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Abstract

Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but
resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from
persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1.
Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera
collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1.
Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the
2000/01–2006/07 seasons. Among adults aged 48–64 who received the swine influenza vaccine in 1976 and recent seasonal
influenza vaccines during the 2004/05–2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-
matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine,
also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing
antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative
mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that
circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings
highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving
under direct or indirect immune pressure.
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Introduction

In June 2009 the World Health Organization declared a new

influenza pandemic due to sustained human to human transmis-

sion in several geographic regions of the novel swine-origin

influenza A H1N1 virus, which was first identified in April by the

Centers for Disease Control and Prevention (CDC) of the United

States of America [1]. This novel H1N1 virus, referred to as

pandemic 2009 H1N1 virus (2009 H1N1), has a hemagglutinin

(HA) of classical swine lineage viruses that have circulated in the

swine population for decades with little change in HA antigenicity

[2]. The 2009 H1N1 HA is antigenically different from those of

recent human seasonal influenza H1N1 viruses, but is closely

related to A/New Jersey/1976 (NJ/76) influenza virus (Figure 1), a

strain used in 1976 to immunize approximately 45 million people

in the US during the swine influenza vaccination campaign after a

localized outbreak [3]. However, NJ/76 influenza virus did not

circulate. Emergence of the novel pandemic 2009 H1N1 virus

raised questions about whether immunization with the 1976 swine

or recent seasonal influenza vaccines could confer any protection.

Several groups have reported that older persons may have

substantial cross-immunity to the 2009 H1N1, though the

literature is mixed on the degree of cross-immunity induced by

prior seasonal influenza vaccines [4–9].

Influenza virus surface glycoprotein HA mediates virus entry

and is the most important target of antibody-mediated protection.

Cellular proteases cleave the HA precursor (HA0) to generate the

HA1 surface subunit that mediates the binding to cell surface sialic

acid receptors and the HA2 transmembrane subunit that mediates

membrane fusion between viral and endosomal membranes after

endocytosis (reviewed in [10,11]). During infection and vaccina-

tion, HA elicits neutralizing antibodies. Antigenic maps of HA

show that HA1 is the major target of neutralizing antibodies that

inhibit virus binding to target cells [12,13] and are classically

detected by the hemagglutination inhibition (HI) assay. However,

HA2 is more conserved than HA1. Neutralizing antibodies that
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bind to the stalk region of HA2 have been shown to confer broadly

cross-neutralizing activity against several subtypes of viruses across

clades but within a group [14–20] and to provide protection in

animal models [16,18–20]. These antibodies typically do not have

HI activity and appear to neutralize virus by interfering with HA-

mediated conformational changes required for virus entry

[14,17,18].

Using lentiviral pseudovirions bearing HA on their surface (HA-

pseudotypes) [21], we investigated whether persons immunized in

1976 with the NJ/76 swine influenza vaccine or more recently

with seasonal influenza vaccines produced neutralizing antibodies

to 2009 H1N1. Both sera from the 1976 swine influenza vaccine

trials and contemporary sera from a cohort of subjects who

received recent seasonal influenza vaccines, regardless of whether

they received the 1976 swine influenza vaccine or not, often

contained cross-neutralizing activity to 2009 H1N1. Some of this

cross-neutralizing activity was dependent on the HA2 subunit and

surprisingly was sensitive to a naturally-occurring variant at

position 89 in HA2 that emerged in recent years. The implications

of these findings for potential immune escape are discussed.

Results

Vaccination against A/New Jersey/1976 and neutralizing
antisera to 2009 H1N1

Because HA from A/New Jersey/1976 (NJ/76) and 2009 H1N1

influenza viruses are highly related (Figure 1), we first asked

whether immunization in 1976 with the NJ/76 swine influenza

vaccine could provide any immunity against the 2009 H1N1

influenza virus. Sixty five pre- and post-vaccination sera archived

from the NJ/76 swine influenza vaccine trials conducted in 1976

[22] were evaluated for neutralizing activity to either NJ/76 or

2009 H1N1 A/Mexico/4108/2009 (Mex/4108/09) using HA-

pseudotypes. Previously, we showed that HA-pseudotype neutral-

ization titers using 95% inhibitory concentration (IC95) correlate

well with conventional microneutralization titers using replicating

influenza virus [23] and that HA-pseudotype neutralization is

specific [21,24]. Microneutralization titers .160 and a 4-fold

increase after vaccination in assays involving replicating influenza

virus have been proposed as correlates of seroprotection [4], but

protective titers for HA-pseudotype neutralization have not yet

been established. Positive control sera from 2009 H1N1 influenza

virus infected ferrets typically have titers .10,000 [24]. Sera from

the NJ/76 swine influenza vaccine trial were then tested and

showed that NJ/76 vaccination generated neutralizing antibodies

(titers .160 and a 4-fold increase after vaccination) in 85% and

77% of subjects against NJ/76 and Mex/4108/09 HA-pseudo-

types, respectively (Table 1 and Figure 2A), consistent with the

high degree of relatedness between the viruses and other recent

reports [4,8]. The neutralizing antibody titers to NJ/76 (GMT

597) and Mex/4108/09 (GMT 573) were also similar and

correlated (Figure 2B). Most importantly, all sera with neutrali-

zation activity to NJ/76 showed significant neutralization activity

to Mex/4108/09 (Figure 2B). Pre-vaccination sera did not exhibit

significant neutralizing activity to HA-pseudotypes for either

influenza virus, though titers against Mex/4108/09 (GMT 60)

were higher than those against NJ/76 (GMT 3), suggesting that

influenza viruses with shared epitopes to Mex/4108/09 influenza

virus may have circulated previously.

We next asked whether subjects with a history of NJ/76

vaccination have significant neutralization titers to 2009 H1N1

today. Accordingly, we analyzed sera from a contemporary cohort

of 23 subjects who had a history of NJ/76 vaccination and 19

aged-matched control subjects who did not. As shown in Table 2

and Figure 3A, sera from those who received the NJ/76 vaccine

more than 30 years ago showed significant neutralization titers to

NJ/76 (GMT 181), with 52% having neutralization titers .160.

Sera from subjects who did not receive the NJ/76 vaccine had a

GMT of only 44 to NJ/76, although a few individuals showed

Figure 1. Genetic relationships among H1N1 HA. A phylogenetic tree was constructed for HA from six H1N1 influenza A strains, including
recent seasonal strains, 2009 H1N1, and historic 1976 and 1918 influenza A strains. SI/03/06: A/Solomon Islands/3/2006; Bris/59/07: A/Brisbane/59/
2007; NCD/20/99: A/New Caledonia/20/1999; SC/1/18: A/South Carolina/1/1918; NJ/76: A/New Jersey/1976; Mex/4108/09: A/Mexico/4108/2009.
doi:10.1371/journal.ppat.1002081.g001

Author Summary

Influenza A viruses mutate to escape neutralization by
antibodies. These mutations predominantly occur in the
globular head of the hemagglutinin protein, while the stalk
is more conserved. Pandemic 2009 H1N1 influenza virus
differs from seasonal H1N1 strains that circulated in the
past 50 years and resembles a strain that did not circulate
but was used in the 1976 swine influenza vaccine. We
investigated whether persons immunized with either the
1976 swine influenza or recent seasonal influenza vaccines,
or both, have antibodies that cross-neutralize pandemic
2009 H1N1. Sera from 1976 swine influenza vaccine trials
cross-neutralized pandemic 2009 H1N1 and to a lesser
extent the A/New Caledonia/20/1999 H1N1 strain that was
used in vaccines during the 2000/01–2006/07 influenza
seasons. Sera from persons who received several seasonal
influenza vaccines containing A/New Caledonia/20/1999
H1N1 cross-neutralized pandemic 2009 H1N1, regardless
of whether they received the 1976 swine influenza vaccine.
We found that cross-neutralization between 2009 H1N1
and A/New Caledonia/20/1999 frequently mapped to the
hemagglutinin stalk. A mutation in the stalk of strains
circulating during the 2007/08–2008/09 seasons abrogates
this neutralization. These findings highlight a cross-
neutralization determinant influenced by a point mutation
in the hemagglutinin stalk and suggest that the stalk may
be evolving under direct or indirect immune pressure.

Cross-Neutralizing 2009 H1N1 Antibodies
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significant neutralization titers (.160). We note that the

neutralization titers to NJ/76 in sera from subjects who did not

receive the NJ/76 vaccine in this contemporary cohort were

higher than the pre-vaccination sera in NJ/76 trials, suggesting

that natural infection and/or vaccination with seasonal influenza

strains during the period 1977–2009 provided a low level of cross-

neutralization to NJ/76. Thus there appears to be residual

immunity to NJ/76 in a majority of persons who were previously

Figure 2. NJ/76 (swine flu) vaccination generates cross-neutralizing antibodies to 2009 H1N1 and seasonal influenza NCD/20/99. (A)
Neutralization titers to NJ/76, Mex/4108/09, NCD/20/99 and Bris/59/07 in NJ/76 clinical trial sera collected pre and post NJ/76 vaccination are shown.
The geometric mean of titers (GMT) of neutralization in each group is indicated by the short line. P values were calculated by the comparison of pre
and post (after) NJ/76 vaccination with paired t test. (B) Correlation between NJ/76 and Mex/4108/09 neutralizing titers in the sera of after NJ/76
vaccination was evaluated with the Spearman test for nonparametric correlation. r: Spearman r; P: two-tailed P value. The dotted lines in both panels
A and B represent the neutralization titer of 160, which has been proposed as a correlate of seroprotection in microneutralization assays involving
replicating influenza virus [4]. Protective titers based on neutralization of HA-pseudotypes have not been determined.
doi:10.1371/journal.ppat.1002081.g002

Table 1. Summary of neutralization titers of sera from the NJ/76 swine influenza vaccine trials.

Pre Vaccination Post Vaccination

Neutralization to GMT (95% CI)
Percentage (titer
.160) GMT (95% CI)

Percentage (titer .160 and 4-fold
increase)

NJ/76 3 (2–3) 0 597 (401–889) 85

Mex/4108/09 60 (45–81) 2 573 (399–825) 77

NCD/20/99 62 (44–88) 12 320 (246–417) 45

Bris/59/07 8 (6–11) 0 52 (38–70) 17

NJ/76: A/New Jersey/1976; Mex/4108/09: A/Mexico/4108/2009; NCD/20/99: A/New Caledonia/20/1999; Bris/59/07: A/Brisbane/59/2007.
doi:10.1371/journal.ppat.1002081.t001
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immunized with NJ/76 vaccine, or immunity may have been

boosted by exposures during intervening years.

We next assessed cross-neutralization to 2009 H1N1 HA-

pseudotypes. Unexpectedly, titers among those immunized with

the NJ/76 vaccine were higher against Mex/4108/09 (GMT 331)

compared to NJ/76 (GMT 181), with 83% having neutralizing

antibody titers ranging from 161–1456 (GMT 469). There was a

significant correlation between neutralization titers to NJ/76 and

Figure 3. Relationship between 2009 H1N1 neutralization and immunizations with NCD/20/99 and NJ/76 vaccines. (A) Comparison of
neutralization titers to NJ/76 and Mex/4108/09 in the contemporary cohort of subjects having received recent seasonal influenza vaccines with (+)
and without (2) history of NJ/76 vaccination. P values were calculated by unpaired t test for the comparison of groups with (+) and without (2)
history of NJ/76 vaccination. (B) Correlation between neutralizing titers to NJ/76 and Mex/4108/09 in the subjects aged 48–64 years with (+) and
without (2) history of NJ/76 vaccination was evaluated with Spearman test for nonparametric correlation. r: Spearman r; P: two-tailed P value. (C)
Neutralization titers to Bris/59/07, SI/03/06, NCD/20/99 and Mex/4108/09 in the subjects aged 48–64 years who had received all seasonal influenza
vaccinations including Bris/59/07, SI/03/06 and NCD/20/99. (D) Neutralization titers to Mex/4108/09 in the subjects aged 48–64 years who had
received all seasonal influenza vaccinations were stratified neutralization titer (.600) in NCD/20/99 vaccination. P values were calculated by unpaired
t test for the comparison of the two stratified groups. The geometric mean of titers (GMT) of neutralization in each group is shown as a short dark line
in panels A, C and D. The dotted lines in both panels A and C represent neutralization titer of 160, which has been proposed as a correlate of
seroprotection in microneutralization assays involving replicating influenza virus [4]. Protective titers for neutralization of HA-pseudotypes have not
been determined. Bris: Bris/59/07; SI: SI/03/06; NCD: NCD/20/99; Mex: Mex/4108/09.
doi:10.1371/journal.ppat.1002081.g003

Table 2. Summary of neutralization titers of contemporary sera from subjects with or without a history of having received the NJ/
76 swine influenza vaccine.

No NJ/76 Vaccination NJ/76 Vaccination

Neutralization to GMT (95% CI) Percentage (titer .160) GMT (95% CI) Percentage (titer .160)

NJ/76 44 (26 – 74) 21 181 (121 – 270) 52

Mex/4108/09 305 (187 – 497) 68 331 (215 – 511) 83

NJ/76: A/New Jersey/1976; Mex/4108/09: A/Mexico/4108/2009.
doi:10.1371/journal.ppat.1002081.t002

Cross-Neutralizing 2009 H1N1 Antibodies
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Mex/4108/09 (Figure 3B). However, sera from subjects without a

history of NJ/76 vaccination had similar cross-neutralization titers

to Mex/4108/09 (GMT 305), with 68% having neutralization

titers .160 (Table 2 and Figure 3A). The substantial neutralizing

titers to Mex/4108/09 found in a high proportion of subjects in

this contemporary cohort, regardless of their vaccination history to

NJ/76, indicated that their cumulative history of influenza

infections and vaccinations have involved strains that share

neutralizing epitopes with the 2009 H1N1 influenza virus.

Annual seasonal influenza vaccinations and
cross-neutralizing antisera to 2009 H1N1

All 45 subjects in the contemporary cohort received all annual

seasonal influenza vaccines for at least the past five years (2004/

05–2008/09 seasons). To investigate potential correlations be-

tween neutralizing activity to recent seasonal H1N1 influenza and

the 2009 H1N1 viruses, we tested all sera for HA-pseudotype

neutralizing activity against the three recent seasonal H1N1

influenza strains, A/New Caledonia/20/1999 (NCD/20/99), A/

Solomon Islands/3/2006 (SI/03/06), and A/Brisbane/59/2007

(Bris/59/07). NCD/20/99 was used 7 times in influenza vaccines

during the 2000/01 to 2006/07 seasons. SI/03/06 and Bris/59/

07 were used in the 2006/07 and 2008/09 seasonal influenza

vaccines, respectively (www.fludb.org/brc/vaccineRecommend.

do?decorator = influenza). Neutralization of HA-pseudotypes cor-

responding to each of these strains is specific, as shown in Table

S1. Using these HA-pseudotypes, 100% of subjects showed

significant neutralization titers against NCD/20/99 (GMT 1237)

(Table 3 and Figure 3C), consistent with the repeated use of the

NCD/20/99 strain in recent seasonal influenza vaccines. Only

49% and 60% had neutralization titers .160 against Bris/59/07

and SI/03/06, respectively (Table 3 and Figure 3C). By

comparison, the GMT of neutralizing titers to 2009 H1N1 is

319, with 76% having neutralization titers .160, regardless of

vaccination history to NJ/76 (Figure 3C). The neutralization titers

to Mex/4108/09 did not correlate with the titers to Bris/59/07

and SI/03/06 (data not shown), but subjects with higher

neutralization titers (.600) to NCD/20/99 showed higher cross-

neutralization titers to Mex/4108/09 (p,0.05) (Figure 3D),

suggesting that there may be shared neutralization epitopes

between NCD/20/99 and Mex/4108/09.

Cross-neutralizing antisera to 2009 H1N1 and NCD/20/99
To look for cross-neutralization between 2009 H1N1 and

NCD/20/99, we analyzed sera collected in 1976 from the NJ/76

vaccine trials for neutralizing activity to NCD/20/99 HA-

pseudotypes. Since persons participating in the NJ/76 swine

influenza vaccine trial were presumably not previously exposed to

NCD/20/99 through natural infection or by vaccination, we

considered the presence of neutralizing activity to NCD/20/99 in

these sera to be due to cross-neutralizing antibodies. We found

that the post NJ/76 vaccination sera had significant cross-

neutralization activity to NCD/20/99 (GMT 320) with 45%

having neutralization titers .160 and a 4-fold increase over pre-

immunization titers, while only 12% of the pre NJ/76 vaccination

sera had significant neutralization titers (Table 1 and Figure 2A).

The reason that several pre NJ/76 vaccination sera have

significant neutralizing activity to NCD/20/99 may be due to

prior infections with related viruses.

To determine whether NJ/76 vaccination elicits cross-

neutralizing activity to other recent seasonal H1N1 viruses, we

analyzed the sera for the presence of neutralizing antibodies to

Bris/59/07. Neutralization of Bris/59/07 HA-pseudotypes was

seen in only 17% sera with titers .160 and a 4-fold increase

over pre-immunization titers. Although the titers to Bris/59/07

were low (GMT 52) after vaccination with NJ/76, they were

significantly higher than the titers in the pre-vaccination group

(GMT 8) (Table 1 and Figure 2A). However, NJ/76 vaccination

elicited much less cross-neutralization to Bris/59/07 than to

NCD/20/99.

HA2 subunit involvement in cross-neutralization
between 2009 H1N1 and NCD/20/99

The cross-neutralization activity seen in sera after immunization

with NJ/76 and seasonal influenza vaccines suggested the presence

of shared neutralization epitopes between 2009 H1N1 and NCD/

20/99. Since neutralizing antibodies can target either HA1 or

HA2, we next investigated which subunit of HA accounts for the

majority of the cross-neutralization between 2009 H1N1 and

NCD/20/99 observed in our sera.

First we analyzed the sera from the NJ/76 vaccination trials.

The sera with neutralization titers ,160 to Bris/59/07 HA-

pseudotypes were considered negative for neutralization to either

HA1 or HA2 of Bris/59/07 HA. Twenty-one out of 65 post NJ/

76 vaccination sera without neutralization activity to Bris/59/07,

but with neutralization titers .160 and a 4-fold increase over

pre-immunization titers to NCD/20/99 (neutralization titers

,160 before vaccination), were identified (Table S2) and used for

mapping. Chimeric HA involving the NCD/20/99 HA1 and

Bris/59/07 HA2 subunits (NCD.HA1-Bris.HA2), as well the

Bris/59/07 HA1 and NCD/20/99 HA2 subunits (Bris.HA1-

NCD HA2) were constructed and used for making HA-

pseudotypes. The infectivity and amount of HA in these chimeric

HA-pseudotypes were comparable to the wild-type HA-pseudo-

types (Figure S1). The chimeric HA-pseudotypes showed that:

HA1 was responsible for most of the NCD/20/99 cross-

neutralization in 2 out of 21 sera (e.g. 2S5H and 2S5A); HA2

was responsible for most of the NCD/20/99 cross-neutralization

in 9 out of 21 sera (e.g. 2S5G, 2S5F, 2S5B, 2S4H, 2S3D, 2S2E,

2S1A, 1S2B and 1S1B); and both HA1 and HA2 were

responsible for much of the NCD/20/99 cross-neutralization in

10 out of 21 sera (e.g. 2S6E, 2S6B, 2S5C, 2S4G, 2S4F, 2S4B,

2S3E, 2S3C, 2S3B and 1S2A) (Figure 4). In many cases, cross-

neutralization titers to NCD/20/99 did not simply reflect the

sum of the individual neutralization titers to each of the chimeras

containing either NCD HA1 or HA2 subunits (e.g. 2S6B, 2S4G,

2S4F, 2S4B, 2S3E, 2S3D and 2S3C), indicating that HA1-HA2

interactions affected neutralization. These data suggested that

there may be several targets for cross-neutralization. Nonetheless,

Table 3. Summary of neutralization titers of contemporary
sera from subjects with a history of having received seasonal
influenza vaccines.

Neutralization Titers

Neutralization to GMT (95% CI) Percentage (titer .160)

Bris/59/07 127 (88 – 183) 49

SI/03/06 204 (133 – 315) 60

NCD/20/99 1237 (938 – 1631) 100

Mex/4108/09 319 (237 – 428) 76

Serum samples were from the subjects with Bris/59/07, SI/03/06 and NCD/20/99
vaccinations. Bris/59/07: A/Brisbane/59/2007; SI/03/06: A/Solomon Islands/3/
2006; NCD/20/99: A/New Caledonia/20/1999; Mex/4108/09: A/Mexico/4108/
2009.
doi:10.1371/journal.ppat.1002081.t003
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the neutralization activity frequently mapped to the HA2 subunit,

and in many cases, HA2 appeared to be the major determinant

for cross-neutralization.

Next we analyzed the sera from the contemporary cohort. Sera

with cross-neutralization titers (.160) to Mex/4108/09, but

without neutralization titers (,160) to Bris/59/07 were identified

(Table S3) and used for evaluating neutralizing antibodies that

may be directed to Mex/4108/09 HA1 and/or HA2 subunits.

HA-pseudotypes carrying the chimeric HA consisting of Bris/59/

07 HA1 and Mex/4108/09 HA2 (Bris.HA1-Mex.HA2) showed

that neutralization titers to Mex/4108/09 HA and Bris.HA1-

Mex.HA2 were similar in all comparisons (samples S1, S7, S24,

S31, S42, S44, S45, S58 and S59) (Figure 5A), suggesting that

cross-neutralization to Mex/4108/09 involves the Mex/4108/09

HA2 subunit. Curiously, the chimeric Mex.HA1-Bris.HA2 HA-

pseudotypes did not have high enough infectivity for neutralization

studies, despite good HA incorporation and cleavage of HA0 in

the HA-pseudotypes (Figure S1). Therefore, we could not directly

assess the contributions of the Mex/4108/09 HA1 subunit to

cross-neutralization.

To confirm the reliability of the cross-neutralizing data

involving chimeric HA-pseudotypes with the Mex/4108/09

HA2 subunit, we identified sera with neutralization titers (.160)

to NCD/20/99, but without cross-neutralization titers (,160) to

Mex/4108/09 (Table S4). For these sera (samples S3, S25, S39,

S43, S54, S56 and S201), neutralization titers for HA-pseudotypes

carrying the chimeric NCD/20/99 HA1 and Mex/4108/09 HA2

(NCD.HA1-Mex.HA2) or NCD/20/99 HA were similar

(Figure 5B), indicating that neutralization antibodies were directed

to the NCD/20/99 HA1 subunit. Therefore, the presence of the

Figure 4. Cross-neutralization to NCD/20/99 from NJ/76 vaccination frequently maps to HA2. Bris.HA1-NCD.HA2 and NCD.HA1-Bris.HA2
pseudotypes were used to map the target of cross-neutralizing antibodies in the sera from the NJ/76 vaccine trials with neutralization titers to NCD/
20/99, but not to Bris/59/07. The dotted line represents a neutralization titer of 160, which has been proposed as a correlate of seroprotection in
microneutralization assays involving replicating influenza virus [4]. Protective titers for neutralization of HA-pseudotypes have not been determined.
Data are shown as means +/2 SD and reflect two or more independent experiments with each sample run in duplicate. Bris: Bris/59/07; NCD: NCD/
20/99.
doi:10.1371/journal.ppat.1002081.g004

Cross-Neutralizing 2009 H1N1 Antibodies
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Mex/4108/09 HA2 subunit in chimeric HA does not apparently

give spurious neutralization results. Again, we were unable to

assess neutralization of the complementary chimeric HA-pseudo-

types containing Mex/4108/09 HA1 (Mex.HA1-NCD.HA2) due

to the poor infectivity of this chimera, despite good incorporation

of mature chimeric HA into the HA-pseudotypes (Figure S1). The

difficulties in generating functional chimeric HA involving Mex/

4108/09 HA1 further suggests that there are interactions between

the Mex/4108/09 HA1 and HA2 subunits that are not present in

recent seasonal H1N1 HA.

Epitopes of cross-neutralization in HA2
In 1993 [14] and again in a number of recent studies [15–20],

neutralizing monoclonal antibodies that are broadly active

against many influenza subtypes have been identified and

mapped to epitopes in the stalk regions of the HA2 subunit

[14,16–20]. Although some of the cross-neutralization that we

observed in our sera appears to map to the HA2 subunit, our

data indicated that this cross-neutralization may be strain

specific. As shown in Figure 4, Figure 5A and Figure 6, we

found that sera with cross-neutralization to NCD/20/99 and

Mex/4108/09 HA2 did not neutralize Bris/59/07. Significantly,

there are only two amino acid differences in HA2, at the positions

89 (415 in full HA) and 146 (472 in full HA) between NCD/20/

99 and Bris/59/07 HA2 (Figure 6A), suggesting that these two

amino acids could influence HA2 antigenicity. When a leucine at

residue 89 in HA2 (89L) or an asparagine at position 146 in HA2

(146N) corresponding to NCD/20/99 HA2 were introduced into

Bris/59/07 HA2, the sera without cross-neutralization to Bris/

59/07 HA showed neutralization to Bris/59/07 HA2-89L, but

not to Bris/59/07 HA2-146N, with titers similar to NCD/20/99

HA and Bris.HA1-Mex.HA2 (Figure 6B and 6C). When both

89L and 146N were presented in Bris/59/07 HA2, serum titers

were the same as those to Bris.HA1-NCD.HA2 in Figure 4 (data

not shown). These results demonstrated that the neutralization

epitopes in HA2 were influenced by residue 89 in HA2 (415 in

full HA).

We then reviewed human H1N1 influenza virus HA sequences

(www.fludb.org/brc/home.do?decorator = influenza) and noted

that leucine at position 89 in HA2 has been maintained in

seasonal H1N1 influenza viruses from at least 1918 to 2005

(Table 4). During this period, there are only two exceptions: A/

Denver/1/1957 from North America has a methionine and A/

Canterbury/106/2004 from Oceania has an isoleucine at position

89 of HA2. The change of leucine to isoleucine at position 89 of

HA2 appeared frequently in 2006 with about 37.8% strains

containing isoleucine, and the change of leucine to isoleucine

continued in 2007 with about 34.1% strains containing isoleucine.

However, by 2008, isoleucine completely replaced leucine at

position 89 in HA2, raising the possibility that this change may

reflect immune escape.

Discussion

The 2009 H1N1 HA diverges considerably from recent seasonal

H1N1 HA and is more closely related to the NJ/76 HA (Figure 1),

raising doubts about the extent of protection that could be

afforded by vaccination with recent seasonal influenza vaccines.

Our studies show that sera from the NJ/76 swine influenza

vaccine trials and contemporary sera from subjects who received

recent seasonal influenza vaccines, regardless of whether they had

been immunized with the NJ/76 swine influenza vaccine,

frequently have cross-neutralizing activity to the 2009 H1N1.

Further, these sera revealed one or more cross-neutralization

epitopes that were sensitive to a conservative amino acid change in

position 89 in the HA2 subunit, corresponding to a naturally-

occurring amino acid variant that emerged in seasonal H1N1

influenza viruses in recent years.

Several groups have reported that prior infections or

vaccinations can confer some immunity to 2009 H1N1, though

findings vary. There is agreement that individuals .65 years

have substantial cross-reactive antibodies to the 2009 H1N1,

consistent with the epidemiology of the 2009 H1N1 pandemic

showing that younger age groups were disproportionately

affected [4], but the extent of cross-immunity induced by recent

Figure 5. HA2 influences cross-neutralization between Mex/
4108/09 and recent seasonal H1N1 influenza A strains. (A)
Bris.HA1-Mex.HA2 pseudotypes were used to map the target of cross-
neutralizing antibodies in the samples with cross-neutralization titers to
Mex/4108/09, but not to Bris/59/07, in sera from the contemporary
cohort of subjects who received seasonal influenza vaccines. (B)
Neutralization to NCD/20/99, but not to Mex/4108/09, was mapped
to NCD/20/99 HA1 using NCD.HA1-Mex.HA2 pseudotypes and sera
from the contemporary cohort of subjects who received seasonal
influenza vaccines. The dotted lines in both panels A and B represent
the neutralization titer of 160, which has been proposed as a correlate
of seroprotection in microneutralization assays involving replicating
influenza virus [4]. Protective titers for neutralization of HA-pseudotypes
have not been determined. Data are shown as means +/2 SD and
reflect two or more independent experiments with each sample run in
duplicate. Bris: Bris/59/07; Mex: Mex/4108/09; NCD: NCD/20/99.
doi:10.1371/journal.ppat.1002081.g005
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seasonal influenza vaccines is more ambiguous [4–9,25–29].

Differences in methodologies and history of vaccination or

infection with NCD/20/99 may have affected the outcomes.

Our results involving persons aged 48–64 years (Table S5)

extend other reports showing that older persons generally have

some pre-existing immunity to the 2009 H1N1, but more

significantly highlight the presence of cross-neutralizing antibod-

ies between 2009 H1N1 and NCD/20/99. Because all subjects

in our contemporary cohort received yearly seasonal influenza

vaccines for at least the past five years, and NCD/20/99 was

repeatedly used in seasonal vaccines during the 2000/01–2006/

07 influenza seasons, we cannot determine the extent to which

influenza vaccinations and/or natural infections contributed to

the generation of cross-neutralizing antibodies to 2009 H1N1

and NCD/20/99.

Figure 6. The amino acid at position 89 in HA2 influences neutralization to HA2. (A) Sequence comparison of HA2 from Bris/59/07 and
NCD/20/99. The differing residues in the HA2 are indicated (grey). (B) The 89L mutation, but not the 146N mutation in HA2 of Bris/59/07, conferred
similar levels of neutralization to Bris/59/07 HA-pseudotypes as compared to NCD/20/99 HA-pseudotypes, using sera from the NJ/76 vaccine trials
that have neutralization titers to NCD/20/99, but not to wild-type Bris/59/07. (C) The 89L mutation, but not the 146N mutation in Bris/59/07 HA2,
conferred similar levels of neutralization to Bris/59/07 HA-pseudotypes as compared to chimeric HA-pseudotypes with Mex/4108/09 HA2, using the
contemporary sera cohort from samples that have neutralization titers to Mex/4108/09 HA2 (determined in Figure 5A), but not to wild type Bris/59/
07. The dotted lines in both panels B and C represent the neutralization titer of 160, which has been proposed as a correlate of seroprotection in
microneutralization assays involving replicating influenza virus [4]. Protective titers for neutralization of HA-pseudotypes have not been determined.
Data are shown as means +/2 SD and reflect two or more independent experiments with each sample run in duplicate. Bris: Bris/59/07; Mex: Mex/
4108/09; NCD: NCD/20/99.
doi:10.1371/journal.ppat.1002081.g006

Table 4. Evolutionary changes of residue 89 in human H1N1
HA2.

Year Residue 89 in HA2 (percentage)

1918–2005 L (100%)*

2006 L (62.2%) and I (37.8%)

2007 L (65.9%) and I (34.1%)

2008 I (100%)

Human H1N1 HA sequences with residue 89 in HA2 in database (www.fludb.
org/brc/home.do?decorator = influenza) were compared for the evolutionary
changes of residue 89.
*: Except M89 in A/Denver/1/1957 HA2, and I89 in A/Canterbury/106/2004 HA2.
doi:10.1371/journal.ppat.1002081.t004
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To investigate potential cross-neutralizing determinants in

NCD/20/99 and 2009 H1N1, we used chimeric HA-pseudotypes

involving HA1 and HA2 subunits of NCD/20/99 and Bris/59/07

and sera that lacked neutralization to Bris/59/07 (Table S2). Both

contemporary and archived sera from the NJ/76 swine influenza

vaccine trials contained cross-neutralizing antibodies that depend-

ed on the HA2 subunit (Figure 4 and 5). Most remarkable, we

found that the cross-neutralization was influenced by a single

conservative amino acid change at position 89 in HA2, which

differed between NCD/20/99 and Bris/59/07 (Figure 6). Thus,

these data reveal a new determinant in the C helix region of the

HA2 stalk that modified sensitivity to cross-neutralizing antibodies

present in human sera from two different cohorts separated by

more than three decades.

Growing interest in the generation of broadly neutralizing

influenza antibodies has led to the discovery of several new

monoclonal antibodies that bind to HA2 [14–20,30,31]. The first

reported heterosubtypic neutralizing antibody, C179, derived

from a mouse immunized with the A/Okuda/57 H2N2 strain,

was found to be directed to a conformational epitope involving the

A helix in the HA2 stalk (Figure 7A) and a region in HA1 [14].

More recently, several other HA2 heterosubtypic neutralizing

monoclonal antibodies that are potent against strains from H1 and

H5 subtype (Group 1) influenza viruses have been isolated using

various methods. Some of these antibodies have been also shown

to make contacts with the A helix of HA2 [16,17,30] (Figure 7A).

Other HA2 monoclonal antibodies have been shown to bind to a

highly conserved pocket in the stalk region containing the fusion

peptide [18] or undetermined regions of the HA2 stalk [19].

Another potent broadly neutralizing monoclonal antibody against

H3N2 (Group 2) but not H1N1 (Group 1) strains was shown to

bind to a peptide corresponding to the C helix region in the HA2

stalk [20].

The HA2 monoclonal antibodies bind to regions in the HA2

stalk and interfere with conformational changes that are needed

for virus entry [32], but they do not block HA attachment to

receptors. These HA2 antibodies lack HI activity and were

discovered using neutralization assays that sometimes involved

HA-pseudotypes [18–20]. We [21,23] and others [33,34] have

shown that HA-pseudotypes neutralization titers are highly

correlated with microneutralization titers for replicating influenza

virus, but the correlate of protection using HA-pseudotype

neutralization titers has not been determined. Also, glycoproteins

on the surface of HIV-based retroviral particle may be less densely

packed and more exposed compared to HA on the surface of

influenza viral particles, perhaps making them more susceptible to

HA2-directed neutralization compared to influenza virus, as

suggested in some studies [18,19]. While sensitive screening assays

have allowed many groups to fish out broadly neutralizing

antibodies, it is generally believed that HA2 heterosubtypic

neutralizing antibodies are present at relatively low concentrations,

as compared with antibodies directed to HA1 [19,35]. The need to

change annual seasonal influenza vaccines to match dominant

circulating strains indicates that such HA2 cross-neutralizing

Figure 7. Structural implications for the L89I (L415I) mutation in HA2. (A) Space filling representation of the surface of A/California/04/2009
HA (PDB:3LZG) to show the recessed location of L89 (L415) (cyan). HA1 is colored green; HA2 is colored gray; the HA2 stem epitope structurally
defined in Sui et al. [18] and Ekiert et al. [17] is colored purple; and glycans at glycosylation sites are colored by heteroatom (carbon white, oxygen
red, and nitrogen blue). (B) Depiction of the packing interaction between L89 (L415) and residues in an adjacent loop in HA1 (PDB:3LZG). Molecular
graphics images were produced using the UCSF Chimera package (supported by NIH P41 RR001081) [45].
doi:10.1371/journal.ppat.1002081.g007
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antibodies may not be present at high enough titers to provide

robust protection. It is therefore difficult to discern the degree to

which HA2 antibodies in our sera samples could contribute to

protection to 2009 H1N1 virus. However, studies in animal

models have provided proof of concept that induction [16,18–20]

or passive transfer of HA2 antibodies alone [20,36] can provide

protection. Appropriately designed vaccines may be able to induce

robust immune responses to conserved neutralizing epitopes in

HA2 [35,37]. Recent examples involving several approaches are

showing promise [20,38,39].

Our finding that the conservative substitution of isoleucine for

89 L reduced sensitivity to cross-neutralizing antibodies present in

our sera was surprising. The crystal structure of the A/Cal/04/

2009 HA [40] shows that 89 L packs tightly into a poorly exposed

crevice underneath the HA1 crown (Figure 7A), making intimate

contact with HA1 through a lysine and tyrosine at residues 310

and 308, respectively (Figure 7B). Substitution of 89 L with

isoleucine may cause the interactions between HA1 and HA2 in

this region to shift in order to accommodate the alternate side

chain (Figure S2), and in doing so, could directly alter exposure or

conformation of the antibody binding site. Alternatively, residue

89 may be evolving in response to immune pressure at distant sites.

For example, 89I may reflect an adaptive change in HA2 resulting

from direct immune pressure on epitopes in HA1. The 89I

substitution could also impose allosteric changes on nearby or

more distant neutralizing epitopes in either HA1 or HA2. The

observation that Bris/59/07 was less sensitive to neutralization by

an HA2 antibody compared to NCD/20/99 is consistent with the

notion that this residue could influence neutralization by HA2

antibodies [19]. We also note that 89L is not near any of the

contact residues for the recently described HA2 monoclonals

specific for Group 1 HAs, although it is located on the C helix

region of the HA2 stalk that has recently been suggested to contain

an epitope for the 12D1 monoclonal antibody that binds H3

strains from Group 2.

Review of the database of human H1N1 HA also offers

intriguing clues about the potential significance of the change of

leucine to isoleucine at position 89 in HA2. We note that 89L

has been maintained in seasonal H1N1 influenza viruses from at

least 1918 until 2006 when it started to change to isoleucine,

and 89L disappeared in 2008 (Table 4). It is tempting to

speculate that this change could reflect immune escape. We also

note that H3 strains from Group 2 influenza viruses generally

have an isoleucine at the corresponding position in HA2.

Interestingly, unlike Group 1 H1N1 HA, a carbohydrate can be

seen in the H3N2 HA crystal structure extending in the vicinity

of the isoleucine (coming from N285) (PDB 3HMG) [41,42],

which could conceivably have evolved to shield it from

neutralizing antibodies. These observations offer a cautionary

note that antigenic drift in this region may arise under strong

selection pressure. Nonetheless, the viable substitutions may be

limited due to the fact that residue 89 and others in the stalk

regions make important contacts in both the native and low pH

structures of HA, consistent with the difficulties in generating

escape mutants with some of the HA monoclonal antibodies

[18,20]. Perhaps this explains why H3N2 strains have

incorporated a carbohydrate in the vicinity of this region.

In summary, our studies showed that cross-neutralizing

antibodies to 2009 H1N1 influenza that involve the HA2 subunit

could be detected in sera collected in 1976 from NJ/76 swine

influenza vaccine trials and sera from persons aged 48–64 who

received annual influenza vaccines for at least the past five years. A

conservative substitution at position 89 in HA2, found in drifted

seasonal influenza virus variants from the 2006/07 and 2007/08

influenza seasons, abrogated this neutralization. Future studies

involving vaccines that elicit strong antibody responses to HA2 will

reveal the extent to which mutations can lead to immune escape.

Materials and Methods

Viruses, plasmids, and cell lines
Full-length HA ORF with Q223R mutation from A/Mexico/

4108/2009 (GenBank GQ223112) and full-length wild type HA

ORFs from A/Solomon Islands/3/2006 (GenBank EU100724),

A/New Caledonia/20/1999 (GenBank AY289929), and A/

Brisbane/59/2007 (GenBank CY058487) were amplified from

viruses by reverse transcription-polymerase chain reaction (RT-

PCR). Full-length wild type NA ORF from A/California/04/2009

(GenBank FJ966084) was also amplified from virus by RT-PCR.

Full-length wild type HA ORF of A/New Jersey/1976 (GenBank

CY021957) was chemically synthesized by GenScript (Piscataway,

NJ). Chimeric HA carrying HA1 and HA2 from different strains

were constructed by ligation of PCR fragments of HA1 and HA2.

The HA and NA ORFs were then placed into the pCMV/R

expression plasmid obtained from Dr. Gary J. Nabel (National

Institutes of Health (NIH), Bethesda, MD), as described previously

[21]. Full-length wild type M2 ORF of A/Puerto Rico/8/1934

(GenBank EF467824) was chemically synthesized by Integrated

DNA Technologies (Coralville, IA) and placed into pCDNA 3.1(+)

(Invitrogen, Carlsbad, CA). Codon-optimized human airway

trypsin-like protease (HAT) gene expression construct

(pCAGGS-HATcop) was described before [23]. The HIV gag/

pol (pCMVDR8.2) and Luc reporter (pHR’CMV-Luc) constructs

were described previously [43,44] and obtained from Dr. Gary J.

Nabel (NIH, Bethesda, MD).

293T cells were cultured in Dulbecco’s modified eagle medium

(DMEM) with high glucose, L-Glutamine, MEM non-essential

amino acids, penicillin/streptomycin and 10% fetal calf serum.

Ethics statement
Ethics approval by the Research Involving Human Subjects

Committee (RIHSC) at the US Food and Drug Administration

was obtained for use of the sera involved in this study. Under 45

CFR 46.101 (b) (4), the sera from the 1976 swine influenza trial

was included in the category of exempt research because the study

used only existing sera, and information was recorded in such a

manner that subjects can not be identified, either directly or

through identifiers (RIHSC Protocol #09-043B). The sera from

the contemporary cohort were obtained with written informed

consent from all participants (RIHSC Protocol #09-110B).

Serum samples
Two groups of human sera were used in this study. The sera in

group one included frozen samples retrieved from storage at

FDA/CBER involving 65 pre-vaccination and post-vaccination

sera from A/New Jersey/1976 swine influenza vaccine trials

conducted in 1976 [22]. The sera in group two were collected in

September-December of 2009 from 45 volunteers aged 48–64

years, without a history of vaccinations or influenza symptoms or

exposures in 2009. All subjects in group two received at least five

year (2004/05 to 2008/09) annual seasonal influenza vaccines

including A/New Caledonia/20/1999, A/Solomon Islands/3/

2006 and A/Brisbane/59/2007 used for the seasons from 2000/

01 to 2008/09, and 23 subjects among them also received the A/

New Jersey/1976 swine influenza vaccine (Table S5). Sera were

heat inactivated by incubation at 56uC for 30 minutes prior to use

in neutralization assays. Sera were assessed for neutralizing

antibodies to 2009 H1N1 (A/Mexico/4108/2009) and the
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2000/09 seasonal H1N1 influenza viruses (A/New Caledonia/20/

1999, A/Solomon Islands/3/2006, A/Brisbane/59/2007) using

an HA-pseudotype neutralization assay, as described below.

Production of HA-pseudotypes
HA-pseudotypes carrying a luciferase (Luc) reporter gene were

produced in 293T cells as described previously [21]. 2.5 mg of

HAT, 2.5 mg of A/Puerto Rico/8/1934 M2, and 4 mg of A/

California/04/2009 NA expression plasmids were included in the

transfection. HA-pseudotypes were collected 48 hr post-transfec-

tion, filtered through a 0.45-mm low protein binding filter, and

used immediately or stored at 280uC. HA-pseudotype titers were

measured by infecting 293T cells with HA-pseudotypes for 48 hr

prior to measuring luciferase activity in infected cells (luciferase

assay reagent, Promega) as described previously [21]. HA-

pseudotype titers were expressed as relative luminescence unit

per milliliter of HA-pseudotype supernatants (RLU/ml).

HA-pseudotype neutralization assay
As previously described [23,24], HA-pseudotypes containing

approximately 15 ng/ml of p24 antigen and 12 ng/ml of HA were

incubated with heat-inactivated serum samples for 1 hr at 37uC,

then 100 ml of HA-pseudotypes and serum mixtures were

inoculated onto 96-well plates that were seeded with 2 x 104

293T cells/well one day prior to infection. HA-pseudotype

infectivity was evaluated 48 hr later by luciferase assay, as

previously described [21]. The serum dilution causing a 95%

reduction of RLU compared to control (IC95-neutralizing

antibody titer) was used as the neutralization endpoint titer [23].

IC95 was calculated using Graphpad Prism software. Data

reported were from at least two independent experiments, with

each serum sample run in duplicate.

Statistical analysis
To evaluate vaccination responses and potential cross-protection,

sera with neutralization titers over 160 that inhibited 95% infectivity

were considered highly significant [4,23]. The neutralization titers

were analyzed with nonlinear regression using GraphPad Prism

software. The correlation of neutralization titers was evaluated with

Spearman’s p, a test for nonparametric correlation. t-test, geometric

mean titer (GMT) with 95% confidence intervals and correspond-

ing P value were analyzed using GraphPad Prism software. P values

,0.05 were considered statistically significant.

Supporting Information

Figure S1 HA incorporation and Infectivity of chimeric HA-

pseudotypes. (A) HA content in chimeric and wild-type HA-

pseudotypes were similar. HA protein in HA-pseudotypes

containing 10 ng of p24 antigen was detected by Western blot

using rabbit H1 HA1 antiserum. (B) Infectivity of chimeric and

wild-type HA-pseudotypes was similar for Bris/59/07 and NCD/

20/99 strains, but chimeras involving HA1 of Mex/4108/09 were

impaired. Infectivity is shown as the mean +/2 S.D. of three HA-

pseudotype stocks run in triplicate. Bris: Bris/59/07; NCD: NCD/

20/99; Mex: Mex/4108/09.

(EPS)

Figure S2 #Side chain packing differences at residue 89 in

H1N1 and H3N2 HA. H1N1 HA (PDB:3LZG) (A) and H3N2 HA

(PDB:3HMG) (B) structures were aligned using the H1N1 HA2 as

a reference in the visualization program Chimera [45]. In both

panels residues from HA1 are green and HA2 are gray. Position

89 is colored cyan. Side chain interactions between position 89

and adjacent residues (red dashed lines) were then detected using

UCSF’s Chimera structural analysis tools (http://www.cgl.ucsf.

edu/chimera). Despite the overall structural similarity in this

region, the change in side chain branching between leucine and

isoleucine permits a different pattern of van der Waals contacts

between position 89 and the surrounding area. Red arrow

indicates directionality of side chain contacts. Some of the residues

contacting position 89 are not conserved between H1N1 and

H3N2 HAs. Most notably, position 299 is a proline in H1N1 and a

lysine in H3N2. The shift in packing, although subtle, illustrates

that even a conservative leucine to isoleucine mutation in the

context of an H1N1 HA has the possibility to create a packing

mismatch that might alter the local structure and/or dynamics,

which through its interface with HA1, may consequently be

transmitted elsewhere in HA.

(EPS)

Table S1 Comparison of neutralization titers for H1N1 HA-

pseudotypes. The Mex/4108/09, NCD/20/99, Bris/59/07 and

SI/03/06 HA-pseudotypes were evaluated for neutralization by

reference antisera. The 95% neutralization (IC95) titers represent

at least duplicate testing. HA-pseudotypes: Mex/4108/09: A/

Mexico/4108/2009; NCD/20/99: A/New Caledonia/20/1999;

Bris/59/07: A/Brisbane/59/2007; SI/03/06: A/Solomon Is-

lands/03/2006. Ferret antiserum: Cal/07/09: A/California/07/

2009 (ATCC); NCD/20/99: A/New Caledonia/20/1999 (F-99-

4A, FDA); Bris/59/07: A/Brisbane/59/2007 (2008-587, FDA);

SI/03/06: A/Solomon Islands/03/2006 (2007-150, FDA).

(DOC)

Table S2 Summary of NJ/76 vaccination trial samples with

neutralization titers to NCD/20/99 (.160, and 4-fold increase),

Bris/59/07 (,160), and Mex/4108/09. NJ/76: A/New Jersey/

1976; NCD/20/99: A/New Caledonia/20/1999; Bris/59/07: A/

Brisbane/59/2007; Mex/4108/09: A/Mexico/4108/2009.

(DOC)

Table S3 Summary of seasonal influenza vaccination samples

with neutralization titers to Mex/4108/09 (.160) and Bris/59/07

(,160). Mex/4108/09: A/Mexico/4108/2009; Bris/59/07: A/

Brisbane/59/2007.

(DOC)

Table S4 Summary of seasonal influenza vaccination samples

with neutralization titers to NCD/20/99 (.160) and Mex/4108/

09 (,160). Mex/4108/09: A/Mexico/4108/2009; NCD/20/99:

A/New Caledonia/20/1999.

(DOC)

Table S5 Summary of demographic information of subjects who

received seasonal influenza vaccines. Samples S22, S27 and S37

are not included in the comparison of NJ/76 and Mex/4108/09

in Table 2, Figure 3A–B.

(DOC)
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