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Abstract

Interferons a and b (IFN-a/b) are type I interferons produced by the host to control microbial infections. However, the use of
IFN-a to treat hepatitis B virus (HBV) patients generated sustained response to only a minority of patients. By using HBV
transgenic mice as a model and by using hydrodynamic injection to introduce HBV DNA into the mouse liver, we studied
the effect of IFN-a/b on HBV in vivo. Interestingly, our results indicated that IFN-a/b could have opposite effects on HBV:
they suppressed HBV replication when viral load was high and enhanced HBV replication when viral load was low. IFN-a/b
apparently suppressed HBV replication via transcriptional and post-transcriptional regulations. In contrast, IFN-a/b
enhanced viral replication by inducing the transcription factor HNF3c and activating STAT3, which together stimulated HBV
gene expression and replication. Further studies revealed an important role of IFN-a/b in stimulating viral growth and
prolonging viremia when viral load is low. This use of an innate immune response to enhance its replication and persistence
may represent a novel strategy that HBV uses to enhance its growth and spread in the early stage of viral infection when the
viral level is low.
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Introduction

Interferon-a (IFN-a) and interferon- b (IFN- b) are type I

interferons, which are produced by the host in response to viral

infections to inhibit viral replication [1]. After binding to its

receptor, IFN-a/b activates the Janus kinase (JAK) and its

downstream signal transducer and activator of transcription

(STAT) and induces the expression of more than 300 IFN-

stimulated genes (ISGs) and many antiviral proteins [2,3]. IFN-a
has been used to treat viral infections including hepatitis B virus

(HBV), which chronically infects approximately 350 million

people in the world. Unfortunately, IFN- a generates sustained

virological response in only a minority of patients [4]. Little is

known why the majority of HBV patients do not respond to the

IFN-a therapy.

HBV is a small DNA virus that infects liver. Its genome is only

3.2 Kb in size and consists of four genes: the C gene codes for the

viral core protein that forms the viral capsid and a related protein

termed precore protein, which is the precursor of the secreted e

antigen (HBeAg); the S gene codes for the viral envelope proteins,

also known as surface antigens (HBsAg); the P gene codes for the

viral DNA polymerase; and the X gene codes for a regulatory

protein. To understand why IFN-a generates different responses in

HBV patients, we studied the effect of IFN-a/b on HBV

replication using mice as a model. Interestingly, we found that

interferons could suppress HBV replication when viral load is high

and enhance HBV replication when viral load is low. The

suppression of HBV replication by IFN-a/b apparently involves

both transcriptional and post-transcriptional regulations whereas

the enhancement of HBV replication by IFN-a/b is mediated by

transcription factors HNF3c and STAT3. This use of type I

interferons induced by its infection to enhance its replication thus

represents a novel strategy that HBV may use to stimulate its

growth and spread in the early stage of viral infection when the

viral level is still low.

Results

Opposite effects of IFN-a/b on HBV replication in HBV
transgenic mice

We have previously produced four HBV transgenic mouse lines

that carry either the wild type HBV genome (Tg05 and Tg08

mouse lines) or the mutated HBV genome that is incapable of

expressing only the HBV X protein (HBx) (Tg31 and Tg38 lines)

[5], which is a regulatory protein. These mouse lines contain

replicating HBV DNA in the liver and produce mature viral

particles in the blood (Figure S1A and S1B). To examine the

possible effects of IFN-a/b on HBV in vivo, HBV transgenic mice

were injected intravenously with the IFN-a/b inducer poly(I:C), or

with saline, which served as the control. Mice were sacrificed

12 hours or 24 hours after injection for the studies. The effect of

poly(I:C) on HBV DNA replication in the liver was analyzed by

Southern blot. The level of HBV DNA replicative intermediates

(RI) in the Tg05 mouse liver at 12 hours and 24 hours after

poly(I:C) injection was reduced by 54% and 80%, respectively

(Figure 1A). When the HBV RNA was analyzed by Northern-blot,

a slight reduction of the level by poly(I:C) was also observed,

particularly with the HBV C gene transcripts. When the HBV
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core protein was analyzed by Western-blot, its reduction by

poly(I:C) was inapparent at 12 hours, likely due to the stability of

this protein. However, its reduction was apparent at 24 hours after

injection (Figure 1A). For the Tg38 mouse line, the HBV DNA in

the liver was also reduced in a time-dependent manner, although

by a lesser degree (36% and 61% reduction at 12 hours and

24 hours, respectively, after injection). The reduction of the HBV

RNA levels was not obvious. However, the core protein reduction

was apparent at the 24-hour time point (Figure 1A). In contrast to

Tg05 and Tg38 mouse lines, poly(I:C) increased the HBV DNA,

RNA and core protein levels in the liver of Tg31 and Tg08 mice

(Figure 1A). These results indicated that poly(I:C) could have

different effects on HBV, depending on the mouse lines.

To determine whether the effect of poly(I:C) on HBV was

mediated by interferons, we first tested whether poly(I:C) could

indeed induce the interferon response in all four mouse lines. Total

mouse liver RNA was isolated and analyzed for the expression of

29-59 oligoadenylate synthetase (29,59-OAS), a gene activated by

IFN-a/b, by semi-quantitative reverse transcription PCR (RT-

PCR). The expression of 29,59-OAS was indeed induced in the

liver of all four mouse lines, indicating the induction of interferon

response by poly(I:C) (Figure S2A). We next injected HBV

transgenic mice with antibodies directed against IFN-a/b one day

prior to the injection of poly(I:C). The administration of anti-IFN-

a/b antibodies, but not the control antibody, abolished the

induction of 29,59-OAS, indicating the ability of these anti-IFN-a/

b antibodies to inhibit the activities of IFN-a/b in the liver (Figure

S2B). Finally, we analyzed the effect of anti-IFN-a/b antibodies on

HBV replication. The administration of anti-IFN-a/b antibodies,

but not the control antibody, prevented poly(I:C) from reducing

the levels of HBV RI DNA, RNA and core protein in Tg05 and

Tg38 mice and from increasing their levels in Tg08 and Tg31

mice (Figure 1B). If anti-IFN-a and anti-IFN-b antibodies were

administered separately, the latter was found to be more efficient

than the former in blocking the effect of poly(I:C) (Figure S2C).

This result might be due to the preferential induction of IFN-b by

poly(I:C) [6], or the difference in activities of these two cytokines

[7]. We had also tested directly the role of IFN-a/b in the

regulation of HBV replication by injecting Tg05 and Tg31 mice

with IFN- a and IFN-b. Our results indicated that IFN- a had only

a slight effect on HBV in these two mouse lines whereas IFN-b

significantly suppressed HBV replication in Tg05 mice and

enhanced HBV replication in Tg31 mice (Figure S2D).

In the studies shown in Figure 1, HBV transgenic mice were

only treated with poly(I:C) for up to 24 hours. To determine

whether the effects of poly(I:C) on HBV could persist, we analyzed

its effects on HBV for one week. As shown in Figure S2E, the

effects of poly(I:C) on HBV could persist for one week, the

endpoint of the analysis.

Our results thus indicated that the effect of IFN-a/b on HBV

could vary depending on the mouse lines. This effect of IFN-a/b
on HBV is independent of the HBx protein, as Tg05 and Tg08

mice carried the wild-type HBV genome and yet responded in

opposite ways to IFN-a/b. Similarly, Tg31 and Tg38 carried the

X-null HBV genome and also responded differently to IFN-a/b.

However, there appeared to be a viral load-dependent effect, as

IFN-a/b suppressed HBV replication in Tg05 and Tg38 mice,

which produced higher levels of HBV, whereas they enhanced

HBV replication in Tg08 and Tg31 mice, which produced lower

levels of HBV (Figure S1A and S1B).

Viral load-dependent effect of IFN-a/b on HBV replication
To examine whether the effect of IFN-a/b on HBV is indeed

dependent on viral load, we performed the hydrodynamic

injection, which is a rapid and convenient method for gene

delivery into the mouse liver [8]. In this study, different amounts of

the 1.3mer, over-length HBV DNA genome were injected via the

tail vein into mice. Increasing the amount of HBV DNA in the

injection led to an increasing level of HBV RI DNA, HBV RNA

and the core protein in the liver until the amount of HBV DNA

reached 24 mg (Figure 2A). Further increase of the HBV DNA

amount to 32 mg for injection did not increase, but rather,

decreased HBV RI DNA, HBV RNA and core protein levels in

the mouse liver, perhaps due to the reduction in DNA delivery

efficiency (Figure 2A). There was a positive correlation between

the levels of HBV RI DNA in the liver and HBV titers in the sera

(Figure S3). To test whether the effect of poly(I:C) on HBV

replication is dependent on viral load, mice were injected with

ploy(I:C) three days after the hydrodynamic injection of HBV

DNA and sacrificed 24 hours later for HBV replication studies.

Poly(I:C) increased HBV DNA, RNA and core protein levels when

the HBV DNA used for the injection was 4, 8 or 14 mg. However,

poly(I:C) decreased HBV DNA, RNA and core protein levels

when the amount of HBV DNA used for the injection was 20, 24

or 32 mg (Figure 2A).

To determine whether the effect of poly(I:C) on HBV in this

hydrodynamic injection study was also mediated by IFN-a/b, we

also injected mice with either the control antibody or the anti-IFN-

a/b antibodies. The control IgG had no effect on the increase of

HBV DNA, RNA and core protein levels induced by poly(I:C)

when mice were injected with 8 mg HBV DNA. However, this

increase was abolished by anti-IFN-a/b antibodies. Similarly,

although the control IgG had no effect on the decrease of HBV

DNA, RNA and core protein levels by poly(I:C) when mice were

injected with 20 mg HBV DNA, anti-IFN-a/b antibodies

diminished the suppressing effect of poly(I:C) on HBV (Figure 2B).

The results indicate that the effect of IFN-a/b on HBV is

dependent on viral load. They enhance HBV replication when

viral load in the serum is low and suppress HBV replication when

viral load is high. The viral DNA level in the serum that separates

these two opposite responses appears to be in the vicinity of 107

copies/ml (Figure S3), as the HBV replication was stimulated by

interferons when the viral DNA level in the serum was lower than

107 copies/ml whereas it was suppressed when the viral DNA level

was higher than 107 (Figure 2A and Figure S3).

Author Summary

Hepatitis B virus (HBV) is a major human pathogen that
can cause severe liver diseases including hepatitis, liver
cirrhosis and hepatocellular carcinoma. Approximately 350
million people worldwide are chronic carriers of this virus.
Type I interferons (IFNs), which include IFN-a and IFN-b, are
produced by the host to control microbial infections.
However, the use of IFN-a to treat HBV patients has
generated inconsistent results. By using mice as an animal
model, we have investigated the effect of type I IFNs on
HBV replication in vivo. Our results indicate that IFN-a/b
can suppress HBV replication when viral load is high and
enhance HBV replication when viral load is low. These
effects of IFN-a/b on HBV are due in part to their abilities
to regulate HBV gene expression. Our further studies
reveal an important role of IFN-a/b in stimulating viral
growth when viral load is low. This use of an innate
immune response to enhance its replication may represent
a novel mechanism that HBV uses to enhance its growth
and spread in the early stage of infection when the viral
level is still low.

Type I Interferons on HBV Replication
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Activation of the HBV enhancer I/X promoter complex in
mice by poly(I:C)

Previous studies indicated that IFN-a/b suppressed HBV

replication in transgenic mice that produced high levels of HBV

by inhibiting the assembly of the viral capsid or by accelerating their

degradation [9]. Our poly(I:C) injection results indicated that IFN-

a/b could also affect HBV RNA transcription or stability, as the

reduction of HBV RNA levels in the liver of mice that produced

high levels of HBV was also apparent after the injection of poly(I:C)

(e.g., Figure 2A and 2B). However, in mice that produced a low level

of HBV, IFN-a/b significantly increased the levels of both HBV C

gene and S gene RNA transcripts, suggesting that IFN-a/b might

enhance HBV replication in these mice by enhancing the

transcription of HBV genes, possibly by acting on the two HBV

Figure 1. Effects of IFN- a/b on HBV in mice. (A) Effects of poly(I:C) on HBV replication in transgenic mice. Four different HBV transgenic mouse
lines were used for the studies. To minimize the variations of the results, mice of the same lineage were pre-screened for their serum HBV e antigen
(HBeAg) levels, and only those with matched HBeAg levels were used for the studies. HBV transgenic mice were injected intravenously with saline
and sacrificed 24 hours later (i.e., 0 hour poly(I:C) treatment), or with 200 mg poly(I:C) and sacrificed 12 hours or 24 hours later. Total liver DNA was
isolated, digested with PvuII which does not cut into the HBV genome, and analyzed by Southern-blot for HBV DNA (top panel). The positions of HBV
transgene, which served as the loading control for Southern-blot, and the HBV RI DNA are marked. Total liver RNA was also analyzed for HBV RNAs by
Northern-blot (second panel from the top). C and S denote the HBV C gene and S gene RNA transcripts, respectively. For the RNA gel, 28S and 18S
rRNAs were stained with ethidium bromide to serve as the loading control (middle panel). The liver homogenates were also used for Western-blot
analysis for the HBV core protein (second panel from the bottom) and the b-actin (bottom panel). The latter served as the loading control. (B)
Suppression of the effects of poly(I:C) on HBV by anti-IFN-a/b antibodies in transgenic mice. HBV transgenic mice were injected with 250 mg control
IgG or anti-IFN-a/b antibodies followed by injection with poly(I:C). These mice were then sacrificed for the analysis of HBV DNA (top panel), HBV RNA
(middle two panels), and the core protein and b-actin (bottom two panels). Two mice were used for each experiment for confirmation of the results.
doi:10.1371/journal.ppat.1002159.g001

Type I Interferons on HBV Replication
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enhancers, which have global effects on HBV gene expressions [10].

To test this possibility, HBV DNA fragments containing enhancer I

and its overlapping X promoter (ENI/Xp) or enhancer II and its

overlapping C promoter (ENII/Cp) were linked to the firefly

luciferase reporter (Figure 3A). These DNA constructs were

delivered together with the 1.3mer HBV genomic DNA into the

mouse liver by hydrodynamic injection. Poly(I:C) decreased the

expression of the firefly luciferase approximately three-fold when

the ENI/Xp reporter construct was co-injected with 0 or 20 mg

1.3mer HBV genomic DNA. However, it increased the expression

level of the luciferase three to four-fold when the reporter construct

was co-injected with 8 mg 1.3mer HBV genome (Figure 3B). In

contrast, poly(I:C) reduced the expression level of the luciferase

reporter from the ENII/Cp construct, regardless of whether this

reporter construct was co-injected with 0, 8 or 20 mg HBV genomic

DNA (Figure 3C). These results indicated that poly(I:C) most likely

activated HBV gene expression when the HBV DNA level was low

by activating the ENI/Xp complex. Since poly(I:C) could not

activate the ENI/Xp complex in the absence of HBV genome

(Figure 3B), this result also indicated an essential role of a low HBV

genomic DNA level for poly(I:C) to exert its enhancing effect. Note

that, in the absence of poly(I:C), the expression level of luciferase

from the ENI/Xp reporter construct was higher in the presence of

20 mg HBV genomic DNA, and its expression level from the ENII/

Cp reporter construct was higher in the absence of HBV DNA. The

reason for these differences is unclear, but it might be related to the

activities of HBV gene products on ENI/Xp and ENII/Cp

complexes [11,12,13].

The ENI/Xp complex consists of multiple transcription factor

binding sites [10,14]. To further identify the IFN-a/b responsive

element in this complex, we conducted the deletion-mapping

experiments. The deletion of the sequence upstream of nt. 1136

was sufficient to abolish the stimulatory effect of poly(I:C) on the

ENI/Xp complex (Figure 3D), suggesting that the IFN-a/b
responsive element resides at nt. 1115–1136. This sequence has

previously been shown to contain HNF3 and STAT3 transcription

factor binding sites [15,16,17]. To test whether the HNF3 binding

site was indeed the IFN-a/b responsive element, we introduced

mutations, which have previously been shown to abolish the

HNF3 binding [15], into the ENI enhancer (Figure 3A). These

mutations indeed abolished the response of ENI/Xp to IFN-a/b,

confirming the role of the HNF3 binding site in mediating the

effect of IFN-a/b (Figure 3D).

Induction of HNF3c by IFN-a/b to stimulate HBV gene
expression and replication in mice with low HBV levels

There are three isoforms of HNF3, which are HNF3a, HNF3b
and HNF3c. All these three isoforms could bind to the HNF3 site

Figure 2. Viral load-dependent effect of IFN- a/b on HBV in mice. (A) Viral load-dependent effect of poly(I:C) on HBV. Nine-week old, male
naı̈ve mice were hydrodynamically injected with 4, 8, 14, 20, 24 or 32 mg 1.3mer HBV genomic DNA via the tail vein. Three days after injection, mice
with matched serum HBeAg levels in each group were selected and injected with saline or 200 mg poly(I:C). All of the mice were sacrificed 4 days after
the hydrodynamic injection. The levels of HBV RI DNA (top panel), RNA (middle two panels) and the core protein and b-actin (bottom two panels)
were then analyzed. (B) Anti-IFN-a/b antibodies abolished the effects of poly(I:C) on HBV in mice hydrodynamically injected with 1.3mer HBV DNA.
Experiments were conducted as described in Figure 1B, with the exception that mice were injected with 8 mg or 20 mg 1.3mer HBV genomic DNA.
doi:10.1371/journal.ppat.1002159.g002

Type I Interferons on HBV Replication
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in the HBV ENI enhancer [15]. To determine whether the

expression of these three HNF3 isoforms was affected by poly(I:C),

we conducted the Western-blot analysis on the nuclear extracts of

the mouse liver. While poly(I:C) had no effect on the levels of

HNF3a, HNF3b and the control lamin-b protein in the liver of all

four of our HBV transgenic mouse lines, poly(I:C) specifically

increased the level of HNF3c in Tg08 and Tg31 mice but not in

Tg05 and Tg38 mice (Figure 4A). To further study the role of

these three different HNF3 isoforms on the HBV ENI enhancer

activity, the expression plasmids for these three different isoforms

were separately co-transfected with the ENI/Xp reporter into

Huh7 cells, a human hepatoma cell line. The over-expression of

HNF3c, but not HNF3a or HNF3b, could enhance the ENI/Xp

activity in a dose-dependent manner (Figure 4B).

The results suggested that IFN-a/b might induce the expression

of HNF3c to activate the ENI enhancer in mice with a low HBV

level. To test this possibility, we decided to use the shRNA to

suppress the expression of HNF3c. We first verified that the

HNF3c shRNA could indeed suppress the expression of HNF3c
and reduce the ENI/Xp activity in Huh7 cells (Figure S4). We

next co-delivered the expression plasmid of this HNF3c shRNA

with the ENI/Xp reporter construct and 8 mg 1.3mer HBV DNA

into the mouse liver by hydrodynamic injection. Poly(I:C) could

activate the HBV ENI/Xp complex in the presence of the control

Figure 3. Effects of poly(I:C) on HBV ENI/Xp and ENII/Cp in mice. (A) Illustration of the reporter constructs. The HNF3 binding sequence in the
ENI enhancer and the consensus HNF3 binding sequence are also shown. The mutations introduced into 1115-mu-luc are shown in boldface lower-
case letters. Arrows indicate the transcription start sites of the X RNA and the precore protein (PC) RNA. (B) Analysis of the ENI/Xp activity. pGL-3-
1115-luc, which contains the HBV ENI/Xp complex that was linked to the luciferase reporter, was co-delivered with 0, 8 or 20 mg 1.3mer HBV into the
mouse liver by hydrodynamic injection. A renilla luciferase reporter construct pRL-SV40 was also included in the injection to monitor the transfection
efficiency. In all the experiments, if it is necessary, the vector control was included in the injection to ensure that the total amount of DNA used for the
injection was the same between different samples. Forty-two hours after injection, mice were treated with saline (grey bar) or poly(I:C) (empty bar)
and sacrificed six hours later for the isolation of liver for the dual luciferase assay. The firefly luciferase activity was normalized against the renilla
luciferase activity, which was not significantly affected by poly(I:C). The firefly luciferase activity in the absence of 1.3mer HBV DNA and poly(I:C) was
arbitrarily defined as 100%. The results represent the mean6S.D. of three independent experiments. (C) Analysis of the ENII/Cp activity. Experiments
were conducted as described in (B), with the exception that pGL-3-ENII-luc was used as the reporter. (D) Deletion-mapping analysis of the ENI/Xp
complex. The reporter constructs were co-injected with 8 mg 1.3mer HBV DNA into mice. The experiments were conducted as described in (B).
*, p,0.05; **, p,0.01.
doi:10.1371/journal.ppat.1002159.g003
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shRNA but not in the presence of the HNF3c shRNA (Figure 4C).

Similarly, the activation effect of poly(I:C) on HBV DNA

replication and RNA transcription was also abolished by the

HNF3c shRNA in mice injected with 8 mg 1.3mer HBV DNA

(Figure 4D). These results demonstrated that the enhancing effect

of IFN-a/b on HBV replication was mediated by HNF3c.

Activation of STAT3 by IFN-a/b to stimulate HBV gene
expression and replication in mice with low HBV levels

Previous studies indicated that HNF3 and STAT3 could bind to

each other and cooperatively stimulate the HBV ENI enhancer

[17]. Our finding that IFN-a/b induced the expression of HNF3c
to stimulate the HBV ENI enhancer prompted us to examine

whether IFN-a/b also affects STAT3 in mice with a low HBV

level. Although poly(I:C) had no effect on STAT3 in Tg05 mice

that produced a high level of HBV, it activated STAT3 in Tg08

mice, which produced a low level of HBV, as evidenced by the

increased level of phosphorylated STAT3 (p-STAT3) and its

association with the nuclear fraction (Figure 5A). To further

determine the role of STAT3 in mediating the effect of IFN-a/b
on HBV gene expression, we also conducted the shRNA-

knockdown experiment to suppress the expression of STAT3.

We first analyzed the effect of the STAT3 shRNA and

demonstrated that it could reduce the expression level of STAT3

by approximately 40% and a similar level of the ENI/Xp activity

in a reporter assay in Huh7 cells (Figure S5). We then injected

mice with the expression plasmid for the STAT3 shRNA or a

control shRNA, the ENI/Xp reporter construct and 8 mg HBV

genomic DNA, and analyzed the effect of poly(I:C) on the ENI/

Xp activity. The STAT3 shRNA reduced the activation effect of

poly(I:C) on the ENI/Xp complex (Figure 5B). Similar to the

Figure 4. Effects of HNF3 on HBV replication. (A) Western-blot analysis for the expression of HNF3 isoforms. Liver nuclear extracts of HBV
transgenic mice with (+) or without (2) poly(I:C) injection were analyzed for HNF3a, HNF3b, HNF3c, and lamin-b using their respective antibodies. (B)
Effects of HNF3a, HNF3b and HNF3c on HBV ENI/Xp activities in Huh7 cells. The ENI/Xp reporter construct pGL-3-1115-luc as well as the renilla
luciferase reporter was co-transfected with the indicated amounts of the expression plasmid for HNF3a, HNF3b or HNF3c into Huh7 cells. The control
expression vector pRc/CMV was used to ensure that the total amount of DNA used in the transfection was the same among different experiments.
The luciferase activities were determined as described in the Figure 3 legend. (C) Effects of HNF3c on the ENI/Xp complex in mice. Nine-week old
naı̈ve mice were hydrodynamically injected with the ENI/Xp reporter construct, 8 mg 1.3mer HBV and the expression plasmid for either the control
shRNA or the HNF3c shRNA. Forty-two hours later, mice were further injected with poly(I:C) or saline. Mice were sacrificed six hours later for the
isolation of liver for the dual luciferase assay. Values represent means6S.D. of three independent experiments. The reporter activity in the absence of
poly(I:C) was arbitrarily defined as 100%. (D) Effects of HNF3c on HBV replication in mice. Naı̈ve mice were co-injected with 8 mg 1.3mer HBV and the
expression plasmid for the control shRNA or HNF3c shRNA, treated with saline or poly(I:C) and sacrificed for the isolation of liver for HBV DNA and
RNA analyses. Two mice were analyzed for each experiment for verification of the results.
doi:10.1371/journal.ppat.1002159.g004

Type I Interferons on HBV Replication
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HNF3c results, the STAT3 shRNA, but not the control shRNA,

also partially reduced the enhancing effect of poly(I:C) on HBV

DNA replication and RNA transcription (Figure 5C). These results

indicated that STAT3 also played an important role in mediating

the enhancing effect of IFN-a/b on HBV gene expression. The

lack of complete inhibition of the effects of poly(I:C) by the STAT3

shRNA was probably due to the inefficiency of this shRNA to

knockdown the expression of STAT3 (Figure S5).

Kinetics of HBV replication in mice injected with high and
low doses of HBV DNA

The observation that the effect of IFN-a/b on HBV is

dependent on viral load prompted us to investigate how that

effect may affect viral growth in vivo. We injected mice with either

4 mg or 20 mg1.3mer HBV genomic DNA and analyzed HBV

surface antigen (HBsAg) and DNA levels in the mouse serum over

a seven-week period of time. Although mice injected with 20 mg

HBV DNA produced initially a higher serum level of HBsAg, this

antigen became undetectable after a week. In contrast, mice

injected with 4 mg HBV DNA produced a lower-level of surface

antigen that persisted for well over a month (Figure 6A).

Importantly, this prolonged antigenemia was abolished if mice

injected with 4 mg HBV DNA were also injected with anti-IFN-a/

b antibodies on a weekly basis, indicating a role of IFN-a/b in

maintaining antigenemia. In contrast, although anti-IFN-a/b
antibodies slightly increased the level of HBsAg in mice injected

with 20 mg HBV DNA one week after DNA injection, they did not

prolong antigenemia, indicating the possible involvement of other

factors in limiting viral persistence. Since HBsAg could be masked

by the antibodies that it elicited, we also analyzed the serum HBV

DNA levels. Mice injected with 20 mg HBV DNA produced a

higher level of serum HBV DNA than mice injected with 4 mg

HBV DNA within the first four days after injection. However, this

difference was not observed one week after injection. Furthermore,

the serum HBV DNA level of mice injected with 20 mg DNA

declined rapidly thereafter and became undetectable after three

Figure 5. Analysis of STAT3 in HBV mice. (A) Western-blot analysis of STAT3 in HBV transgenic mice. Tg05 or Tg08 HBV transgenic mice with (+)
or without (2) poly(I:C) injection were sacrificed and the liver was isolated for Western-blot analysis. (B) Effect of STAT3 on the ENI/Xp activity in mice.
Experiments were conducted as described in the Figure 4C legend, with the exception that the expression plasmid for HNF3c shRNA was replaced
with that for STAT3 shRNA. (C) Effects of STAT3 on HBV replication in mice. Similar to (B), experiments were conducted as described in the Figure 4D
legend, with the exception that the expression plasmid for HNF3c shRNA was replaced with that for STAT3 shRNA.
doi:10.1371/journal.ppat.1002159.g005

Type I Interferons on HBV Replication
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weeks, whereas this serum DNA level persisted for a much longer

period of time in mice injected with 4 mg DNA (Figure 6B).

Similarly, if mice injected with 4 mg HBV DNA were also injected

with anti-IFN- a/b antibodies, their serum viral DNA level also

became undetectable after three weeks. The anti-IFN-a/b
antibodies had little effect on the serum HBV DNA level in mice

injected with 20 mg HBV DNA, except at the earliest time point.

When the alanine aminotransferase (ALT) was analyzed to

monitor liver injury, high levels of ALT were observed only

within the first few days, most likely caused by the hydrodynamic

injection, which causes liver injury (Figure S6). The ALT levels

were low after that, indicating minimal liver injuries. These results

indicated that the low-dose inoculation of the HBV DNA could

lead to a more persistent viral replication and this persistence was

dependent on IFN-a/b.

Discussion

Interferons are thought to play an important role in the control

of viral infections. Indeed, previous studies using transgenic mice

that produced a high level of HBV indicated that interferons could

suppress HBV replication [18]. Our observation that IFN-a/b
could enhance HBV replication in mice that produced a low level

of HBV is thus rather intriguing. Our results indicated that this

enhancement was due to the activation of the HNF3c gene and

STAT3, which then stimulate the HBV ENI enhancer activity.

The induction of HNF3c by IFN-a/b requires the presence of a

low level of HBV, as such induction was not observed in the

presence of a high level of HBV DNA (Figure 4A) or in naı̈ve mice

(data not shown). STAT3 is activated in the presence of a low level

of HBV, but it was not activated in the presence of a high level of

HBV (Figure 5A). Since STAT3 can also be activated by IFN- a/b
in hepatocytes in the absence of HBV [19,20], it appears that

HBV at a high replication level can prevent the activation of

STAT3 by IFN-a/b. These observations indicate an interesting

interplay between HBV and the interferon signaling pathway. A

model of how IFN-a/b enhances HBV replication in illustrated in

Figure 7. In this model, the binding of IFN-a/b to its receptor

activates STAT3, likely due to the phosphorylation by JAK, which

is associated with the IFN-a/b receptor and is activated upon

binding of IFN-a/b to its receptor. In the mean time, the activated

interferon signaling pathway also interacts with HBV to induce the

expression of HNF3c, which then binds cooperatively with

STAT3 to the HBV ENI enhancer to stimulate HBV gene

expression and viral replication. How HBV may interact with the

JAK-STAT signaling pathway to induce the expression of HNF3c
is still not clear. This effect is independent of the HBx protein,

since Tg31 mice carried the X-null HBV genome but yet HNF3c
could be induced by poly(I:C) in this mouse line (Figure 4A).

Clearly, if another HBV gene product such as that of the S, C or P

gene is involved, this gene product must exert a dose-dependent

effect since only a low replication level of HBV could induce

HNF3c.

The observation that IFN-a/b enhances HBV replication when

the HBV DNA level is low may represent a mechanism by which

HBV uses to establish its infection in patients, as the viral level is

expected to be low in patients during the early stage of HBV

infection. This possibility is supported by our observation that the

injection of a small amount of HBV genomic DNA into mice

could lead to prolonged viremia in an IFN-a/b-dependent

manner (Figure 6). As our mouse model does not allow the

reinfection of hepatocytes by HBV, it is conceivable that, if

reinfection is possible, viral replication can persist in mice for an

even longer period of time. Indeed, it has been shown that low-

dose (1 or 10 genome-equivalent copies) inoculations of HBV into

chimpanzees would lead to the spread of the virus and result in the

infection of 100% of hepatocytes and prolonged immunopathol-

ogy [21]. In contrast, the inoculation of between 104 and 108

genome copies of the virus led to a limited spread of the virus in

the liver and the speedier clearance of the virus. Based on our

findings described in this report, it is conceivable that the initial

IFN-a/b response to the low-level HBV inoculation enhanced

viral replication and spread and prolonged viral infection in

chimpanzees.

Although the injection of IFN- a/b antibodies could suppress

viral persistence in mice injected with 4 mg HBV DNA, the

injection of IFN-a/b antibodies did not prolong viral persistence

in mice injected with 20 mg HBV DNA. This result indicated that

the removal of IFN-a/b alone was not sufficient to maintain viral

persistence when viral load is high. The reason for this is unclear,

but it may involve other factors such as additional cytokines (e.g.,

IFN-c) that may be induced by high HBV load [18].

Recent studies indicated that the HBx protein could bind to

MAVS (also known as IPS-1, VISA or Cardiff), which is an

important adaptor molecular of the RIG-I signaling pathway, to

suppress the induction of IFN-b [22,23]. It has also been reported

that the HBV DNA polymerase could bind to the DDX3 deadbox

RNA helicase to suppress its interaction with TBK1/IKKe and

the induction of IFN-b [24,25]. In contrast to HBV structural

proteins, HBx and the HBV polymerase are produced at a much

lower level during viral replication. For this reason, it is likely that

these two HBV products can only efficiently suppress the

induction of type I interferons when the viral replication level is

high. It is conceivable that the lag period before the effective

concentrations of HBx and polymerase are reached in HBV-

infected cells will allow HBV to use the interferon response to

stimulate its gene expression and replication. However, once HBV

has replicated to a high level and interferons become a negative

regulator for HBV replication, HBx and the viral polymerase will

exert their anti-interferon activities to enhance the survival of the

virus.

IFN-a has been used to treat HBV patients, but it generated

sustained response in only a minority of patients. Our observation

that IFN-a/b could have opposite effects on HBV in a viral load-

dependent manner indicates that viral load may be one of the

reasons why this therapy has generated inconsistent responses in

HBV patients.

Materials and Methods

Ethics statement
Our studies on mice were conducted in accordance with the

recommendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. Our animal protocol

was approved by the Institutional Animal Care and Use

Committee of the University of Southern California.

HBV transgenic mice and DNA plasmids
HBV transgenic mouse lines Tg05 and Tg08 have been

previously described [5,26]. These two mouse lines carried the

1.3mer, over-length wild-type HBV genome. Tg31 and Tg 38 also

carried 1.3mer HBV genome, with the exception that the

expression of X protein was abolished by the introduction of an

A-to-C mutation at nt.1377 to remove the initiation codon of the

X protein and a C-to-T mutation at nt.1398 to introduce a

premature termination codon in the X coding sequence. All of the

experiments were conducted using age-matched male mice with

the B6 genetic background.
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The plasmid p1.36HBV, which contains the 1.3mer over-

length HBV genome, has been described before [27]. pCMV-

HNF3a, pCMV-HNF3b and pCMV-HNF3c, which express

HNF3a, HNF3b and HNF3c, respectively, have also been

described [15]. The expression plasmids for mouse HNF3c
shRNA, STAT3 shRNA and control shRNA were purchased

from Sigma-Aldrich. The HBV ENI/X reporter constructs pGL-

3-1115-luc, pGL-3-1136-luc, pGL-3-1167-luc and pGL-3-1203-

luc, which contained nt.1115–1355, 1136–1355, 1167–1355 and

1203–1355, respectively, of the HBV genome, were generated by

PCR amplification of the HBV DNA fragment for cloning into the

pGL3-basic vector (Promega). The plasmid pGL-3-ENII-luc was

constructed by insertion the ENII/core promoter complex

(nt.1403–1803) into the pGL3-basic vector. pRL-SV40 (Promega),

which expresses the renilla luciferase, was included in the

transfection studies to serve as the internal control to monitor

the transfection efficiency.

Injection with poy(I:C)
Age and HBeAg-matched male HBV transgenic mice or naı̈ve

mice were injected intravenously with 200 ml saline with or

without poly(I:C) (200 mg/mouse). Mice were sacrificed 24 hours

later. The serum was collected and the liver was harvested and

stored at 280uC for analyses.

Hydrodynamic injection of p1.36HBV
Nine-week old male mice were injected via the tail vein with

p1.36HBV in 5–8 seconds in a volume of saline equivalent to 8%

of the body weight of the mouse. In all the injection experiments,

Figure 6. Analysis of HBV replication in mice. The sera of eight mice injected with 4 mg 1.3mer HBV DNA, six mice injected with 20 mg HBV DNA,
3 mice co-injected with 20 mg 1.3mer HBV DNA and anti-IFN-a/b antibodies, and 3 mice co-injected with 4 mg 1.3mer HBV DNA and anti-IFN-a/b
antibodies, were collected at the time points indicated and analyzed for HBsAg by ELISA (A) and HBV DNA by real-time PCR (B). For mice treated with
anti-IFN-a/b antibodies, 250 mg antibodies were injected immediately after DNA injection and thereafter on a weekly basis. The results shown in (B)
represent the mean6S.D. of all of the mice used in each group. The results shown in (A) represent the mean6S.D. of the mice that were still positive
for HBsAg at that particular time point.
doi:10.1371/journal.ppat.1002159.g006
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the vector DNA pUC19 was included if necessary to ensure that

the total amount of DNA used for injection is identical among

different mice. 24 hours after the hydrodynamic injection, the

serum was collected and HBeAg was assayed by ELISA. Mice

matched by body weight, age and HBeAg levels were used for

injection with poly(I:C).

Antibodies
Rabbit anti-mouse IFN-a (PBL, New Jersey) and hamster anti-

mouse IFN-b (Biolegend, San Diego) antibodies were used in this

study. Purified rabbit IgG (Cell Signaling Tech.) and hamster IgG

(Abcam) were used as the control antibodies. Rabbit anti-HNF3a
(Abcam), anti-HNF3b (Cell Signaling Tech.), anti-HNF3c (Sig-

ma–Aldrich Co.), anti-STAT3 (Cell Signaling Tech.), anti-phosph-

STAT3(Tyr705) (Cell Signaling Tech.) and anti-lamin-b (Abcam)

antibodies were used for Western-blot.

Southern-, Northern- and Western-blot analyses
Liver tissues were homogenized in DNA lysis buffer (20 mM

Tris-HCl, pH 7.0, 20 mM EDTA, 50 mM NaCl, 0.5% SDS),

incubated for 16 hours at 37uC with proteinase K (600 mg/ml)

and then phenol/chloroform extracted for the isolation of DNA.

The HBV RI DNA in the core particles was isolated using our

previous protocol [27]. For RNA isolation, liver tissues were

homogenized in Trizol (Invitrogen) and total RNA was isolated

following the manufacturer’s protocol. Both Southern and

Northern blot analyses were conducted using the 32P-labeled

HBV DNA probe. For Western-blot analysis, liver tissues were

homogenized in the RIPA solution (10 mM Tris-HCl, pH 7.0,

150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, and

0.1% sodium dodecyl sulfate) and, after a brief centrifugation to

remove cell debris, the protein concentrations were determined by

Bradford BCA (Biorad) and the Western blot was performed using

our previous procedures [28].

Real-time PCR analysis of serum HBV DNA
10 ml mouse serum was added into 100 ml lysis buffer (20 mM

Tris-HCl, 20 mM EDTA, 50 mM NaCl, and 0.5%SDS) contain-

ing 27 mg proteinase K. After incubation at 65uC overnight, viral

DNA was isolated by phenol/chloroform extraction and ethanol

precipitation. The DNA pellet was rinsed with 70% ethanol and

resuspended in 10 ml TE (10 mM Tris-HCl [pH 7.0], 1 mM

EDTA). For hydrodynamic injection studies, 10 ml serums was

digested with 10 mg DNase I and micrococcal nuclease for 30 min

at 37uC to remove free DNA. HBV DNA was then isolated as

described above. For HBV real-time PCR analysis, the following

primers were used: forward primer, 1552-CCGTCTGTGCCTT-

CTCATCTG-1572; and reverse primer, 1667-AGTCCTCTTA-

TGTAAGACCTT-1646. The TaqMan probe used was 1578-

CCGTGTGCACTTCGCTTCACCTCTGC-1603. The assays

were performed as described [29].

The luciferase reporter assay
The reporter constructs were delivered into the mouse liver by

hydrodynamic injection. Nine-week old male mice were used in

the studies. Twenty-four hours after injection, the serum was

Figure 7. Mechanism of the activation of HBV replication by IFN- a/b when the HBV level is low. IFNR, interferon receptor; JAK, Janus
kinase; p-Stat3, phosphorylated Stat3.
doi:10.1371/journal.ppat.1002159.g007
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collected and HBeAg was assayed by ELISA. Mice with matched

body weight and the HBeAg level were injected intravenously with

200 ml saline with or without poly(I:C) (200 mg/mouse) at

42 hours after hydrodynamic injection and sacrificed 6 hours

later. The mouse liver was isolated and stored at 280uC. The

firefly luciferase and the renila luciferase activities were measured

using the dual luciferase assay kit (Promega). The firefly luciferase

activities were normalized against the renilla luciferase activities,

which served as the internal control. All of the experiments were

repeated at least three times.

Serum ALT and ELISA assays
Serum ALT levels were measured using the ALT kit (Cayman

Chemical Company, USA). HBsAg and HBeAg were measured

using their respective ELISA kit (International Immuno-Diagnos-

tics, CA). All of these assays were conducted following the

manufacturers’ instructions.

Supporting Information

Figure S1 Replication of HBV in transgenic mice. (A)
HBV DNA and RNA levels in the mouse liver. Top panel,

ethidium bromide staining of the chromosomal DNA, which

served as the loading control for Southern blot; second panel from

the top, Southern-blot analysis of HBV DNA; third panel from the

top, Northern-blot analysis of HBV RNA; bottom panel, ethidium

bromide staining of the RNA gel to serve as the loading control.

The HBV DNA replicative intermediates (RI) appeared as a smear

on the gel. C and S indicate HBV C gene and S gene transcripts,

respectively. The locations of 28S and 18S rRNAs are also

indicated. (B) HBV DNA levels in the sera of different
transgenic mouse lines. Nine-week old male HBV transgenic

mice were used for the studies. HBV DNA was extracted from the

serum and quantified by real-time PCR.

(TIF)

Figure S2 Effects of poly(I:C) on HBV transgenic mice.
(A) Induction of 29,59-OAS in the mouse liver by
poly(I:C). Total liver RNA was isolated from mice 24 hours

after injection with saline (2) or poly(I:C) (+) and analyzed by

semi-quantitative RT-PCR for 29,59-OAS RNA and GAPDH

RNA. The latter served as the control. (B) Suppression of the
interferon response in the mouse liver by the anti-IFN-
a/b antibodies. HBV transgenic mice were injected intrave-

nously with the control IgG or anti-IFN-a/b antibodies (500 mg/

mouse) and then with 200 mg poly(I:C) 16 hours later. Mice were

sacrificed 24 hours after the poly(I:C) injection for the isolation of

total liver RNA, which was used for semi-quantitative RT-PCR

for the analysis of 29,59-OAS RNA and GAPDH RNA. Mice

without the injection of poly(I:C) and antibodies were also

included in the studies to serve as the control. (C) Suppression
of poly(I:C)-induced HBV replication in Tg31 HBV
transgenic mice by anti-IFN-a/b antibodies. Tg31 HBV

transgenic mice were injected intravenously with the control IgG

(lane 2), anti-IFN-a and anti-IFN-b antibodies together (lane 3),

the anti-IFN-a antibody alone (lane 4), or the anti-IFN-b antibody

alone (lane 5), followed by the injection with 200 mg poly(I:C)

16 hours later (lanes 2–5). Mice were sacrificed 24 hours after the

injection with poly(I:C) for the analysis of HBV DNA (top panel),

HBV RNA (middle two panels), and the core protein and b-actin

(bottom two panels) in the liver. (D) Effects of IFN-a/b on
HBV replication in Tg05 and Tg31 mice. Tg05 and Tg08

mice were injected with PBS, IFN- (1.46105 units) or IFN-b
(1.66105 units) and sacrificed 24 hours later for the isolation of

liver for analysis RNA (second panel from the top). The ribosomal

RNAs (third panel from the top) and GAPDH RNA (bottom

panel) were used as the loading control for Northern-blot analysis.

(E) Prolonged effect of poly(I:C) on HBV replication.
Tg05 and Tg08 mice were injected with poly(I:C) on a daily basis

and sacrificed at the indicated time points for HBV DNA and

RNA analysis as described in (D).

(TIF)

Figure S3 Quantification of HBV titers in the sera of
mice injected with HBV DNA. Mice were injected with the

indicated amount of the 1.3mer HBV DNA in phosphate-buffered

saline (PBS). Four days later, mouse sera were treated with DNase

I and micrococcal nuclease to remove free DNA. The HBV virion-

associated DNA was then extracted and analyzed by real-time

PCR. The results represent the average of at least three different

mice.

(TIF)

Figure S4 Effects of HNF3c on the ENI/Xp activity in
Huh7 cells. Huh7 cells were co-transfected with the ENI/Xp

reporter construct and the expression plasmid for the control

shRNA or the HNF3c shRNA for forty-eight hours and then lysed

for Western-blot analysis for HNF3c and lamin-b (top panel). The

latter is a nuclear protein and served as the loading control. The

plasmid pRL-SV40, which expresses renilla luciferase, was

included in the transfection to monitor the transfection efficiency.

Cell lysates were analyzed for the luciferase activities using the

dual luciferase assay (Promega) (bottom panel).

(TIF)

Figure S5 Effects of STAT3 on the ENI/Xp activity in
Huh7 cells. The experiments were conducted as described in the

legend to Figure S4, with the exception that the HNF3c shRNA

was replaced with the STAT3 shRNA. Top panel, Western-blot

analysis of STAT3 and a-actin; bottom panel, relative firefly

luciferase activities.

(TIF)

Figure S6 Analysis of ALT levels in mice injected with
HBV DNA. The serum samples collected from mice shown in

Fig. 6 were analyzed for the ALT levels using the ELISA kit. The

numerical ALT levels at individual time points are shown in the

Table. N.D., not determined.

(TIF)
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