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Abstract: ATP is an extracellular signal for the immune
system, particularly during an inflammatory response. It is
sensed by the P2X7 receptor, the expression of which is
upregulated by pro-inflammatory cytokines. Activation of
the P2X7 receptor opens a cation-specific channel that
alters the ionic environment of the cell, activating several
pathways, including (i) the inflammasome, leading to
production of IL-1b and IL-18; (ii) the stress-activated
protein kinase pathway, resulting in apoptosis; (iii) the
mitogen-activated protein kinase pathway, leading to
generation of reactive oxygen and nitrogen intermedi-
ates; and (iv) phospholipase D, stimulating phagosome-
lysosome fusion. The P2X7 receptor can initiate host
mechanisms to remove pathogens, most particularly
those that parasitise macrophages. At the same time,
the P2X7 receptor may be subverted by pathogens to
modulate host responses. Moreover, recent genetic
studies have demonstrated significant associations be-
tween susceptibility or resistance to parasites and
bacteria, and loss-of-function or gain-of-function poly-
morphisms in the P2X7 receptor, underscoring its
importance in infectious disease.

Introduction

In addition to its role in cellular metabolism, the purine

nucleotide ATP acts as an important extracellular messenger in a

range of physiological processes, including synaptic transmissions,

taste, bone formation/resorption, male fertility, blood pressure

regulation, and inflammation [1–3]. Its effects are mediated

through activation of purinergic receptors such as the P1

adenosine and the P2 nucleotide receptors [4]. Purinergic

receptors are found on all types of cells in mammalian tissues,

with many cells expressing multiple P1 and P2 subtypes [5].

P2 receptors are classified into two subfamilies—the P2X

ligand-gated ion channels and the P2Y G protein–coupled

receptors [4]. To date, seven P2X subunits (P2X1–P2X7) and

eight P2Y subunits (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12,

P2Y13, P2Y14) have been identified [5]. P2X receptors are fast

acting and open a cation-selective channel within milliseconds of

ATP binding, whereas P2Y receptors are slower acting because

their activation proceeds through second-messenger pathways, in

the form of G proteins. Most P2X receptors have a low affinity for

ATP, usually within the mM–mM range, while P2Y receptors are

responsive to nM concentrations of ATP [6].

The P2X Family

There are seven mammalian P2X subunits that assemble as

homo- or heterotrimers to form functional receptors [7]. Each

subunit consists of intracellular N and C termini and two

membrane-spanning segments, separated by an extracellular loop

containing ten conserved cysteine residues, thought to form

disulfide bonds, and lysine and phenylalanine residues involved

in activation by ATP [7]. The C termini of the various P2X

subunits vary in length from 25 amino acids in the P2X6 receptor

to 240 amino acids in the P2X7 receptor and are associated with

the functional properties specific to each receptor [2,8]. Each

subunit is able to bind a molecule of ATP although the sensitivity

to ATP binding varies widely within the family, with the P2X1

receptor requiring nM levels for activation, whereas the P2X7

receptor requires mM concentrations [3]. Brief exposure of all

P2X receptors to ATP opens up a channel that renders the cell

permeable to Na+, K+, and Ca2+, causing an increase in

intracellular Ca2+ and Na+ concentrations and a decrease in

intracellular K+. This leads to depolarisation of the cell membrane

and initiation of downstream Ca2+ signalling pathways [3].

Prolonged exposure of the P2X1 and P2X3 receptors to ATP

results in desensitisation and closure of the pore; however,

prolonged exposure of the P2X2, P2X4, P2X5, and P2X7 receptors

to ATP results in sustained membrane depolarisation and the

opening of large transmembrane pores [2] that are permeable to

hydrophilic molecules between 314 Da and 900 Da, depending on

the cell type studied [9,10].

The P2X7 Receptor

The P2X7 receptor is highly expressed by cells of the

haemopoietic lineage and can mediate cell death, killing of

infectious organisms, and regulation of the inflammatory response

[7,11,12]. The receptor is constitutively expressed. Under normal

physiological conditions, activity of the receptor is kept at a low

level by the extracellular concentration of divalent cations such as

Ca2+ and Mg2+, which appear to alter the affinity of ATP binding

in an allosteric manner, and this is believed to prevent unnecessary
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cell permeability and pore formation [7,13]. Under pathophysi-

ological conditions, for example at sites of inflammation or

infection, expression is up-regulated by inflammatory cytokines

[14]. Extracellular concentrations of Ca2+ and Mg2+ decrease as a

consequence of dead and damaged cells releasing their cytosolic

contents. This ‘‘dilution’’, combined with an increase in ATP (also

released from lysing cells), enhances P2X7 receptor activation

[7,13].

The alteration in the ionic environment of the cell, resulting

from P2X7 receptor activation, triggers a number of cellular

pathways, depending on cell type (Figure 1), including: (i) the

inflammasome, leading to production of IL-1b and IL-18 [15–17];

(ii) the stress-activated protein kinase pathway, resulting in

apoptosis [18]; (iii) the mitogen-activated protein kinase pathway,

leading to generation of reactive oxygen and nitrogen intermedi-

ates [11,19–21]; and (iv) phospholipase D, stimulating phago-

some–lysosome fusion [22]. The involvement of the P2X7 receptor

in these pathways suggests that it functions as a major regulator of

inflammation. Indeed, absence of the P2X7 receptor alters

immune cell function with the effect seen dependent on context.

For example, in a murine model of arthritis, P2X7 receptor–

deficient animals showed a reduction in the incidence and severity

of the disease compared with wild-type animals [23]; however, in a

study of autoimmune encephalomyelitis, P2X7 receptor–deficient

animals had exacerbated neuroinflammation compared with wild-

type animals [24]. Moreover, a number of change-of-function

polymorphisms, most of which render the receptor inactive or with

reduced function, have also been noted in the human population

(Table 1) [25–32], and genetic association studies have uncovered

links between some of these polymorphisms and resistance/

susceptibility to mood disorders, bone diseases, and, most

particularly, infectious disease [26]. It should be noted, however,

that immune cells also express P2Y receptors, such as P2Y2, which

are also activated by inflammatory cytokines and, so, may also

contribute to the regulation of inflammation [5].

The P2X7 Receptor and Intracellular Bacteria

Mycobacteria, such as Mycobacterium tuberculosis, the causative

agent of human tuberculosis, are able to survive and replicate in

phagosomes within macrophages by inhibiting phagosomal fusion

with lysosomes [33]. Treatment of infected macrophages with

ATP, however, can overcome the phagosome–lysosome fusion

block, leading to the killing of intracellular bacilli [34]. The process

appears to be mediated by P2X7 receptors; bactericidal activity is

markedly reduced in P2X7 receptor–deficient macrophages [34].

It involves activation of phospholipase D; thus, phospholipase D

blockers inhibit killing of intracellular mycobacteria following ATP

treatment [34]. Blocking macrophage phospholipase D activity,

however, does not inhibit macrophage apoptotic death, demon-

strating that, while ATP stimulation leads to macrophage

apoptosis and mycobacterial death, these processes can be

uncoupled [34]. More recently, autophagy has been shown to

have a role in the control of mycobacterial infections. ATP

treatment rapidly induces autophagy and mycobacterial killing in

a process dependent on P2X7 receptor activation and Ca2+ influx

[35].

Evidence for P2X7 receptor involvement in mycobacterial

killing comes from studies showing that loss-of-function polymor-

phisms in the human P2X7 receptor gene lead to increased

susceptibility to M. tuberculosis. Fernando et al. [36] investigated the

prevalence of the 1513 A.C polymorphism in two independent

Southeast Asian cohorts, and found a strong association with the

1513 A.C polymorphism and extrapulmonary tuberculosis.

Subsequent studies have also found that the 1513C allele is a

risk factor in the development of extrapulmonary and pulmonary

tuberculosis in numerous ethnic populations, including Mexican

[37], Russian Slavic [38], and a North Indian Punjabi population

[39]. Recently, an association with the 1513C allele and the

development of extrapulmonary tuberculosis in Turkish children

was also identified [40]. Additional studies have shown associa-

tions between tuberculosis and alleles other than 1513C. Li et al.

[41] studied various P2X7 receptor polymorphisms in a Gambian

population. They found that a protective effect against tuberculosis

was associated with a P2X7 receptor promoter polymorphism at

position 2762, but the 1513 A.C polymorphism discussed above

did not show any significant association. Interestingly, Sambasivan

et al. [42] found an association between development of clinical

tuberculosis and the presence of the 2762C or 1729T allele but

not the 1513C allele in an Indian cohort, while Xiao et al. [43] did

not find an association between either the 1513C allele or the

2762C allele and the development of pulmonary tuberculosis in a

Chinese Han cohort. Overall, though, a recent meta-analysis of

P2X7 receptor gene polymorphism association studies revealed a

strong association between the 1513 A.C polymorphism and

susceptibility to tuberculosis [44].

Data from in vitro studies provide evidence for potential

mechanistic explanations for the association of polymorphisms in

the human P2X7 receptor gene with susceptibility to tuberculosis.

Saunders et al. [45] activated P2X7 receptors on BCG-infected

macrophages from wild-type and homozygous 1513C donors and

showed that P2X7 receptor–activated wild-type macrophages

undergo apoptosis and kill intracellular bacteria; however,

macrophages homozygous for the 1513 A.C loss-of-function

polymorphism fail to undergo apoptosis upon exposure to ATP,

resulting in mycobacterial survival. The effect of other P2X7

receptor polymorphisms was further assessed by Fernando et al.

[46] and Shemon et al. [25], who showed that several P2X7

receptor polymorphisms (946 G.A, 1729 T.A, and 155+1 g.t)

result in reduced macrophage apoptosis and mycobacterial killing.

This effect was augmented in compound heterozygous donors

(donors with a heterozygous loss of function polymorphism at

more than one position on the P2X7 receptor gene).

The P2X7 receptor has also been implicated in the innate

response to obligate intracellular bacteria of the Chlamydia genus.

The macrophage is an important reservoir and source of

dissemination of Chlamydia [47,48]. Like mycobacteria, Chlamydia

within macrophages are susceptible to ATP treatment, which

results in the death of ,70%–90% of all intracellular bacteria

[49]. This appears to be the result of P2X7 receptor–dependent

stimulation of phospholipase D activity and subsequent phagolyso-

some fusion. Macrophages from P2X7 receptor gene knockout

mice show no phospholipase D activation after treatment with

ATP and are completely unable to induce ATP-dependent

chlamydial death [50]. Furthermore, inhibiting phospholipase D

activation in normal murine macrophages, by the addition of

butan-1-ol, restores the levels of infection to ,50%, indicating that

phospholipase D is at least partly responsible for chlamydial death

[50]. Moreover, treatment of epithelial cells (the preferred target

cell for chlamydiae) with P2X7 receptor agonists reduces the

infectiveness of the bacteria, again associated with activation of

phospholipase D [51].

Although Chlamydia is clearly vulnerable to P2X7 receptor–

dependent killing, it has developed some resistance to this killing.

Chlamydia-infected J774 murine macrophages are resistant to

apoptosis following treatment with ATP, whereas uninfected cells

undergo apoptosis via P2X7 receptor–dependent pathways [49].

Infection results in markedly reduced activation of the P2X7
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receptor; the mechanism by which this is achieved remains to be

elucidated, but it is known that live, growing organisms are

required [49].

The P2X7 Receptor and Intracellular Parasites

The P2X7 receptor may also play a role in clearance of

intracellular parasites of the Leishmania genus. Murine macrophag-

es and cells cultured from cutaneous lesions of mice infected with

Leishmania amazonensis are more sensitive to P2X7 receptor–

mediated pore formation, inhibiting growth of the intracellular

parasite [52]. Killing of L. amazonensis via the P2X7 receptor is

independent of nitric oxide; instead, it is associated with host cell

apoptosis [52]. However, when P2X7 receptor gene knockout mice

and parental C57BL/6J mice are infected intradermally with

Leishmania major, no difference in resolution of lesions is observed,

suggesting that, in the absence of P2X7 receptors, other anti-

parasitic defence mechanisms compensate to control infection in

vivo (C. Miller, A. Zakrzewski, M. Katrib, N. Smith, unpublished

observations).

Recently, the P2X7 receptor has been implicated in the immune

response to another intracellular protozoan, Toxoplasma gondii, a

parasite that is able to infect and survive in cells of the monocyte/

macrophage lineage. However, the role of the P2X7 receptor in

the response to T. gondii is an intriguing and complex one.

Activation of ‘‘wild-type’’ human or murine macrophages with

ATP induces killing of tachyzoites of both virulent and avirulent

strains of the parasite, but the same treatment of macrophages

Figure 1. Intracellular pathways in immune cells stimulated by P2X7 receptor activation. Activation of the P2X7 receptor with extracellular
ATP opens a cation-specific ion channel that results in the influx of Ca2+ and Na+ and the efflux of K+. Prolonged exposure to ATP creates a pore in the
cell membrane that further increases the intracellular Ca2+ concentration as well as allowing passage of larger molecules. This alteration in the ionic
environment of the cell triggers a number of cellular pathways. Efflux of K+ stimulates the formation of the inflammasome, resulting in the activation
of caspase-1. Caspase-1 then cleaves pro-IL-1b and pro-IL-18 to produce IL-1b and IL-18, which are then secreted from the cell as part of the
inflammatory response. The efflux of K+ and influx of Na+ also activates the stress-activated protein kinase (SAPK)/c-Jun N-terminal kinases (JNK)
pathway, resulting in the induction of apoptosis. The influx of Ca2+ activates phospholipase D via RhoA, leading to phagosome/lysosome fusion and
the killing of intracellular pathogens. Influx of Ca2+ can also activate the mitogen-activated protein kinase p38, stimulating a number of downstream
effects. Phosphorylation of p38 leads to the assembly of NADPH oxidase at the plasma membrane, and the subsequent production of superoxide
(O2

2), enhances nuclear factor kappa B (NFkB) activation via toll-like receptor (TLR) signalling and the subsequent transcription of inducible nitric
oxide synthase (iNOS) and production of nitric oxide (NO), as well as production of tumour necrosis factor (TNF) and IL-6. It can also lead to the
phosphorylation of cAMP response elements binding protein (CREB) via mitogen- and stress-activated kinase 1 (MSK1). Phosphorylated CREB (CREB-
P) sequesters CREB binding protein (CBP), a co-transcription factor required for NFkB-mediated gene transcription, and inhibits transcription of NFkB-
controlled genes. Phosphorylated CREB/CBP also stimulates the production of cAMP-responsive genes such as Cebpb that act to modulate the
inflammatory response through the production of arginase-1 (Arg-1) and IL-10.
doi:10.1371/journal.ppat.1002212.g001
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from humans with the 1513 A.C loss-of-function polymorphism

or macrophages from P2X7 receptor knockout mice has no effect

on parasite viability [53,54]. Interestingly, P2X7 receptor–

mediated killing of T. gondii is not linked to generation of nitric

oxide but is, rather, associated with either phagolysosome

formation accompanied by production of free oxygen radicals

[53] or host cell apoptosis [54]. Thus, P2X7 receptor–mediated

killing of T. gondii has much in common with similarly mediated

killing of Mycobacteria, Chlamydia, and Leishmania.

However, susceptibility to either congenital or ocular toxoplas-

mosis in humans is not associated significantly with the 1513 A.C

loss-of-function polymorphism [55]. Intriguingly, though, resis-

tance to both congenital and ocular toxoplasmosis, in the United

States and Brazil, respectively, is associated positively with the

1068 T.C polymorphism [55]. This polymorphism has recently

been revealed to code for a gain-of-function phenotype in P2X7

receptor activity [27] and may be the true ancestral primate

sequence [55]. Thus, the American and Brazilian association

studies could be interpreted to indicate that reduced inflammatory

disease of the foetus or the eye is a consequence of efficient control

of parasite load in the presence of a fully functional, ancestral

P2X7 receptor [55]. Larger scale association studies may be

needed to truly resolve the association, or otherwise, of various

polymorphisms in the P2X7 receptor and congenital or acquired

toxoplasmosis.

In vivo murine evidence for a significant role of the P2X7

receptor in controlling T. gondii is also inconsistent. In one study,

where mice were infected intraperitoneally with tachyzoites of

the type 2, avirulent ME49 strain of T. gondii, splenic parasite

burdens in different mouse strains were in proportions

consistent with their relative P2X7 receptor activity [54]; thus,

P2X7 receptor knockout mice harboured more parasites than

the parental C57BL/6J mice, whereas, in another study, using

the same parasites and route of infection, no difference in

parasite burden between receptor knockout mice and the

parental strain was observed in vivo [56]. C57BL/6J mice are

known to possess a proline-to-leucine polymorphism at amino

acid 453 in their P2X7 receptor that affects some [22,57–59],

but not all [22,60,61], functions of the receptor and so, C57BL/

6J mice, in turn, had higher parasite burdens than resistant

BALB/c mice with fully functioning P2X7 receptors. It should

be noted, however, that BALB/c and C57BL/6J mice display

differing susceptibilities to T. gondii infection and multiple genes

are associated with this [62]. This may help explain the

discrepancy seen in the in vivo studies.

The apparent inconsistency between P2X7 receptor–mediated

killing of T. gondii in vitro versus in vivo may simply reflect the fact

that type 2 strains of T. gondii, like ME49, induce a wide variety of

pro-inflammatory responses that can control the reproduction of

this parasite [63]. Put another way, P2X7 receptor–mediated

killing is just one means of control of T. gondii, and others remain

operative in knockout mice so that little effect on parasite burden is

observed in vivo. This does, however, indicate that the P2X7

receptor plays a contributory rather than major role in controlling

T. gondii, which is underscored by the fact that production of

several cytokines known to be important in the control of T. gondii,

including gamma-interferon and IL-12, are not inhibited in T.

gondii–infected P2X7 receptor knockout mice [56].

Table 1. Single nucleotide polymorphisms identified in the human P2X7 receptor.

P2X7R Gene
Polymorphism
(Nucleotide Position
and Base Change)

Amino Acid
Change

Location in
Receptor Effect on Receptor Function Disease Association dbSNP ID

151+1 g.t Produces null allele Exon1/
intron1 boundary

Loss of function – nonsense-mediated mRNA
decay [25,26]

None known rs35933842

253 T.C Val-76.Ala Extracellular loop Loss of function – partial reduction in pore
formation [27]

None known rs1752809

474 G.A Gly-150.Arg Extracellular loop Loss of function – disrupted protein folding,
no pore formation [27,28]

None known rs28360447

489 C.T His-155.Tyr Extracellular loop Gain of function – enhanced pore formation
and Ca2+ influx [29]

None known rs208294

835 G.A His-270.Arg Extracellular loop Gain of function – enhanced pore f
ormation [27]

None known rs7958311

853 G.A Arg-276.His Extracellular loop Loss of function – no pore formation [27] None known rs7958316

946 G.A Arg-307.Gln ATP binding site Loss of function – no channel or pore
formation, loss of phospholipase D
activity [30]

None known rs28360457

1068 G.A Ala-348.Thr Cytoplasmic tail Gain of function –enhanced pore
formation and IL-1b secretion [27]

None known rs1718119

1096 C.G Thr-357.Ser Cytoplasmic tail Loss of function – partial reduction in
channel and pore formation [25]

Impaired mycobacterial killing rs2230911

1405 A.G Glu-460.Arg Cytoplasmic tail Loss of function – partial reduction in pore
formation [26,27]

Bipolar disorder, major
depressive disorder

rs2230912

1513 A.C Glu-496.Ala Cytoplasmic tail Loss of function – suboptimal
receptor assembly affecting pore formation
[28,31]

Susceptibility to reactivating
tuberculosis; chronic
lymphocytic leukaemia

rs3751143

1729 T.A Ile-568.Asn Cytoplasmic tail Loss of function – prevention of receptor
trafficking and surface expression [32]

None known rs1653624

doi:10.1371/journal.ppat.1002212.t001
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Most intriguingly, P2X7 receptor knockout mice are very

susceptible to acute toxoplasmosis, losing weight faster and more

dramatically than either C57BL/6J or BALB/c mice [56]. This

susceptibility is not related to relative parasite burdens or a general

alteration in cytokine responses but is associated with an inability

of the knockout mice to limit nitric oxide production [56], a well-

known cause of immunopathology in parasitic infections, including

T. gondii [63]. P2X7 receptor knockout mice infected with T. gondii

also display a delayed—but not abrogated—production of IL-10

[56], which may partially explain their inability to control nitric

oxide production. However, it must be stressed that these

observations are correlative rather than definitive evidence that

the susceptibility to toxoplasmosis apparent in P2X7 receptor–

deficient mice is due to an over-exuberant inflammatory response

and, as this immunoregulatory role for the P2X7 receptor has not

been noted previously, it does require in-depth follow-up.

It is tempting to speculate that extracellular ATP is an effective

danger signal for the immune system, produced as a result of

damage caused by factors like nitric oxide. Since nitric oxide is

potentially so damaging, its production is tightly controlled,

possibly through a negative feedback mechanism. In this scenario,

perhaps cells lacking the P2X7 receptor to sense extracellular ATP

continue producing nitric oxide, whereas cells with functional

receptors are able to regulate nitric oxide production. Figure 1

presents a possible molecular explanation. CREB [64] is a

transcription factor that has been linked to the suppression of

inducible nitric oxide synthase. Extracellular ATP induces

activation of CREB as well as suppressing LPS-induced nitric

oxide production [65]. Although the exact mechanism has not

been elucidated, it is thought that activated CREB sequesters a

transcriptional co-activator, CBP, preventing it from interacting

with the nuclear factor kappa B (NFkB) subunit p65, thus

inhibiting expression of inducible nitric oxide synthase [65].

Hence, during infection with T. gondii, extracellular ATP,

operating through the P2X7 receptor, may activate CREB and

down-regulate nitric oxide production. Cells lacking the P2X7

receptor would, therefore, be less responsive to any build-up in

extracellular ATP. The downstream effect of this would be a lack

of phosphorylation, allowing CBP to remain bound to NFkB, and

inducible nitric oxide synthase transcription and nitric oxide

production to continue indefinitely. Pathology would result.

Conclusion

Clearly, the P2X7 receptor comprises an important part of the

host arsenal against invading pathogens. However, there is

growing evidence of bacteria and parasites subverting the P2X7

receptor pathways for their own advantage, be that through P2X7

receptor–mediated apoptosis, phospholipase D production, or

inhibition of these, as highlighted above.

We speculate that many other pathogens also modulate the host

P2X7 receptor. For example, intracellular parasites of various

genera—including Theileria [66], Leishmania [67,68], Cryptosporidium

[69,70], and Microsporidia [71], and bacteria such as Brucella

[72,73]—all prevent apoptosis of host cells to aid their own

survival. Other pathogens, such as Plasmodium [74,75], Tritricho-

monas [76,77], Streptococcus [78,79], and Legionella [80], actually

increase apoptosis of host cells, thereby reducing the numbers of

circulating immune cells and increasing their chances for survival.

Intriguingly, T. gondii is able to both induce and suppress apoptosis

in a cell type–dependent manner that allows it to establish a

persistent infection [81]. Could some, or all of these, be affecting

host cell apotosis via the P2X7 receptor? Legionella [82], Francisella

[83,84], and Leishmania [85] prevent phagolysosome fusion—

perhaps this is in a P2X7 receptor–dependent manner analogous

to Chlamydia? And, although no definitive link with the P2X7

receptor exists, infection of peritoneal macrophages with Trypano-

soma cruzi down-regulates expression of P2X7 receptors [86], which

may reduce the immune pressure on these parasites. It would be

interesting to investigate whether the P2X7 receptor is a common

target in the immune evasion strategies of these diverse pathogens.

It should also be noted that many of these studies have been

conducted in vitro, and it will be important to confirm that the

P2X7 receptor is playing a non-redundant role in controlling these

pathogens in vivo using P2X7 receptor knockout mice.

Perhaps surprisingly, extracellular pathogens may also be

affected by, or react to, P2X7 receptor activity. For example,

Pseudomonas aeruginosa, a major pathogen in the lungs of cystic

fibrosis patients, and Vibrio cholerae, the causative agent of cholera,

have been shown to secrete multiple enzymes with ATP-modifying

activities, such as adenylate kinase, ATPase, and 59-nucleotidase

[87–89]. It is believed that these enzymes are used to modulate

external ATP levels and, thereby, increase P2X7 receptor function,

mediating apoptosis of macrophages. Extracellular bacteria, such

as Staphylococcus aureus and Escherichia coli, have been linked to P2X7

receptor dependence in a study of caspase-1 activation and

subsequent IL-1b secretion [90]. It is unclear in these studies,

however, how this stimulation of apoptosis affects the survival and

growth of the bacteria. Thus, future work may well reveal that the

P2X7 receptor has—sometimes quite unexpected—roles in

modulating a variety of infectious diseases, not just those that

parasitise macrophages.
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