6, p57N2-zanamivir - 3TIC, p57N2-laninamivir - 3TIA, and

p57N2-laninamivir octanoate - 3TIB.
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