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Abstract

Human cytomegalovirus (hCMV) is a highly prevalent pathogen that, upon primary infection, establishes life-long
persistence in all infected individuals. Acute hCMV infections cause a variety of diseases in humans with developmental or
acquired immune deficits. In addition, persistent hCMV infection may contribute to various chronic disease conditions even
in immunologically normal people. The pathogenesis of hCMV disease has been frequently linked to inflammatory host
immune responses triggered by virus-infected cells. Moreover, hCMV infection activates numerous host genes many of
which encode pro-inflammatory proteins. However, little is known about the relative contributions of individual viral gene
products to these changes in cellular transcription. We systematically analyzed the effects of the hCMV 72-kDa immediate-
early 1 (IE1) protein, a major transcriptional activator and antagonist of type I interferon (IFN) signaling, on the human
transcriptome. Following expression under conditions closely mimicking the situation during productive infection, IE1 elicits
a global type II IFN-like host cell response. This response is dominated by the selective up-regulation of immune stimulatory
genes normally controlled by IFN-c and includes the synthesis and secretion of pro-inflammatory chemokines. IE1-mediated
induction of IFN-stimulated genes strictly depends on tyrosine-phosphorylated signal transducer and activator of
transcription 1 (STAT1) and correlates with the nuclear accumulation and sequence-specific binding of STAT1 to IFN-c-
responsive promoters. However, neither synthesis nor secretion of IFN-c or other IFNs seems to be required for the IE1-
dependent effects on cellular gene expression. Our results demonstrate that a single hCMV protein can trigger a pro-
inflammatory host transcriptional response via an unexpected STAT1-dependent but IFN-independent mechanism and
identify IE1 as a candidate determinant of hCMV pathogenicity.
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Introduction

Human cytomegalovirus (hCMV), the prototypical b-herpesvi-

rus, is an extremely widespread pathogen (reviewed in [1]).

Primary hCMV infection is invariably followed by life-long viral

persistence in all infected individuals. The groups most evidently

affected by hCMV disease are humans with acquired or

developmental immune deficits including allograft recipients

receiving immunosuppressive drugs, human immunodeficiency

virus-infected individuals, cancer patients undergoing intensive

chemotherapy, and infants infected in utero (reviewed in [2]). In

immunologically normal hosts, clinically relevant symptoms rarely

accompany acute infections (reviewed in [3]), but viral persistence

may contribute to chronic disease conditions including athero-

sclerosis, cardiovascular disease, inflammatory bowel disease,

immune senescence, and certain malignancies (reviewed in

[4,5,6,7,8]).

The pathogenesis of disease (e.g., pneumonitis, retinitis,

hepatitis, enterocolitis, and encephalitis) associated with acute

hCMV infection in immunocompromised people is most readily

attributable to end organ damage either directly caused by

cytopathic viral replication or by host immunological responses

that target virus-infected cells. In contrast, chronic disease

associated with persistent hCMV infection in immunocompetent

individuals as well as in the allografts of transplant recipients is

most likely related to prolonged inflammation (reviewed in [9]). In

fact, hCMV has been frequently detected in the midst of intense

inflammation, and a myriad of studies from transplant recipients

and normal hosts have presented a strong case for this virus as an

etiologic agent in chronic inflammatory processes, particularly

those resulting in vascular disease (reviewed in [4]). At the

molecular level, this is reflected by the fact that, in both human

cells and animal models, cytomegalovirus infections activate

numerous host genes many of which encode growth factors,

cytokines, chemokines, and adhesion molecules with pro-inflam-

matory and immune stimulatory activities [10,11,12,13,14,

15,16,17,18,19,20,21,22,23]. A number of these virus-induced

proteins are released from infected cells forming the viral

‘‘secretome’’ [4,24,25].

A large proportion of human genes that undergo activation

during hCMV infection are normally controlled by interferons

(IFNs) (reviewed in [26,27]). The IFNs constitute a distinct group
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of cytokines synthesized and released by most vertebrate cells in

response to the presence of many different pathogens including

hCMV. They are divided among three classes: type I IFNs

(primarily IFN-a and IFN-b), type II IFN (IFN-c), and type III

IFNs (IFN-l or interleukin 28/29). The type I IFNs share many

biological activities with type III IFNs, especially in host protection

against viruses. IFN-c, the sole type II IFN, is one of the most

important mediators of inflammation and immunity exerting

pleiotropic effects on activation, differentiation, expansion and/or

survival of virtually any cell type of the immune system (reviewed

in [28]). A significant body of research has identified the primary

IFN pathway components and has characterized their roles in

‘‘canonical’’ signaling (reviewed in [29,30]). In this pathway, IFNs

bind to their cognate cell surface receptors to induce conforma-

tional changes that activate the receptor-associated enzymes of the

Janus kinase (JAK) family. The post-translational modifications

that follow this activation create docking sites for proteins of the

signal transducer and activator of transcription (STAT) family

with seven human members. In turn, the STAT proteins undergo

JAK-mediated phosphorylation at a single tyrosine residue (Y701

in STAT1), which triggers their transition to an active dimer

conformation. The STAT dimers accumulate in the nucleus where

they may recruit additional proteins, and these complexes then

bind sequence-specifically to short DNA motifs termed IFN-

stimulated response element (ISRE) or gamma-activated sequence

(GAS). ISREs are usually bound by a ternary complex composed

of a STAT1-STAT2 heterodimer and IFN regulatory factor (IRF)

9, which forms upon induction by type I and type III IFNs and is

referred to as IFN-stimulated gene factor 3 (ISGF3). In contrast,

type II IFN typically signals via STAT1 homodimers that associate

with GAS elements. Finally, promoter-associated STAT proteins

stimulate transcription of numerous IFN-stimulated genes (ISGs)

via their carboxy-terminal transcriptional activation domain.

Within this domain, phosphorylation of a serine residue (S727 in

STAT1) can augment STAT transcriptional activity. To some

extent, the complex responses elicited by type I, type II, and type

III IFNs are redundant as a consequence of partly overlapping

ISGs.

Since many ISGs, especially those induced by type I IFNs,

exhibit potent anti-viral activities most viruses have evolved escape

mechanisms that mitigate IFN responses. In fact, both hCMV and

murine cytomegalovirus (mCMV) are known to disrupt IFN

pathways at multiple points (reviewed in [26,27]). For example,

JAK-STAT signaling is inhibited by the hCMV 72-kDa

immediate-early 1 (IE1) gene product [31,32,33], a key regulatory

nuclear protein required for viral early gene expression and

replication in fibroblasts infected at low input multiplicities

[34,35,36]. IE1 orthologs of mCMV and rat cytomegalovirus

(rCMV) also contribute to replication and virulence in the

respective animals [37,38]. The hCMV IE1 protein counteracts

virus- or type I IFN-induced ISG activation via complex formation

with STAT1 and STAT2 resulting in reduced binding of ISGF3 to

ISREs [31,32,33,39]. STAT2 interaction contributes to hCMV

type I IFN resistance and to IE1 function during productive

infection [33], but the viral protein undergoes many additional

host cell interactions (reviewed in [2,40,41]). For example, IE1

targets subnuclear structures known as promyelocytic leukemia

(PML) bodies or nuclear domain 10 (ND10) ([42,43,44]; reviewed

in [45,46,47,48]). In addition, IE1 associates with chromatin [49]

and interacts with a variety of transcription regulatory proteins

[50,51,52,53,54,55,56,57]. Consequently, IE1 stimulates expres-

sion from a broad range of viral and cellular promoters in transient

transfection assays. However, IE1-mediated activation or repres-

sion of merely a few single endogenous human genes has been

demonstrated so far [58,59,60,61,62,63,64].

Here we present the results of the first systematic human

transcriptome analysis following expression of the hCMV IE1

protein. Surprisingly, the predominant response to IE1 was

characterized by activation of pro-inflammatory and immune

stimulatory genes normally controlled by IFN-c. We further

demonstrate that IE1 employs an unusual mechanism, which does

not require induction of IFNs but nonetheless depends on

activated (Y701-phosphorylated) STAT1, to up-regulate a subset

of ISGs.

Results

Construction and characterization of human primary cells
with inducible IE1 expression

The hCMV IE1 protein exhibits complex activities, and results

obtained from experiments with IE1 mutant virus strains are

inherently difficult to interpret. In fact, regarding the phenotype of

IE1-deficient viruses at low input multiplicities, it seems almost

impossible to discriminate between effects directly linked to any of

the IE1 activities and indirect effects caused by delays in

downstream viral gene expression and replication. On the other

hand, following infection at high multiplicity, many consequences

of absent IE1 expression are compensated for by excess viral

structural components, such as tegument proteins and/or DNA,

and therefore undetectable ([35,36]; reviewed in [2,40,41]). Thus,

it is apparent that cells with inducible expression of functional IE1

at physiological levels would be highly useful by allowing a definite

assessment of the viral protein’s activities outside the confounding

context of infection. Furthermore, such cells would avoid potential

difficulties typically associated with transient transfection, includ-

ing variable frequency of positive cells and protein accumulation

to non-physiologically high levels. Importantly, an inducible

expression system would also preclude cells from adapting to

long-term IE1 expression. In fact, the continued presence of IE1 is

Author Summary

Human cytomegalovirus (hCMV) is a leading cause of birth
defects and severe disease in people with compromised
immunity. Disease caused by hCMV is frequently linked to
inflammation, and the virus has been shown to induce
numerous host genes many of which encode pro-
inflammatory proteins. However, little is known about
the contributions of individual viral proteins to these
changes in cellular transcription. We systematically ana-
lyzed the effects of the hCMV immediate-early 1 (IE1)
protein, a major viral transcriptional activator, on expres-
sion of .28,000 human genes. Following expression under
conditions mimicking the situation during hCMV infection,
IE1 elicited a transcriptional response dominated by the
up-regulation of pro-inflammatory and immune stimula-
tory genes normally induced by the secreted signaling
protein interferon-c. However, IE1-mediated gene expres-
sion was independent of interferon induction, yet required
the activated form of signal transducer and activator of
transcription 1 (STAT1), a central mediator of interferon
signaling. Indeed, STAT1 moved to the nucleus and
became associated with IE1 target genes upon expression
of the viral protein. Our results demonstrate that a single
hCMV protein can trigger a pro-inflammatory host cell
response via an unexpected mechanism and suggest that
IE1 may contribute to hCMV disease in more direct ways
than previously thought.

HCMV IE1 Elicits IFN-c-Like Response

PLoS Pathogens | www.plospathogens.org 2 April 2011 | Volume 7 | Issue 4 | e1002016



reportedly incompatible with genomic integrity and normal cell

proliferation [65,66,67].

We used a tetracycline-dependent induction (Tet-on) system

built into lentivirus vectors to generate cells in which IE1

expression can be synchronously induced and compared to cells

not expressing the viral protein. The first component of this system

is a lentiviral vector (pLKOneo.CMV.EGFPnlsTetR; [68,69,70])

that includes a hybrid gene encoding the tetracycline repressor

(TetR) linked to a nuclear localization signal (NLS) derived from

the SV40 large T antigen and the enhanced green fluorescent

protein (EGFP) to produce an EGFPnlsTetR fusion protein [68].

In addition, this vector encodes neomycin resistance. The second

component is a lentivirus vector (pLKO.DCMV.TetO.cIE1)

conferring puromycin resistance, in which a fragment of the

hCMV promoter-enhancer drives expression of the IE1 (Towne

strain) cDNA. In this vector, tandem tetracycline operator (TetO)

sequences are present immediately downstream of the TATA box.

For the lentivirus transductions, we chose MRC-5 primary human

embryonic lung fibroblasts, because they support robust wild-type

hCMV replication, whereas IE1-deficient virus strains exhibit a

severe growth defect after low multiplicity infection of these cells

([31,33] and Figure 1 C). Initially, low passage MRC-5 cells were

transduced with lentivirus prepared from plasmid pLKOneo.CM-

V.EGFPnlsTetR, and a neomycin-resistant polyclonal cell popu-

lation (named TetR) was isolated in which almost all cells

expressed the EGFP fusion protein located in the nucleus (data

not shown). Next, TetR cells were transduced with lentivirus

prepared from pLKO.DCMV.TetO.cIE1 and a mixed cell

population (named TetR-IE1) exhibiting both neomycin and

puromycin resistance was selected. Finally, fluorescence-activated

cell sorting was performed to collect cells with high levels of

EGFPnlsTetR and, consequently, low levels of IE1 in the absence

of inductor.

To characterize the newly generated cells, TetR-IE1 cells were

treated with doxycycline for 24 or 72 h and examined for IE1

expression by indirect immunofluorescence microscopy (Figure 1

A). Before induction, the majority (67.0%) of cells was IE1

negative, and most other cells expressed barely detectably levels of

the viral protein. Interestingly, in the latter proportion of cells IE1

was present in a predominantly punctate nuclear pattern. This

likely reflects stable co-localization between IE1 and ND10 due to

viral protein levels insufficient to disrupt the nuclear structures. At

24 h following induction only 2.8% of cells were negative for IE1

expression and .97% stained positive for the viral protein. In

almost all positive cells IE1 exhibited a largely diffuse nuclear

staining indicating complete disruption of ND10. Very similar

results were obtained for IE1 expression and localization 72 h post

induction. Importantly, the observed temporal and spatial pattern

of IE1 subnuclear localization in TetR-IE1 cells closely resembles

that observed during productive hCMV infection in fibroblasts

where initial colocalization between IE1 and ND10 is succeeded

by ND10 disruption and diffuse nuclear distribution of the viral

protein [43,44,71].

To compare the relative levels of IE1 expressed during hCMV

infection and after induction of TetR-IE1 cells, TetR cells were

infected with the hCMV Towne strain, and samples collected

before or 3 h, 6 h, 12 h, 24 h, 48 h and 72 h after infection were

analyzed for IE1 steady-state protein levels in comparison with

samples of TetR-IE1 cells that had been treated with doxycycline

(Figure 1 B). The timing of IE1 induction in TetR-IE1 cells was

remarkably similar to the kinetics of IE1 accumulation in hCMV-

infected cells. In addition, the IE1 levels detected at 24 to 72 h

post induction were comparable to the protein amounts that had

accumulated by 24 h post hCMV infection.

To confirm that TetR-IE1 cells express fully active IE1,

replication of wild-type and IE1-deficient hCMV strains was

compared by multi-step analyses conducted in doxycycline-treated

TetR and TetR-IE1 cells (Figure 1 C). To this end, we employed a

bacterial artificial chromosome (BAC)-based recombination ap-

proach to generate a ‘‘markerless’’ mutant virus strain (TNdlIE1)

lacking the entire IE1-specific coding sequence. For details on the

construction of TNdlIE1 and a revertant virus (TNrvIE1) see

Materials and Methods. As expected, the replication of two

independent TNdlIE1 clones was strongly attenuated in TetR

cells, with a ,2 to .3 log difference in titers between mutant and

revertant virus strains. It is important to note that our previous

work has shown that TNrvIE1 and the parental wild-type strain

(TNwt) exhibit identical replication kinetics [33]. However,

induced TetR-IE1 cells were able to support wild-type-like

replication of the TNdlIE1 viruses demonstrating that the viral

protein provided in trans can fully compensate for the lack of IE1

expression from the hCMV genome during productive infection.

Interestingly, even the titers of TNrvIE1 were reproducibly up to

,20-fold higher in TetR-IE1 as compared to IE1-negative cells

between 3 and 12 days post infection.

Taken together, these results show that in TetR-IE1 cells

expression of IE1 can be synchronously induced from the

autologous hCMV major IE (MIE) promoter resulting in fully

functional protein at levels present during the early stages of

hCMV infection. Thus, TetR/TetR-IE1 cells present an ideal

model to study the activities of the IE1 protein outside the

complexity of infection, yet under physiological conditions.

IE1 triggers a pro-inflammatory and immune stimulatory
human transcriptome response

The capacity of hCMV IE1 to activate transcription from both

viral and cellular promoters has long been appreciated ([72];

reviewed in [2,40,41]). However, most reports on IE1-regulated

host gene transcription have relied on transient transfections and

promoter-reporter assays. To our knowledge, regulation of

endogenous cellular transcription by IE1 has so far only been

studied sporadically and at the level of single genes.

To comprehensively assess the impact of IE1 on the human

transcriptome, we performed a systematic gene expression

analysis using our TetR/TetR-IE1 cell model and Affymetrix

GeneChip Human Gene 1.0 ST Arrays covering 28,869 genes

(.99% of sequences currently present in the RefSeq database,

National Center for Biotechnology Information). We compared

the gene expression profiles at 24 h and 72 h post induction in

induced versus non-induced TetR-IE1 cells and in induced TetR-

IE1 versus induced TetR cells. Expression from the vast majority

(99.9%) of genes represented on the arrays was not significantly

affected by IE1. However, mRNA levels of 38 human genes

differed by a factor of two or more (p.0.01) in both the induced

TetR-IE1/non-induced TetR-IE1 and the induced TetR-IE1/

induced TetR comparisons. For 32 (84%) of the 38 genes,

changes in mRNA levels were only observed after 72 h (but not

24 h) of IE1 expression, and only six (16%) were differentially

expressed at both 24 h and 72 h. Moreover, 13 (34%) of these

genes were down-regulated by a factor between 2.0 and 5.5 (data

not shown) and 25 (66%) were up-regulated by a factor between

2.0 and 41.9 (Table 1). For the present work, we concentrated on

the set of genes that was found to be up-regulated by expression

of IE1.

We utilized the Gene Ontology (GO) classification system

(http://www.geneontology.org) to identify attributes which pre-

dominate among IE1-activated gene products regarding the three

GO domains ‘‘biological process’’, ‘‘molecular function’’, and

HCMV IE1 Elicits IFN-c-Like Response
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‘‘cellular component’’. Furthermore, we employed a set of analysis

tools to construct maps that visualize overrepresented attributes on

the GO hierarchy (Figure 2). According to GO, the most

significantly enriched ‘‘biological process’’ terms with respect to

the 25 IE1-activated genes are: ‘‘immune system process’’,

‘‘immune response’’, ‘‘inflammatory response’’, ‘‘response to

wounding’’, ‘‘response to stimulus’’, ‘‘defense response’’, ‘‘chemo-

taxis’’, ‘‘taxis’’, and ‘‘regulation of cell proliferation’’ (Figure 2 A).

Figure 1. Characterization of TetR-IE1 cells. A) TetR-IE1 cells were
treated with doxycycline for 24 and 72 h or were left untreated (0 h).
Paraformaldehyde-fixed samples were examined by fluorescence
microscopy for IE1 (antibody 1B12) and TetRnlsEGFP (TetR) expression
(autofluorescence). Staining with 49,6-diamidino-2-phenylindole (DAPI)
was performed to visualize nuclei. Original magnification, 6504. For the
pie charts, ,500 randomly selected nuclei per sample were examined
for IE1 expression. The scoring system is as follows: IE1 2, no IE1
staining above background; IE1 +, weak, mostly punctate IE1 staining;
IE1 ++, strong, diffuse IE1 staining. B) Time course (0–72 h) immunoblot

analysis of IE1 and GAPDH steady-state protein levels in doxycycline-
induced TetR-IE1 cells and hCMV (TNwt)-infected TetR cells (MOI = 1
PFU/cell). To assure comparability between protein bands, gels loaded
with extracts from equal cell numbers were run and blotted side by side
under the same conditions, and pairs of membranes destined for IE1 or
GAPDH detection were processed together and exposed on the same
film. C) Multistep replication analysis of IE1-null mutant hCMV (TNdlIE1)
and the corresponding revertant virus (TNrvIE1) in doxycycline-treated
TetR and TetR-IE1 cells. Confluent cells were infected at an MOI of 0.01
PFU/cell, and viral replication was monitored at 3-day intervals by qPCR-
based relative quantification of hCMV DNA from culture supernatants.
Mean values and standard deviations of four independent infections
with two different clones per each virus strain are shown.
doi:10.1371/journal.ppat.1002016.g001

Table 1. Human genes with increased mRNA levels after IE1
induction.

Gene Maximum fold increase

24 h post induction 72 h post induction

ID Symbol IE1+/TetR+ IE1+/IE12 IE1+/TetR+ IE1+/IE12

8995 TNFSF18 9.0 2.6 12.6 4.8

7292 TNFSF4 6.2 2.1 6.5 2.5

3627 CXCL10 3.5 2.4 41.9 24.6

27063 ANKRD1 3.3 2.3 10.1 8.3

1906 EDN1 2.4 1.9 3.3 3.6

3620 IDO1 1.6 1.1 28.7 20.2

115361 GBP4 1.7 1.2 17.3 13.5

6373 CXCL11 1.4 1.1 13.3 10.5

115362 GBP5 1.1 1.0 7.5 7.0

10964 IFI44L 1.3 1.1 4.6 4.4

4283 CXCL9 1.3 1.0 4.5 4.2

29126 CD274 1.2 1.5 3.9 4.5

3122 HLA-DRA 1.2 1.1 3.4 3.5

2633 GBP1 1.5 1.2 3.1 2.7

3433 IFIT2 1.4 1.0 2.9 2.0

6356 CCL11 1.7 1.2 2.8 2.2

3280 HES1 1.7 1.3 2.6 2.2

56256 SERTAD4 1.4 1.1 2.6 2.0

2634 GBP2 21.1 21.1 2.5 3.9

1520 CTSS 1.0 1.0 2.5 2.2

3047 HBG1 1.2 1.0 2.4 2.1

3659 IRF1 1.2 1.3 2.3 2.5

6890 TAP1 1.2 1.1 2.3 2.1

83643 CCDC3 1.1 1.1 2.3 2.1

3437 IFIT3 21.1 1.9 2.1 2.1

IE1+, doxycycline-treated TetR-IE1 cells; TetR+, doxycycline-treated TetR cells;
IE12, non-induced TetR-IE1 cells.
doi:10.1371/journal.ppat.1002016.t001
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In fact, virtually all IE1-induced genes with assigned functions

have been implicated in adaptive or innate immune processes

including inflammation. Moreover, 7 (28%) of the 25 genes

encode known cytokines or other soluble mediators, namely the

chemokine (C-X-C motif) ligands CXCL9, CXCL10 and

CXCL11, the chemokine (C-C motif) ligand CCL11, endothelin

1 (encoded by EDN1), and the tumor necrosis factor (TNF)

superfamily members 4 (TNFSF4, also known as OX40 ligand)

and 18 (TNFSF18, also known as GITR ligand). This observation

is also illustrated by the fact that, according to GO, the most

significantly enriched ‘‘molecular function’’ terms in the IE1-

activated transcriptome are: ‘‘cytokine receptor binding’’, ‘‘cyto-

kine activity’’, ‘‘chemokine activity’’, ‘‘chemokine receptor bind-

ing’’, and ‘‘G-protein-coupled receptor binding’’ (Figure 2 B).

Furthermore, the top ‘‘cellular component’’ category is ‘‘extracel-

lular space’’ (Figure 2 C). For a more thorough assessment of

Figure 2. Predominant functional themes among IE1-activated genes. Cytoscape (http://www.cytoscape.org [219,220]) and the Biological
Networks Gene Ontology (BiNGO) plugin (http://www.psb.ugent.be/cbd/papers/BiNGO [221]) were used to map and visualize overrepresented terms
in the IE1-activated human transcriptome on the GO hierarchy. Spatial arrangement of nodes reflects grouping of categories by semantic similarity.
The node area is proportional to the number of genes in the reference set (‘‘GO Full’’, Homo sapiens) annotated to the corresponding GO term. The
yellow to orange node color indicates how significantly individual terms are overrepresented (p#0.01; hypergeometric test including Benjamini and
Hochberg False Discovery Rate correction [222]). White nodes are included to show the colored nodes in the context of the GO hierarchy and are not
significantly overrepresented. Black nodes represent the three GO domains: A) biological process, B) molecular function, and C) cellular component.
doi:10.1371/journal.ppat.1002016.g002

HCMV IE1 Elicits IFN-c-Like Response
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overrepresented GO terms among IE1-induced genes, see

Supporting Tables S1, S2 and S3.

Surprisingly, the genes induced by IE1 are generally associated

with stimulatory rather than inhibitory effects on immune function

including inflammation (Figure 2 A and Supporting Table S1). For

example, some of the gene products are involved in the proteolysis

(cathepsin S encoded by CTSS), intracellular transport (TAP1

transporter) or cell surface presentation (HLA-DRA) of antigens

(reviewed in [73]). The chemokines CXCL9, CXCL10, and

CXCL11 mediate leukocyte migration (see Discussion; reviewed in

[73,74,75]). CD274 (also known as PDL1), TNFSF4, and

TNFSF18 are co-stimulatory molecules which promote leukocyte

(including T and B lymphocyte) activation, proliferation and/or

survival (reviewed in [73,76,77,78,79]). Indoleamine 2,3-dioxy-

genase 1 (IDO1) and IRF1 have also been linked to T lymphocyte

regulation, but they have additional functions in innate immune

control of viral infection (reviewed in [73,80,81,82,83,84,85].

Likewise, GBP1 and murine GBP2 exhibit antiviral activity

[86,87,88,89].

Out of the 25 IE1-activated genes, 14 were selected for

validation by qRT-PCR. The selected genes were representative of

the entire range of expression kinetics and induction magnitudes

measured by microarray analysis. The PCR approach confirmed

expression of all tested genes typically reporting similar or larger

fold increases compared to the array data (Figure 3 A–B and

Figure 4 A). For example, in induced (72 h) versus non-induced

TetR-IE1 cells the CXCL10 mRNA was found to be increased

24.6-fold by array analysis (Table 1) and 68.0-fold by PCR

(Figure 3 A). Under the same conditions, the GBP4 transcript was

induced 13.5-fold by array analysis (Table 1) as compared to 19.1-

fold by PCR (Figure 3 A). The corresponding data for TAP1 were

2.1-fold (array analysis; Table 1) and 2.3-fold (PCR; Figure 3 A).

Largely concordant results regarding induction magnitudes

between array and PCR analyses were also obtained for CCDC3,

CCL11, HES1, SERTAD4, TNFSF4, and TNFSF18 (Figure 3 B)

as well as for CXCL9, CXCL11, IDO1, IFIT2, and IRF1

(Figure 4 A). In addition to the extent of gene activation, the

precise timing of induction was exemplary investigated for

CXCL10, GBP4 and TAP1 (Figure 3 A). A substantial increase

in mRNA production from all three genes was evident at 72 h

(and to a lesser extent at 48 h) but only minor effects were detected

between 6 h and 24 h post IE1 induction consistent with the array

data (Table 1). Tubulin-b (TUBB) gene expression, which is not

affected by IE1, served as a negative control for the PCR

experiments. Finally, the chemokines CXCL9 and CXCL11 were

exclusively detected in supernatants from TetR-IE1 but not TetR

cells (Figure 3 C). Moreover, the levels of CXCL10 protein were

drastically increased in TetR-IE1 compared to TetR cells. This

demonstrates that for these genes elevated mRNA levels also

translate into enhanced protein synthesis and secretion.

The fact that increased expression of all tested IE1-activated

genes was detectable with two or three alternative approaches

strongly suggests that essentially all genes identified within the

given experimental framework and data analysis settings are truly

differentially expressed upon induction of IE1. Moreover, the

activation of at least a subset of IE1-responsive genes appears to be

temporally coupled.

Most IE1-activated genes are ISGs normally controlled by
IFN-c

A plethora of past studies has established that immune

regulatory genes are preferential targets of IFN-based regulation

[28,29,30]. Intriguingly, at least 21 (84%) of the 25 IE1-activated

human genes identified by microarray analysis turned out to be

bona fide ISGs (Table 2) according to informations retrieved from

the Interferome database (http://www.interferome.org [90]) and

other sources including our own qRT-PCR analyses (Figure 4 A

and Supporting Table S4). Several of these ISGs cluster in certain

chromosomal locations (e.g., 1p22, 4q21, and 10q23-q25; Table 2)

apparently reflective of their co-regulation.

Figure 3. Confirmation of IE1-induced gene expression. A) TetR
and TetR-IE1 cells were treated with doxycycline for 0 to 72 h as
indicated. Relative mRNA expression levels were determined by qRT-
PCR with primers specific for the CXCL10, GBP4, TAP1, and TUBB genes.
Means and standard deviations of two replicates are shown in
comparison to uninduced TetR-IE1 cells (set to 1). B) TetR and TetR-
IE1 cells were treated with doxycycline for 72 h. Relative mRNA
expression levels were determined by qRT-PCR with primers specific for
the indicated genes. Means and standard deviations of two biological
and two technical replicates are shown in comparison to TetR cells (set
to 1). C) Quantification of the CXCR3 ligands CXCL9, CXCL10, and
CXCL11 in the supernatant of IE1 expressing cells. Growth-arrested TetR
and TetR-IE1 cells were treated with doxycycline for 72 h. The culture
medium was replaced by 0.5 volumes of doxycycline containing DMEM
with 0.1% BSA, and chemokine protein accumulation was determined
24 h later by quantitative sandwich enzyme immunoassay. Means and
standard deviations of two biological and two technical replicates are
shown.
doi:10.1371/journal.ppat.1002016.g003
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An initial assessment mainly based on the Interferome data

revealed that IE1-activated ISGs are normally induced by either

only IFN-c or by both type II and type I IFNs (Table 2). To

confirm this assignment and to further discriminate between type I

and type II ISGs, we treated TetR and TetR-IE1 cells with

exogenous IFN-a or IFN-c and analyzed the effects on mRNA

accumulation from a select subset of IE1-responsive ISGs. The

transcript levels of all tested ISGs, namely CXCL9–11, GBP4,

IDO1, IFIT2, IRF1, and TAP1 (Figure 4 A) as well as CCL11

(Supporting Table S4) were not only increased by IE1 expression

(TetR-IE1 relative to TetR cells) but also by IFN-c treatment of

TetR cells, although to varying degrees (,2 to .30,000-fold;

Figure 4 A). Notably, there was a significant positive correlation

(Pearson’s correlation coefficient = 0.81) between the magnitudes

of IE1- and IFN-c-mediated ISG induction. In contrast, the same

genes were substantially less susceptible (CXCL9–11, GBP4,

IDO1, and IFIT2) or entirely unresponsive (CCL11, IRF1, and

TAP1) to IFN-a (Figure 4 A), and there was no correlation

(Pearson’s correlation coefficient = 20.04) between IE1 and IFN-a
responsiveness. For comparison, three typical type I ISGs, the

genes encoding eukaryotic translation initiation factor 2a kinase 2

(EIF2AK2, also known as PKR), myxovirus (influenza virus)

resistance 1 (Mx1, also known as MxA), and 29,59-oligoadenylate

synthetase (OAS1), were strongly induced by IFN-a but barely by

IFN-c or IE1 (Figure 4 B). Although no obvious synergistic or

additive effects between IE1 expression and IFN-c treatment were

observed in these assays (Figure 4 A–B), IFN-a induction of type I

ISGs was severely compromised in TetR-IE1 as compared to

TetR cells (Figure 4 B). The latter observation is consistent with

our previous work which has demonstrated that IE1 blocks

STAT2-dependent signaling resulting in inhibition of type I ISG

activation [31,33].

Hence, it appears that expression of IE1 selectively activates a

subset of ISGs and ISG gene clusters which are primarily

responsive to IFN-c indicating that the viral protein elicits a type

II IFN-like transcriptional response.

IE1-mediated ISG activation is independent of IFNs
ISG activation typically requires synthesis, secretion and

receptor binding of IFNs (reviewed in [26,27,29,30]). IFN-a is

encoded by a multi-gene family and is mainly expressed in

leukocytes although some members are stimulated by IFN-b in

fibroblasts [91]. However, neither of 12 IFN-a (IFNA) and three

alternative type I IFN coding genes (IFNE, IFNK, and IFNW1

Figure 4. IE1 induces an IFN-c-like transcriptional response. TetR and TetR-IE1 cells were treated with doxycycline for 72 h and solvent (w/o),
IFN-a, or IFN-c for 24 h. Relative mRNA expression levels were determined by qRT-PCR with primers specific for a set of IE1-responsive genes (A),
typical type I IFN response genes and IE1 itself (B). Results were normalized to TUBB, and mean values with standard deviations from two biological
and two technical replicates are shown. ISG expression is shown in comparison to untreated TetR cells (set to 1). IE1 expression is presented relative
to untreated TetR-IE1 cells (set to 1).
doi:10.1371/journal.ppat.1002016.g004
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encoding IFN-e, IFN-k, and IFN-v, respectively) was noticeably

induced by IE1 as judged by our microarray results (Supporting

Table S5). In contrast to IFN-a, IFN-b is encoded by a single gene

(IFNB) and is produced by most cell types, especially by fibroblasts

(IFN-b is also known as ‘‘fibroblast IFN’’). However, previous

work has shown that IE1 expression does not induce transcription

from the IFN-b gene in fibroblasts [31,32,92]. Consistently, our

microarray data did not reveal appreciable differences in IFNB1

mRNA levels between TetR and TetR-IE1 cells (Supporting

Table S5). The single human IFN-c gene (IFNG) is expressed

upon stimulation of many immune cell types but not usually in

fibroblasts, and our microarray results indicate that IE1 does not

activate expression from this gene. Likewise, none of the known

type III IFN genes (IL28A, IL28B, and IL29 encoding IFN-l2/IL-

28A, IFN-l3/IL-28B, and IFN-l1/IL-29, respectively) was

significantly responsive to IE1 expression in this system (Support-

ing Table S5). For the IFN-b and IFN-c transcripts, these results

were confirmed by highly sensitive qRT-PCR from doxycycline-

treated TetR-IE1 and TetR cells. Levels of the two IFN mRNAs

did not significantly differ between TetR-IE1 and TetR cells at

any of ten post induction time points (0 h–96 h) under

investigation (Supporting Figure S1 and Supporting Table S6).

Thus, IE1 does not seem to induce expression from the IFN-c or

any other human IFN gene.

To further rule out the possibility that ISG activation is a result

of low level IFN production or secretion of any other soluble

mediator from IE1 expressing cells, culture supernatants from

TetR-IE1 cells induced with doxycycline for 24 h or 72 h were

transferred to MRC-5 cells. As expected, MRC-5 cells did not

undergo ISG induction 3 h to 72 h following media transfer (data

not shown). Furthermore, we set up a transwell system with TetR

cells in the top and TetR-IE1 cells in the bottom chamber

(Figure 5). Following addition of IFN-c to the lower chamber, we

observed substantially increased mRNA levels of three IE1-

responsive indicator ISGs (CXCL9, CXCL11, and GBP4) in both

TetR and TetR-IE1 cells (Figure 5 A). In contrast, addition of

doxycycline caused up-regulation of ISG mRNA levels in TetR-

IE1 but not TetR cells (Figure 5 B). These results indicate that ISG

induction is restricted to IE1 expressing cells and that a diffusible

factor is not sufficient to mediate gene activation by the viral

protein.

Finally, we performed experiments adding neutralizing anti-

bodies directed against IFN-b and IFN-c to the cell culture media

(Figure 6). ISG-specific qRT-PCRs from TetR cells treated with a

combination of antibodies and high doses of the respective

exogenous IFN confirmed that cytokine neutralization was both

highly effective and specific. At the same time, neither the IFN-b-

nor the IFN-c-specific neutralizing antibodies had any significant

negative effect on IE1-mediated ISG induction. These results

strongly support the view that ISG activation by IE1 is

independent of IFN-b, IFN-c, and likely other IFNs.

IE1-mediated ISG activation depends on STAT1 but not
STAT2

Homodimeric STAT1 complexes are the central intracellular

mediators of canonical IFN-c signaling (reviewed in

[26,27,28,29,30]). Interestingly, previous work has shown that

the IE1 protein interacts with both STAT1 and STAT2, although

STAT2 binding appeared to be more efficient [31,32,33,39].

STAT2 has also been implicated in certain IFN-c responses

([93,94]; reviewed in [95]), although some (hCMV-mediated)

activation of ISG transcription appears to occur entirely

independent of STAT proteins ([96]; reviewed in [26,27]).

To investigate whether ISG activation by IE1 requires the

presence of STAT1 and/or STAT2, we employed siRNA-based

gene silencing individually targeting the two STAT transcripts.

Following transfection of MRC-5, TetR and/or TetR-IE1 cells

Table 2. Genomic location and IFN responsiveness of IE1-
induced human genes.

Gene IFN-responsive

Symbol Locus Yes/No Type Reference

IFI44L 1p31.1 Yes I, II, III Interferome1

GBP1 1p22.2 Yes I, II, III Interferome

GBP2 1p22.2 Yes I, II Interferome

GBP4 1p22.2 Yes I, II Interferome

II Figure 4 A

GBP5 1p22.2 Yes I, III Interferome

II [223]

CTSS 1q21 Yes I Interferome

II [148]

TNFSF18 1q23 Yes II Interferome

22 Supporting Table S4

TNFSF4 1q25 No 2 Interferome

22 Supporting Table S4

SERTAD4 1q32.1-q41 No 2 Interferome

2 Supporting Table S4

HES1 3q28-29 Yes 2 Interferome

II Supporting Table S4

CXCL9 4q21 Yes I, II Interferome

I, II Figure 4 A

CXCL10 4q21 Yes II Interferome

I, II Figure 4 A

CXCL11 4q21.2 Yes I, II Interferome

I, II Figure 4 A

IRF1 5q31.1 Yes I, II, III Interferome

II Figure 4 A

EDN1 6p24.1 Yes II Interferome

HLA-DRA 6p21.3 Yes I, II Interferome

TAP1 6p21.3 Yes I, II, III Interferome

II Figure 4 A

IDO1 8p12-11 Yes I, II Interferome

I, II Figure 4 A

CD274 9p24 Yes II Interferome

CCDC3 10p13 No 2 Interferome

2 Supporting Table S4

IFIT2 10q23-q25 Yes I, II, III Interferome

I, II Figure 4 A

IFIT3 10q24 Yes I, II, III Interferome

ANKRD1 10q23.31 Yes I, II Interferome

HBG1 11p15.5 No 2 Interferome

2 Supporting Table S4

CCL11 17q21.1-21.2 Yes 2 Interferome

II Supporting Table S4

1[90].
2Marginally ($1,5-fold) induced by IFN-a and/or IFN-c (Supporting Table S4).
doi:10.1371/journal.ppat.1002016.t002
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with two different siRNA duplexes each for STAT1 and STAT2,

we monitored endogenous STAT expression by immunoblotting

(Figure 7 A) and qRT-PCR (Figure 7 B). An estimated $80%

selective reduction in STAT1 and STAT2 protein accumulation

was observed 2 days following siRNA transfection, and even after

5 days significantly lower protein levels were detected compared to

cells transfected with a non-specific control siRNA (Figure 7 A).

The knock-down of STAT1 and STAT2 was also evident at the

level of mRNA accumulation (86 to 95% for STAT1 and 51 to

95% for STAT2 at day 5 post transfection; Figure 7 B). The

knock-down specificity was verified by confirming that STAT1

siRNAs do not significantly reduce STAT2 mRNA levels and vice

versa. Moreover, none of the STAT-directed siRNAs had any

appreciable effect on IE1 expression (Figure 7 B). Again,

expression from the CXCL10 and GBP4 genes was strongly up-

regulated in doxycycline-treated TetR-IE1 versus TetR cells.

However, STAT1 knock-down caused the CXCL10 and GBP4

genes to become almost entirely resistant to IE1-mediated

activation in induced TetR-IE1 cells. In contrast, depletion of

STAT2 had no negative effect on IE1-dependent ISG induction

(Figure 7 B) although it diminished basal and IFN-a-induced type

I ISG (OAS1) expression (Supporting Figure S2). These results

demonstrate that STAT1, but not STAT2, is an essential mediator

of the cellular transcriptional response to IE1 expression and

suggest that the viral protein might mediate ISG activation via

activation of JAK-STAT signaling.

IE1-mediated ISG activation requires STAT1 tyrosine
phosphorylation

The activation-inactivation cycle of STAT transcription factors

entails their transition between different dimer conformations.

Unphosphorylated STATs can dimerize in an anti-parallel

conformation, whereas tyrosine (Y701) phosphorylation triggers

transition to a parallel dimer conformation resulting in increased

DNA binding and nuclear retention of STAT1 (reviewed in

[29,30,97]). In addition, serine (S727) phosphorylation is required

for the full transcriptional and biological activity of STAT1 [98].

In order to investigate whether IE1 promotes STAT1 activation,

we compared the levels of Y701- and S727-phosphorylated

STAT1 in doxycyline-induced TetR and TetR-IE1 cells

(Figure 8 A). Total STAT1 steady-state protein levels were very

similar in TetR and TetR-IE1 cells. In contrast, Y701-phosphor-

ylated forms of STAT1 were only detectable in the presence of IE1

unless cells were treated with IFN-c. In addition, IE1 was almost

as efficient as IFN-c in inducing STAT1 S727 phosphorylation.

These results strongly suggest that IE1 expression triggers the

formation of Y701- and S727-phosphorylated, transcriptionally

fully active STAT1 dimers.

To examine whether STAT1 Y701 and/or S727 phosphory-

lation is an essential step in IE1-mediated ISG activation, we set

up a ‘‘knock-down/knock-in’’ system designed to study mutant

STAT1 proteins in a context of diminished endogenous wild-type

protein levels. We constructed an ‘‘siRNA-resistant’’ STAT1

coding sequence, termed STAT1*, containing two silent nucleo-

tide exchanges in the sequence corresponding to siRNA STAT1

#146 (Figure 7 A). The STAT1* sequence was used as a substrate

for further mutagenesis to generate siRNA-resistant constructs

encoding mutant STAT1 proteins with conservative amino acid

substitutions that preclude tyrosine or serine phosphorylation (Y701F

or S727A, respectively; reviewed in [99,100]). A retroviral gene

transfer system based on vector pLHCX was utilized to efficiently

express the different STAT1 proteins in TetR-IE1 cells. All STAT1

variants (STAT1*, STAT1*Y701F, and STAT1*S727A) were

overexpressed to levels undiscernible from the wild-type protein

Figure 5. ISG induction is limited to IE1 expressing cells. TetR and TetR-IE1 cells were placed in the upper and lower chambers, respectively, of
transwell dishes. Cells were growth-arrested and then treated in one of two ways. A) TetR-IE1 cells in the bottom chambers were treated with IFN-c
for 24 h or were left untreated (w/o). B) TetR cells in the upper and TetR-IE1 cells in the lower chambers were treated with doxycycline (Doxy) for 72 h
or were left untreated (w/o). RNA was prepared from each compartment and analyzed by qRT-PCR with primers for the CXCL9, CXCL11, GBP4, and IE1
genes. Results were normalized to TUBB and mean values with standard deviations from two biological and two technical replicates are shown in
comparison to untreated TetR-IE1 cells (set to 1).
doi:10.1371/journal.ppat.1002016.g005
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and mRNA (Figure 8 B–C). In comparison to transfections with a

non-specific control siRNA (#149), siRNA #146 severely reduced

the levels of endogenous and overexpressed wild-type STAT1

without negatively affecting expression of the siRNA-resistant

STAT1 variants or IE1 (Figure 8 B–C). As expected, the Y701F

and S727A mutant STAT1 proteins did not undergo tyrosine or

serine phosphorylation, respectively, upon stimulation by IFN-c.

Interestingly, while the S727A protein could still be tyrosine-

phosphorylated, the Y701F mutant was defective for both tyrosine

and serine phosphorylation (Figure 8 B). This observation is in

agreement with previous findings showing that IFN-c-dependent

S727 phosphorylation occurs exclusively on Y701-phosphorylated

STAT1 [101]. Ectopic expression of wild-type STAT1, STAT1*,

and STAT1*S727A but not STAT1*Y701F in addition to the

endogenous protein enhanced IE1-mediated activation of CXCL10

and GBP4 transcription. Conversely, siRNA-mediated depletion of

endogenous STAT1 strongly reduced this response. Importantly,

expression of STAT1* in cells depleted of endogenous STAT1

rescued ISG induction by IE1 almost completely. STAT1*S727A

expression also compensated for the lack of endogenous STAT1,

although slightly less efficiently compared to STAT1*, whereas

STAT1*Y701F was unable to rescue IE1-mediated ISG activation

(Figure 8 C).

Thus, although IE1 appears to trigger phosphorylation of

STAT1 at both Y701 and S727, only the former modification is

required for ISG activation. Nonetheless, STAT1 S727 phosphor-

ylation may augment IE1-dependent gene activation.

IE1 facilitates STAT1 nuclear accumulation and promoter
binding

Y701 phosphorylation usually causes a cytoplasmic to nuclear

shift in steady-state localization and efficient sequence-specific

DNA binding of STAT1 dimers (reviewed in [29,30,97]).

Accordingly, immunofluorescence microscopy revealed that the

presence of IE1 strongly promotes nuclear accumulation of

STAT1, very similar to what was observed following addition of

IFN-c (Figure 9 A). In contrast, significant amounts of nuclear

STAT2 were only detected after treatment of cells with IFN-a but

not upon IE1 expression. These results were confirmed by nucleo-

cytoplasmic cell fractionation (Figure 9 B). In these assays, IE1

induction for 72 h was as efficient in promoting STAT1 nuclear

accumulation as treatment with type I or type II IFNs for 1 h. IFN

treatment also strongly induced the nuclear accumulation of

STAT2. However, the levels of nuclear STAT2 increased only

marginally upon expression of IE1.

Finally, we asked whether IE1 may direct STAT1 to promoters

of type II ISGs. Chromatin immunoprecipitation (ChIP) analyses

demonstrated that the viral protein potentiates the recruitment of

STAT1 to certain IFN-c- and IE1-responsive ISG promoters (e.g.,

TAP1) but not to promoters of several non-ISGs (e.g., GAPDH;

Figure 10 A). Moreover, there was a positive correlation between

the magnitude of STAT1 chromatin association induced by IE1

and IFN-c. At the same time, IE1 had no effect on association of

STAT2 with these promoters (Figure 10 B). These results are in

agreement with the fact that a previous global ChIP-sequencing

study has experimentally demonstrated STAT1 association with

14 (56%) out of the 25 IE1-responsive gene promoters identified in

this study ([102] and Supporting Table S7). In addition, 22 (88%)

of these promoter sequences (all except EDN1, HBG1, and HLA-

DRA) carry one or more (up to six) predicted STAT1b binding

sites (GAS elements) according to the PROMO tool (version 3.0.2,

default settings with 15% maximum matrix dissimilarity rate,

http://alggen.lsi.upc.es), which predicts transcription factor bind-

ing sites as defined by position weight matrices derived from the

TRANSFAC (version 8.3) database [103,104]. Similar results were

obtained with other in silico promoter analysis tools (data not

shown).

Based on these findings we propose that IE1 activates a subset of

ISGs at least in part through increasing the nuclear concentration

and sequence-specific DNA binding of phosphorylated STAT1

thereby modulating host gene expression in an unanticipated

fashion.

Discussion

The transcriptional transactivation capacity of the hCMV MIE

proteins has been recognized for decades ([72]; reviewed in

[2,40,41]). For example, it has long been established that the 72-

kDa IE1 protein can stimulate transcription from its own

promoter-enhancer [36,105,106]. IE1 also activates at least a

subset of hCMV early promoters therein collaborating with the

viral 86-kDa IE2 protein [34,35,53,71,72,107,108,109]. Further-

more, IE1 or combinations of IE1 and IE2 can stimulate

expression from a variety of non-hCMV promoters. In fact,

numerous heterologous viral and cellular promoters are responsive

to IE1 or combinations of IE1 and IE2 [50,51,52,57,60,61,71,72,

110,111,112,113,114,115,116,117]. IE1 may accomplish tran-

scriptional activation via interactions with a diverse set of cellular

transcription regulatory proteins thereby acting through multiple

Figure 6. Presence of IFN-b- and IFN-c-neutralizing antibodies
does not impair ISG induction by IE1. TetR and TetR-IE1 cells were
treated with doxycycline for 72 h and with solvent (w/o), IFN-b or IFN-c
for 24 h. Doxycycline and IFN treatment was performed in the
continuous presence of normal goat immunoglobulin G (IgG), goat
anti-IFN-b or goat anti-IFN-c antibodies. Relative mRNA expression
levels were determined by qRT-PCR with primers specific for the
CXCL10, CXCL11, GBP4, and IE1 genes. Results were normalized to TUBB
and mean values with standard deviations from two biological and two
technical replicates are shown. Expression is shown in comparison to
normal IgG-treated cells (set to 1).
doi:10.1371/journal.ppat.1002016.g006
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DNA elements [50,51,52,54,55,56,57,58,59,105,106,109,110,111,

112,113,117,118,119,120,121,122,123,124,125,126] as well as

epigenetic mechanisms including histone acetylation [53,59,127].

More recently, IE1 has also been implicated in transcriptional

repression [31,32,33,57,62,63,64]. Our own work ([31] and this

study, Figure 4 B) and a report by Huh et al. (2008) has

demonstrated that IE1 can inhibit the hCMV- or IFN-a/b-

dependent activation of human ISGs including ISG54, MxA,

PKR, and CXCL10. The mechanism of inhibition appears to

involve physical interactions of IE1 with the cellular STAT1 and

STAT2 proteins that result in diminished DNA binding of the

ternary ISGF3 complex to promoters of type I ISGs ultimately

interfering with transcriptional activation [31,32,33]. Despite this

plethora of studies, our understanding of the true transcriptional

regulatory capacity of IE1 is still limited. This is mainly due to the

fact that IE1-regulated transcription has almost exclusively been

studied at the single gene level. Moreover, much of the past work

has relied on transfection-based promoter-reporter assays, and

Figure 7. ISG induction by IE1 is dependent on STAT1 but not STAT2. A) Specific reduction in STAT1 (left) and STAT2 (right) protein levels by
siRNA-mediated gene silencing. MRC-5 cells were transfected with the indicated siRNA duplexes. Two and five days post transfection, whole cell
protein extracts were prepared and subjected to immunoblotting with anti-STAT1a, anti-STAT2, and anti-GAPDH antibodies. B) STAT1 (left) but not
STAT2 (right) knock-down abolishes IE1-mediated ISG induction. TetR and TetR-IE1 cells were transfected with the indicated siRNA duplexes. Two
days post transfection, cells were treated with doxycycline for 72 h. Relative mRNA expression levels were determined by qRT-PCR with primers
specific for the CXCL10, GBP4, IE1, STAT1, and STAT2 genes. Results were normalized to TUBB and mean values with standard deviations from two
biological and two technical replicates are shown. CXCL10, GBP4, STAT1, and STAT2 expression is shown in comparison to control siRNA-transfected
TetR cells (set to 1). IE1 expression is presented relative to control siRNA-transfected TetR-IE1 cells (set to 1).
doi:10.1371/journal.ppat.1002016.g007
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IE1-dependent up- or down-regulation of only very few endog-

enous human genes has been demonstrated so far.

The present work constitutes the first systematic analysis of IE1-

specific changes to transcription from the human genome.

Importantly, to minimize cellular compensatory effects and to

closely mimic the situation during hCMV infection, all experiments

were based on short-term (up to 72 h) induction of IE1 expression

from its autologous promoter (Figure 1 A–B). Just over 0.1% (25 out

of 28,869) of all human transcripts under examination were found to

be significantly up-regulated by IE1 under stringent analysis

conditions (Table 1). This figure may be unexpected in the light

of the reported interactions of IE1 with several ubiquitous

transcription factors and its reputation as a ‘‘promiscuous’’

transactivator. However, rather than causing a broad transcrip-

tional host response, IE1-specific gene activation was largely

restricted to a subset of ISGs that are primarily responsive to

IFN-c (Table 2, Figure 4 and Supporting Table S4). Thus, IE1

appears to activate certain ISGs (typically type II ISGs) while

simultaneously inhibiting the activation of other ISGs (typically type

I ISGs). Importantly, more than half (at least 14 out of the 25) IE1-

activated genes identified in this study were previously shown to be

induced during hCMV infection of fibroblasts and/or other human

cell types (Table 3). This strongly suggests that many if not all IE1-

specific transcriptional changes observed in our expression model

may be relevant to viral infection. On the other hand, our

preliminary results indicate that the conditional replication defect of

IE1 knock-out viruses in human fibroblasts [35,36] may not result

from an inability to initiate an IFN-c-like response (data not shown).

In fact, additional viral gene products are known or expected to

contribute to ISG activation during hCMV infection (reviewed in

[26,27]) and may compensate for IE1 in this respect, at least during

productive infection of fibroblasts.

In addition to being distinctively responsive to IFN-c, most IE1-

activated genes appear to share similar kinetics of induction

Figure 8. ISG induction by IE1 depends on STAT1 tyrosine phosphorylation. A) IE1 expression leads to increased steady-state levels of
Y701- and S727-phosphorylated STAT1. TetR and TetR-IE1 cells were treated for 72 h with doxycycline and for 1 h with solvent (–) or IFN-c. Whole cell
protein extracts were prepared and subjected to immunoblotting with anti-STAT1, anti-pSTAT1 (Y701), anti-pSTAT1 (S727), anti-GAPDH, and anti-IE1
antibodies. B) Verification of knock-down resistance and phosphorylation deficiency of STAT1 variants. TetR-IE1 cells without (–) and with stable
expression of ectopic wild-type STAT1 (STAT1), siRNA-resistant wild-type STAT1 (STAT1*), and siRNA-resistant phosphorylation-deficient STAT1
(STAT1*Y701F and STAT1*S727A) were transfected with negative control (#149) or STAT1-specific (#146) siRNA duplexes. Two days post transfection
cells were treated for 1 h with IFN-c. Whole cell protein extracts were prepared and subjected to immunoblotting with anti-STAT1, anti-pSTAT1
(Y701), anti-pSTAT1 (S727), and anti-GAPDH antibodies. C) Ectopic wild-type STAT1 but not phosphorylation-deficient STAT1 mutants efficiently
rescue IE1-dependent ISG induction in cells depleted of endogenous STAT1. TetR-IE1 cells without (–) and with stable expression of the indicated
ectopic STAT1s were transfected with control (#149) or STAT1-specific (#146) siRNA duplexes. Two days post transfection cells were treated for 72 h
with doxycycline. Relative mRNA expression levels were determined by qRT-PCR with primers specific for the CXCL10, GBP4, IE1, and STAT1 genes.
Results were normalized to TUBB and mean values with standard deviations from two biological and two technical replicates are shown. Expression is
shown in comparison to control siRNA-transfected TetR-IE1 cells without ectopic STAT1 expression (set to 1).
doi:10.1371/journal.ppat.1002016.g008
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(Table 1 and Figure 3), and many cluster in certain genomic

locations (Table 2) suggesting a common underlying mechanism of

activation. Specific siRNA-mediated STAT1 (but not STAT2)

knock-down inhibited IE1-dependent activation of several target

ISGs almost completely (Figure 7 A). Conversely, STAT1

overexpression proved to enhance ISG activation in IE1

expressing cells (Figure 8 C). Moreover, defective IE1-activated

ISG transcription in cells depleted of endogenous STAT1 was

efficiently rescued by ectopic STAT1 expression (Figure 8 C).

These results demonstrate that the STAT1 protein is a critical

mediator of the cellular transcriptional response to IE1. Moreover,

this response appears to strictly depend on the Y701-phosphor-

ylated form of STAT1 which is induced by IE1 expression

(Figure 8). Although recent work has shown that some STAT1

functions are executed by the non-phosphorylated protein

(reviewed in [97,99,100]), it is the Y701-phosphorylated form that

preferentially accumulates in the nucleus and binds to DNA with

high affinity (reviewed in [29,30]) providing a mechanism for IE1-

dependent ISG activation. IE1 also induces S727 phosphorylation

of STAT1 (Figure 8 A), but this modification is dispensable merely

serving an augmenting function in ISG activation triggered by the

viral protein (Figure 8 C). Phosphorylation of S727 is thought to be

required for the full transcriptional activity of STAT1 by

recruiting histone acetyltransferase activity [98,128,129]. Interest-

ingly, the hCMV IE1 protein can promote histone acetylation [53]

suggesting it might compensate for S727 phosphorylation by

binding to DNA-associated STAT1.

Our prior work has shown that IE1 physically interacts with

STAT1 during hCMV infection and in vitro, and the two proteins

co-localize in the nuclei of transfected cells treated with IFN-a
[31]. The results of Figure 9 extend these observations by

demonstrating that the viral protein facilitates nuclear accumula-

tion and DNA binding of STAT1 in the absence of IFNs. The

STATs were initially described as cytoplasmic proteins that enter

the nucleus only in the presence of cytokines. However, it has now

been established that STATs constantly shuttle between nucleus

Figure 9. IE1 expression leads to nuclear accumulation of STAT1. A) TetR and TetR-IE1 cells were treated with doxycycline for 72 h. Where
indicated, TetR cells were incubated in the presence of IFN-c or IFN-a for 1 h before samples were fixed with paraformaldehyde and examined by
indirect immunofluorescence coupled to confocal microscopy. Samples were simultaneously reacted with rabbit polyclonal antibodies against STAT1
(left) or STAT2 (right) and a mouse monoclonal antibody against IE1, followed by incubation with a rabbit-specific Alexa Fluor 546 conjugate and a
mouse-specific Alexa Fluor 633 conjugate. TetRnlsEGFP (TetR) fluorescence is shown to visualize nuclei. Additionally, merge images of STAT, IE1, and
TetR signals are presented. Scale bar, 10 mm. B) TetR-IE1 cells were treated with doxycycline for 0 h, 24 h, or 72 h. Cytoplasmic and nuclear extracts
were prepared and subjected to immunoblotting with anti-STAT1, anti-STAT2, anti-GAPDH, anti-H2A, and anti-IE1 antibodies. For the right panel,
TetR-IE1 cells were treated with IFN-a or IFN-c for 1 h before fractionation.
doi:10.1371/journal.ppat.1002016.g009
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and cytoplasm irrespective of cytokine stimulation (reviewed in

[97,130,131]). Thus, complex formation between nuclear resident

IE1 and STAT1 passing through the nucleus may be sufficient to

impair STAT1 export to the cytoplasm resulting in nuclear

retention and increased DNA binding of the cellular protein. In

this scenario, IE1 may increase the levels of Y701-phosphorylated

STAT1 by interfering with nuclear dephosphorylation of the

cellular protein. In fact, DNA binding was shown to protect

STAT1 from dephosphorylation, which normally occurs at a step

preceding export to the cytoplasm [132,133]. This one-step

‘‘nuclear shortcut’’ model assumes that small amounts of Y701-

phosphorylated STAT1 enter the nucleus in the absence of IFNs

and any potential IE1-induced mediators of STAT1 activation.

Conceivably, human fibroblasts (TetR cells) may constitutively

release small amounts of soluble inducers (e.g., certain growth

factors; see below) that maintain residual levels of activated

STAT1 undetectable by immunoblotting (Figure 8 A). Moreover,

we cannot rule out that the fetal calf serum used for cell culture

media may contain factors causing a limited number of STAT1

molecules to undergo Y701 phosphorylation. In contrast,

increased S727 phosphorylation in the presence of IE1 may result

from higher levels of DNA-targeted STAT1, as this modification is

preferentially or exclusively incorporated into the nuclear

chromatin-associated cellular protein, at least during the normal

IFN-c response [101].

Alternatively, IE1 may actively induce STAT1 Y701 phosphor-

ylation thereby promoting nuclear import of STAT1 dimers. This

phosphorylation event is typically mediated by cytoplasmic JAK

family kinases upon ligand-mediated activation of IFN receptors.

However, our results demonstrate that IE1 does not induce the

expression of human IFN genes, and we found no evidence for

IFN-c or IFN-b secretion from IE1 expressing cells (Supporting

Table S5, Figure 6 and data not shown). Moreover, our transwell

and media transfer experiments indicate that cytokines or other

soluble mediators that may constitute a hypothetical IE1

‘‘secretome’’ are not sufficient to stimulate ISG expression

(Figure 5 and data not shown). However, this does not rule out

the possibility that IE1 may cooperate with one or more soluble

factors to trigger the observed transcriptional response. In fact,

80% of all IE1 target genes were not found activated within the

first 24 h after induction of IE1 expression despite the fact that the

viral protein had reached almost peak levels by this time (Figure 1

B and Table 1). Instead, up-regulation typically started at 48 h and

increased until at least 72 h following IE1 expression (Table 1 and

Figure 3 A). This timing of induction is compatible with a two-step

model in which IE1 first initiates de novo synthesis and secretion of

an unidentified cellular gene product required to trigger STAT1

Y701 phosphorylation (step 1). Besides IFNs, STAT1 signaling can

be induced by several interleukins (e.g., IL-6) some of which are

known to be up-regulated by IE1 [58,60,61,110]. However,

STAT1 Y701 phosphorylation can also occur independently of

cytokines (reviewed in [134]). In fact, growth factors including the

epidermal growth factor and certain hormones are also able to

induce STAT1 Y701 phosphorylation [135,136,137,138,139]. In

addition, tumor necrosis factor (TNF) has been shown to signal

through activated STAT1 [140] raising the intriguing possibility

that the soluble protein products of TNFSF4 and/or TNFSF18,

two TNF family members belonging to the few genes already

activated by 24 h following IE1 induction (Table 1), may be

involved in IE1-mediated Y701 phosphorylation of STAT1.

However, activation of one or more of these IFN-independent

pathways may not produce enough activated nuclear STAT1 to

trigger efficient ISG expression and may therefore be required but

not sufficient for IE1-mediated gene induction. In accordance with

this possibility, the levels of Y701-phosphorylated STAT1 were

much higher in IFN-c-treated as compared to IE1 expressing cells

(Figure 8 A). Thus, on top of low level Y701 phosphorylation, IE1-

dependent nuclear retention of STAT1 through complex

formation between the viral and cellular protein (as outlined for

the one-step model; see above) may be necessary in order to elicit a

significant transcriptional response (step 2).

Although activated STAT1 is clearly a key mediator of IE1-

dependent ISG induction, additional factors may be involved. In

fact, not all known STAT1-activated human genes seem to be

included in the IE1-specific transcriptome implying that additional

gene products likely contribute to target specificity. One of the

candidate co-factors that has been repeatedly linked to IE1

function is NFkB. In fact, IE1 was shown to activate the NFkB

Figure 10. IE1 increases STAT1 occupancy at ISG promoters. TetR and TetR-IE1 cells were treated with doxycycline for 72 h. During the last
30 min of doxycycline treatment TetR cells were incubated in the presence of solvent, IFN-c or IFN-a. ChIP assays were carried out with polyclonal
rabbit antibodies against STAT1 (A) or STAT2 (B). The fraction of immunoprecipitated DNA relative to input DNA was determined by qPCR with
primers specific for the non-ISGs GAPDH (white circles), ribosomal protein L30 (RPL30) (black circles), and TUBB (gray circles) as well as for the ISGs
GBP4 (white squares), CXCL9 (black squares), TAP1 (gray squares), IFIT2 (white triangles), and OAS1 (black triangles). Mean values of two technical
replicates from TetR-IE1 cells (IE1) and from IFN-c- or IFN-a-treated TetR cells are presented relative to solvent-treated TetR cells (set to 1). Results
from five (A) or two (B) independent experiments are shown.
doi:10.1371/journal.ppat.1002016.g010
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p65 (RelA) and RelB promoters [55,112,113,121], to facilitate

expression of the NFkB RelB subunit and/or NFkB post-

translational activation [58,113,119,121], and to activate transcrip-

tion through NFkB binding sites [58,105,106,113,119,126]. At the

same time, NFkB has been implicated in IFN-c-induced activation

of a subset of ISGs including CXCL10 and GBP2 ([141,142,143,

144,145]; reviewed in [146,147]). However, we did not observe

nuclear translocation of NFkB following induction of IE1 in TetR-

IE1 cells. Moreover, siRNA-mediated knock-down of NFkB p65

had no significant impact on IE1-activated CXCL10 and GBP4

expression in these cells (data not shown). These observations

indicate that the transcriptional response to IE1 is largely

independent of NFkB, at least within our experimental setup.

IRF1 is another transcription factor that contributes to the

activation of certain ISGs including CTSS, GBP2, and TAP1

([128,148,149,150]; reviewed in [80,81,82]). IRF1 might enhance

IE1-mediated ISG activation, especially since its mRNA is up-

regulated by expression of the viral protein (Table 1 and Figure 4 A).

A key feature of the IE1 protein appears to be its ability to target

to and disrupt subnuclear multi-protein structures known as PML

bodies or ND10 during the early phase of hCMV infection and

upon ectopic expression [42,43,44]. The mechanism of IE1-

dependent ND10 disruption most likely involves binding to the

PML protein, a major constituent of ND10 [54]. We have not

specifically investigated the role of PML in IE1-mediated gene

induction. Nonetheless, our results are compatible with the

possibility that ND10 disruption is required for the transcriptional

response to IE1 since the nuclear structures were confirmed to be

disintegrated at both post-induction time points (24 h and 72 h) of

our microarray analysis (data not shown). Although the exact

function of ND10 remains unclear, the structures have been

implicated in a variety of processes including inflammation [151]

and anti-viral defense (reviewed in [45,46,47,48]). Besides a

proposed role of ND10 in viral gene expression, they may also

function in transcriptional regulation of certain cellular genes.

Several examples of selective associations between ND10 and

genes or chromosomal loci, especially regions of high transcription

activity and/or gene density, have been reported (reviewed in

[152]). For example, immunofluorescent in situ hybridization

analyses demonstrated that the major histocompatibility (MHC)

class I gene cluster on chromosome 6 (6p21) is non-randomly

associated with ND10 in human fibroblasts [153]. Transcriptional

activation in the presence of IFN-c correlates with the relocaliza-

tion of this locus to the exterior of the chromosome 6 territory in a

process that appears to involve DNA binding of Y701-phosphor-

ylated STAT1, changes in chromatin loop architecture, and

histone hyperacetylation [154,155,156]. Interestingly, many IE1-

activated genes cluster in certain genomic locations (Table 2). This

includes the HLA-DRA and TAP1 genes located within the

ND10-associated MHC locus at 6p21. Together these observa-

tions raise the intriguing possibility that, through a combination of

PML disruption and STAT1 activation, IE1 might cause higher

order chromatin remodeling of entire chromosomal loci resulting

in transcriptional activation.

One of the most surprising findings of the present study

concerns the fact that most IE1-induced cellular genes are

generally associated with stimulatory rather than inhibitory effects

on immune function and inflammation (Table 1, Figure 2 and

Supporting Tables S1, S2). It has been proposed that certain

inflammatory and innate defense mechanisms launched by the

host to limit hCMV replication may actually facilitate viral

dissemination, for example by increasing target cell availability

and/or by creating an environment conducive to virus reactivation

(coined ‘‘no pain, no gain’’ by Mocarski [157]). Thus, it is plausible

that hCMV not just attenuates host immunity through the

numerous immune evasion mechanisms ascribed to this virus

(reviewed in [158]), but rather aims at counterbalancing the effects

of the innate and inflammatory response in restricting and

facilitating viral replication. This strategy may be crucial in

allowing for what has been termed ‘‘mutually assured survival’’ of

both virus and host [159].

The functional group of IE1-induced pro-inflammatory proteins

potentially involved in viral target cell recruitment is best

represented by the chemokines CXCL9, CXCL10, and CXCL11.

All three proteins are not only induced by IE1 (Table 1 and

Figures 3–7) but also during hCMV infection of various cell types,

and they represent major constituents of the viral secretome

([4,18,24,160,161,162,163,164,165] and Table 3). By binding to a

common receptor, termed CXCR3, the three chemokines have

the ability to attract subsets of circulating leukocytes to sites of

infection and/or inflammation (reviewed in [74,75]). Although

CXCR3 is preferentially expressed on activated T helper 1 cells,

the receptor protein is also present on many other cell types

including CD34+ hematopoietic progenitors [166] which are

preferential sites of hCMV latency [167,168,169,170,171,172].

Table 3. IE1-activated human genes shown to be induced
during hCMV infection.

Gene
symbol mRNA1 Protein2 References

IFI44L + 2 [162]

GBP1 + 2 [12,18,161,224]

GBP2 + 2 [13,15,18,161,224]

GBP4 + 2 This work3

GBP5 2 2

CTSS + + [4,24]

TNFSF18 2 2

TNFSF4 2 2

SERTAD4 2 2

HES1 + 2 [18]

CXCL9 + + [161,165] and this work3

CXCL10 + + [4,18,24,160,161,162,163,164] and this work3

CXCL11 + + [4,18,161,162] and this work3

IRF1 + 2 [12,15,16,17,18,162]

EDN1 2 2

HLA-DRA + 2 [14]

TAP1 + 2 [14,18,162]

IDO1 + 2 [15,18,161] and this work3

CD274 2 2

CCDC3 2 2

IFIT2 + 2 [12,15,16,18,96,161,162,194,225,226,227,228]

IFIT3 + 2 [15,162,194,224,228]

ANKRD1 2 2

HBG1 2 2

CCL11 2 2

1Up-regulated at the level of mRNA accumulation.
2Up-regulated at the level of protein accumulation and/or secretion.
3Up-regulated at mRNA level by TNwt infection of MRC-5 cells (data not shown).
+ = reported to be up-regulated by hCMV; 2 = not reported to be up-regulated
by hCMV.
doi:10.1371/journal.ppat.1002016.t003
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CXCR3 and its ligands have been implicated in a large variety of

inflammatory and immune disorders (reviewed in [74,75]). For

example, cells expressing CXCR3 are found at high numbers in

biopsies taken from patients experiencing organ transplant

dysfunction and/or rejection [173,174,175,176,177,178,179,

180,181]. Moreover, CXCL9 [175,176,177,179,180], CXCL10

[173,174,175,176,177,179,180], and CXCL11 [175,176,177,178,

179,180,181] mRNA and protein levels are increased in tissues of

organs undergoing rejection. Importantly, the levels of CXCR3-

positive cells and CXCR3 ligand mRNA in the biopsy samples

frequently correlate with the grade of graft rejection [174,176,

177,178,180] suggesting a causative role of this pathway. Up-

regulation of CXCL10 and other chemokines also correlated with

transplant vascular sclerosis and chronic rejection in an rCMV

cardiac allograft infection model [4,182,183]. In addition to

CXCL9, CXCL10, and CXCL11, IE1 also up-regulates expres-

sion of CCL11 (Table 1), another CXCR3-interacting chemokine

[184]. Through activation of the CXCR3 axis, IE1 might

contribute to hCMV dissemination and pathogenesis in unex-

pected ways.

The IE1 protein has long been suspected to be a key player in

the events leading to reactivation from hCMV latency although

this view has recently been challenged by functional analysis of the

mCMV and rCMV IE1 orthologs in mouse and rat models of

infection, respectively [37,185]. Nonetheless, inflammatory (in-

cluding allogeneic) immune responses are believed to be efficient

stimuli for hCMV reactivation. In fact, stimulation of latently

infected monocytes or myeloid progenitor cells with pro-

inflammatory cytokines including IFN-c can reactivate viral

replication ([186,187,188,189]; reviewed in [190,191,192]). IFN-

c may aid hCMV reactivation by affecting cellular differentiation

([193]; reviewed in [28,190,191,192]) and/or by activating

transcription through GAS-like elements present in the viral

MIE promoter-enhancer [194]. These GAS-like elements were

shown to be required for efficient hCMV transcription and

replication, at least after low multiplicity infection, and IFNs

enhanced MIE gene expression [194]. Conceivably, the IE1

protein may phenocopy the effect of IFN-c in activating both

cellular ISGs and the viral MIE promoter thereby facilitating viral

reactivation. Conversely, along the lines of the ‘‘immune sensing

hypothesis of latency control’’ proposed by Reddehase and

colleagues [195], episodes of IE1 expression may promote

maintenance of viral latency not only through providing antigenic

peptides (reviewed in [196]) but also by concomitantly activating

critical immune effector functions including antigen transport

(TAP1), processing (CTSS) and presentation (HLA-DRA) as well

as immune cell recruitment (CXCL9, CXCL10, CXCL11,

CCL11; see above) and co-stimulation (TNFSF4, TNFSF18 and

CD274).

Current anti-hCMV strategies are directed against viral DNA

replication, but sometimes fail to halt disease. This may be due to

virus-induced ‘‘side effects’’ that are not correlated to production

of virus particles and lysis of host cells. In fact, in hCMV

pneumonitis and retinitis, disease symptoms were repeatedly found

in the absence of replicating virus or viral cytopathogenicity

[197,198]. Similarly, in mouse models of viral pneumonitis

mCMV replication per se was not sufficient to cause disease

[197,199,200]. Conversely, mCMV disease could be triggered

immunologically without inducing viral replication [201]. Here we

have shown that out of .160 different hCMV gene products, a

single protein (IE1) is sufficient to alter the expression of human

genes with strong pro-inflammatory and immune stimulatory

potential without the requirement for virus replication. The

present work supports the idea that the hCMV MIE gene and

specifically the IE1 protein may play a direct and predominant

role in viral immunopathogenesis and inflammatory disease

[202,203,204,205]. Thus, the IE1 protein should be considered

a prime target for the development of improved prevention and

treatment options directed against hCMV.

Materials and Methods

Plasmids
The pMD2.G and psPAX2 packaging vectors for recombinant

lentivirus production were obtained from Addgene (http://www.

addgene.org; plasmids 12259 and 12260, respectively). Plasmids

pLKOneo.CMV.EGFPnlsTetR, pLKO.DCMV.TetO.cICP0,

and pCMV.TetO.cICP0 were kindly provided by Roger Everett

(Glasgow, UK). pLKOneo.CMV.EGFPnlsTetR contains the

complete hCMV MIE promoter upstream of a sequence encoding

EGFP fused to an NLS and TetR [68,69,70]. In the pLKO.1puro

derivative pLKO.DCMV.TetO.cICP0, expression of the herpes

simplex virus type 1 infected cell protein 0 cDNA (cICP0) is under

the control of a tandem TetO sequence located downstream of a

truncated version of the hCMV MIE promoter (DCMV) [69,70].

To generate pLKO.DCMV.TetO.cIE1, the IE1 cDNA of the

hCMV Towne strain was PCR-amplified from pEGFP-IE1 [71]

with upstream primer #483 containing a HindIII site and

downstream primer #484 containing an EcoRI site (the sequences

of all primers used in this study are listed in Supporting Table S8).

The IE1 sequence was subcloned into the HindIII and EcoRI sites

of pCMV.TetO.cICP0. The NdeI-EcoRI fragment of the resulting

plasmid pCMV.TetO.IE1 was verified by sequencing and used to

replace the ICP0 cDNA in pLKO.DCMV.TetO.cICP0 thereby

generating plasmid pLKO.DCMV.TetO.cIE1.

QuikChange site-directed mutagenesis of plasmid pRc/CMV-

hSTAT1p91 (kindly provided by Christian Schindler, New York,

USA) with oligonucleotides #660 and #661 resulted in pCMV-

STAT1* encoding a STAT1 variant mRNA resistant to silencing

by the STAT1-specific siRNA duplex #146 (the sequences of all

siRNAs used in this study are listed in Supporting Table S9). The

plasmids pCMV-STAT1*Y701F and pCMV-STAT1*S727A

were generated by QuikChange mutagenesis of pCMV-STAT1*

with primer pairs #662/#663 and #664/#665, respectively.

BamHI-EcoRV fragments of pRc/CMV-hSTAT1p91, pCMV-

STAT1*, pCMV-STAT1*Y701F, and pCMV-STAT1*S727A

were treated with Klenow fragment and ligated to the HpaI-

digested, dephosphorylated retroviral vector pLHCX (Clontech,

no. 631511) resulting in plasmids pLHCX-STAT1, pLHCX-

STAT1*, pLHCX-STAT1*Y701F, and pLHCX-STAT1*S727A,

respectively. The correct orientations and nucleotide sequences of

the inserted STAT1 cDNAs were verified by sequencing.

Cells and retroviruses
Human MRC-5 embryonic lung fibroblasts (Sigma-Aldrich,

no. 05011802), the human p53-negative non-small cell lung

carcinoma cell line H1299 (ATCC, no. CRL-5803 [206]), and

Phoenix-Ampho retrovirus packaging cells (from Garry Nolan,

Stanford, USA [207]) were maintained in Dulbecco’s Modified

Eagle’s Medium supplemented with 10% fetal calf serum, 100

units/ml penicillin, and 100 mg/ml streptomycin. All cultures were

regularly screened for mycoplasma contamination using the PCR

Mycoplasma Test Kit II from PromoKine. Where applicable, cells

were treated with 1,000 U/ml recombinant human IFN-a A/D

(R&D Systems, no. 11200), 10 ng/ml recombinant human IFN-b
1a (Biomol, no. 86421), or 10 ng/ml recombinant human IFN-c
(R&D Systems, no. 285-IF) for various durations. Neutralizing

goat antibodies to human IFN-b (no. AF814) or IFN-c (no. AF-
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285-NA) and normal goat IgG (no. AB-108-C) were purchased

from R&D Systems and used at concentrations of 1 mg/ml (anti-

IFN-b) or 2 mg/ml (anti-IFN-c, normal IgG). Transwell assays

were performed in tissue-culture-treated 100-mm plates with

polycarbonate membrane and 0.4 mm pore size (Corning,

no. 3419).

During the week prior to transfection, Phoenix-Ampho cells were

grown in medium containing hygromycin (300 mg/ml) and diphthe-

ria toxin (1 mg/ml). Production of replication-deficient retroviral

particles, retrovirus infections, and selection of stable cell lines were

performed according to the pLKO.1 protocol available on the

Addgene website (http://www.addgene.org/pgvec1?f =c&cmd=

showcol&colid =170&page=2) with minor modifications. Retroviral

particles were generated by transient transfection of H1299 cells

(pLKO-based vectors) or Phoenix-Ampho cells (pLHCX-based

vectors) using the calcium phosphate co-precipitation technique

[208]. Recombinant viruses were collected 36 h and 60 h after

transfection, and were used for transduction of target cells by two

subsequent 16 h incubations. To generate TetR cells, MRC-5

fibroblasts at population doubling 19 were infected with pLKO-

neo.CMV.EGFPnlsTetR-derived lentiviruses and selected with

G418 (0.2 mg/ml). To generate TetR-IE1 cells, TetR cells were

transduced by pLKO.DCMV.TetO.cIE1-derived lentiviruses and

selected with puromycin (1 mg/ml). Cells with high level EGFPnl-

sTetR expression (and low IE1 background) were enriched by

fluorescence-activated cell sorting in a FACSCanto II flow cytometer

(BD Biosciences). TetR cells were maintained in medium containing

G418 (0.1 mg/ml), while TetR-IE1 cells were cultured in the

presence of both G418 (0.1 mg/ml) and puromycin (0.5 mg/ml). To

induce IE1 expression, cells were treated with doxycycline (Clontech,

no. 631311) at a final concentration of 1 mg/ml. To generate TetR-

IE1 cells with stable expression of ectopic STAT1 proteins,

uninduced TetR-IE1 cells were transduced with pLHCX-derived

retroviruses encoding STAT1, STAT1*, STAT1*Y701F, or

STAT1*S727A.

hCMV mutagenesis and infection
The EGFP-expressing wild-type Towne strain (TNwt) of hCMV

was derived from an infectious BAC clone (T-BACwt [209]) of the

viral genome. Allelic exchange to generate IE1-deficient viruses

(TNdlIE1) and corresponding ‘‘revertants’’ (TNrvIE1) utilized the

following derivatives of transfer plasmid pGS284 [210]: pGS284-

TNIE1kanlacZ, pGS284-TNMIEdlIE1, pGS248-TNMIE, and

pGS284-TNMIErvIE1. Plasmid pGS284-TNIE1kanlacZ contains

the kanamycin resistance gene (kan) and the lacZ gene cloned

between sequences flanking the IE1-specific exon four of the

hCMV TN MIE transcription unit. The ,1000-bp flanking

sequences were obtained by PCR amplification using primers

#136 and #137 (downstream flanking sequence) or #139 and

#140 (upstream flanking sequence; for PCR primer sequences, see

Supporting Table S8) and T-BACwt as template. The amplified

downstream flanking sequence was cloned into pGS284 via BglII

and NotI sites present in both the PCR primers and target vector

sequences. Following addition of adenosine nucleotide overhangs

to the 39-ends of the PCR product, the upstream flanking sequence

was first subcloned into vector pCR4-TOPO (Invitrogen) and

subsequently inserted via NotI sites into pGS284 carrying the

downstream flanking sequence. The kanlacZ expression cassette

was released from plasmid YD-C54 [211] and cloned into the PacI

sites (introduced through PCR primers #137 and #139) located

between the hCMV flanking sequences in the pGS284 derivative

described above. Plasmid pGS284-TNMIEdlIE1 contains an MIE

fragment lacking 1,413 bp between the AccI sites upstream and

downstream of exon four. The exon four-deleted MIE fragment

was obtained from T-BACwt by overlap extension PCR as

previously described [212]. The primer pairs used for PCR

mutagenesis were #348/#349 (upstream fragment), #350/#351

(downstream fragment), and #348/#351 (complete fragment).

The final PCR product was cloned via BglII and NotI sites into

pGS284. For the construction of pGS248-TNMIE (previously

termed pGS248-MIE; [33]), a ,3000-bp sequence of the MIE

region was amplified by PCR using template T-BACwt and

primers #155 and #156. After phosphorylation, the PCR product

was first inserted into the SmaI site of pUC18 and then excised

from this vector via FseI and NotI sites. The FseI-NotI fragment was

subsequently cloned into the same sites of pGS284-TNMIEdlIE1

thereby repairing the exon four deletion in this plasmid to generate

pGS284-TNMIErvIE1. DNA sequence analysis was completed on

all hCMV-specific PCR amplification products to confirm their

integrity. Allelic exchange was performed through homologous

recombination in Escherichia coli strain GS500 as previously

described [33,210,211]. First, the BAC pTNIE1kanlacZ was

generated by recombination of T-BACwt with pGS284-TNIE1-

kanlacZ followed by selection for kanamycin resistance and LacZ

expression. After that, the BACs pTNdlIE1 and pTNrvIE1 were

made through recombination of pTNIE1kanlacZ with pGS284-

TNMIEdlIE1 and pGS284-TNMIErvIE1, respectively, followed

by selection for the loss of kanamycin resistance and LacZ

expression. The BAC constructs were analyzed by EcoRI digestion.

The BACs pTNdlIE1 and pTNrvIE1 were used for electroporation

of MRC-5 cells to reconstitute viruses TNdlIE1 and TNrvIE1,

respectively, as has been described previously [211]. Cell- and

serum-free virus stocks were produced upon BAC transfection of

MRC-5 fibroblasts (TNwt and TNrvIE1) or TetR-IE1 cells

(TNdlIE1), and the titers of the wild-type TN and revertant

preparations were determined by standard plaque assay on MRC-

5 cells. Titration of TNdlIE1 stocks was performed by quantifi-

cation of intracellular genome equivalents [33]. Multistep

replication analysis of recombinant viruses on TetR and TetR-

IE1 cells has been described previously [33].

GeneChip analysis
For global transcriptome analysis, 1.96106 TetR or TetR-IE1

cells of the same passage number were seeded on 10-cm dishes.

When cells reached confluency (three days after plating), the

medium was replaced, and cells were growth-arrested by

maintaining them in the same medium for seven days before they

were collected for transcriptome analysis. During the last 72 h or

24 h prior to collection, cultures were treated with doxycycline at a

final concentration of 1 mg/ml or were left untreated. Total RNA

was isolated using TRIzol reagent (Invitrogen) and Phase Lock Gel

Heavy (Eppendorf) according to the manufacturers’ instructions. A

second purification step with on-column DNase digestion was

performed on the isolated RNA using the RNeasy Mini Kit from

Qiagen. All subsequent steps were performed at the Kompetenz-

zentrum für Fluoreszente Bioanalytik (Regensburg, Germany).

Total RNA (100 ng) was labeled using reagents and protocols

specified in the Affymetrix GeneChip Whole Transcript (WT)

Sense Target Labeling Assay Manual (P/N 701880 Rev. 4).

Quantity and quality of starting total RNA, cRNA, and single-

stranded cDNA were assessed in a NanoDrop spectrophotometer

(Thermo Fisher Scientific) and a 2100 Bioanalyzer (Agilent

Technologies), respectively. Samples were hybridized to Affyme-

trix Human Gene 1.0 ST Arrays which interrogate 28,869 well-

annotated genes and cover .99% of sequences present in the

RefSeq database (National Center for Biotechnology Information).

We probed a total of 18 microarrays, which allowed us to monitor

three biological replicates for each experimental condition (TetR
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and TetR-IE1 cells without and with 24 h and 72 h of doxycycline

treatment). For creation of the summarized probe intensity signals,

the Robust Multi-Array Average algorithm [213] was used. Files

generated by the Affymetrix GeneChip Operating 1.4 and

Expression Console 1.1 software have been deposited in Gene

Expression Omnibus (GEO, National Center for Biotechnology

Information [214]) and are accessible through GEO Series

accession number GSE24434 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE24434).

qRT-PCR
In order to determine steady-state mRNA levels by qRT-PCR,

total RNA was isolated from 3 to 46105 fibroblasts using

Qiagen’s RNeasy Mini Kit and RNase-Free DNase Set according

to the manufacturer’s instructions. First-strand cDNA was

synthesized using SuperScript III and Oligo(dT)20 primers

(Invitrogen) starting from 2 mg of total RNA. Unless otherwise

noted, first-strand cDNA was diluted 10-fold with sterile

ultrapure water, and 5 ml were used to template 20-ml real-time

PCRs performed in a Roche LightCycler 1.5 [33]. The

instrument was operated with a ramp rate of 20uC per sec using

the following protocol: pre-incubation cycle (95uC for 10 min,

analysis mode: none), 40 to 50 amplification cycles with single

fluorescence measurement at the end of the extension step

(denaturation at 95uC for 10 sec, primer-dependent annealing at

66 to 56uC for 10 sec, primer-dependent extension at 72uC for 8

to 10 sec, analysis mode: quantification), melting curve cycle with

continuous data acquisition during the melting step (denaturation

at 95uC for 0 sec, annealing at 65uC for 60 sec, melting at 95uC
for 0 sec with a ramp rate of 0.1uC/sec, analysis mode: melting

curves), cooling cycle (40uC for 30 sec, analysis mode: none). The

PCR mix was composed of 9 ml PCR grade water, 1 ml forward

primer solution (10 mM), 1 ml reverse primer solution (10 mM),

and 4 ml 56 concentrated Master Mix from the LightCycler

FastStart DNA MasterPLUS SYBR Green I kit. The sequences of

the high pressure liquid chromatography-purified PCR primers

are listed in Supporting Table S8. All samples were quantified at

least in duplicate, and each analysis included positive, minus-RT,

and non-templated controls. The second derivate maximum

method with arithmetic baseline adjustment (LightCycler Soft-

ware 3.5) was used to determine quantification cycle (Cq) values.

Cq values were further validated by ensuring they meet the

following criteria: (i) corresponding melting peaks of the

generated PCR products, calculated using the polynomial

method with digital filters enabled, had to match the single peak

of the positive control sample, (ii) standard deviations of Cq

values from technical replicates had to be below 0.33, (iii) Cq

values had to be significantly different from minus-RT controls

(CqƒCq-RT-1), and (iv) Cq values had to be within the linear

quantification range. The linear quantification range was

individually determined for each primer pair by generating a

standard curve with serial dilutions of first-strand cDNA from the

sample with the highest expression level. PCR efficiency (E) was

calculated from the slope of the standard curve according to

equation (1):

E~10
{1

slope

� �
ð1Þ

The relative expression ratio (R) of the target (trgt) and reference

(ref) gene in an experimental (eptl) versus control (ctrl) sample was

calculated using the efficiency-corrected model shown in equation

(2):

R~
Etrgt

Cqtrgt ctrlð Þ{Cqtrgt eptlð Þð Þ

Eref
(Cqref ctrlð Þ{Cqref eptlð Þ)

ð2Þ

Control samples of all experiments had reference and target

gene expression levels well above the limits of detection. The

tubulin-b gene (TUBB) was chosen as a reference, because (i)

expression levels did not change upon IE1 induction, IFN

treatment, siRNA transfection, or hCMV infection, (ii) it allowed

for RNA-specific detection with no spurious product generation in

minus-RT controls, and (iii) it exhibited similar expression levels

compared to the target genes under investigation, which were

generally expressed at levels lower than TUBB in the absence and

at similar or higher levels relative to TUBB in the presence of IE1

expression, IFN treatment, or hCMV infection.

Chemokine quantification
CXCL9, CXCL10, and CXCL11 chemokine concentrations in

cell culture supernatants were determined using commercially

available colorimetric sandwich enzyme immunoassay kits (Quan-

tikine Immunoassays no. DCX900, DIP100, and DCX110 from

R&D Systems) following the manufacturer’s instructions.

RNA interference
The sequences of siRNA duplexes used for mRNA knock-down

experiments are listed in Supporting Table S9. They were

introduced into cells at 30 nM final concentration using the

Lipofectamine RNAiMAX Reagent (Invitrogen) following the

manufacturer’s instructions. Briefly, exponentially growing cells

were seeded either in 12-well dishes at 2.56105 cells/well for RNA

analyses or in 6-well dishes at 56105 cells/well for protein

analyses. Transfections were performed in Opti-MEM I Reduced

Serum Medium (Invitrogen) with 2 ml or 5 ml of RNAiMAX

Reagent for 12- or 6-wells, respectively.

Subcellular fractionation, immunoblotting, and
microscopy

Cells (3.86106) on 10-cm dishes were collected with trypsin/

EDTA and then centrifuged for 5 min at 5006 g and 4uC.

Supernatants were removed and cells resuspended in 100 ml CSK

buffer (10 mM PIPES [pH 6.8], 300 mM sucrose, 100 mM NaCl,

3 mM MgCl2, 1 mM EDTA, 0.1% (v/v) Igepal CA-630) with

freshly added protease and phosphatase inhibitor cocktails. Lysates

were centrifuged for 1 min at 1,3006 g and 4uC, and the

supernatants (cytoplasmic extracts) were transferred to clean pre-

chilled tubes and combined with one volume of 26protein sample

buffer (100 mM Tris-HCl [pH 6.8], 4% (w/v) SDS, 20% (v/v)

glycerol, 200 mM b-mercaptoethanol, 0.1% (w/v) bromophenol

blue). The insoluble (pellet) fractions containing nuclei were

washed once with 500 ml CSK buffer before they were suspended

in 200 ml 26 protein sample buffer and sonified in a Bioruptor

(Diagenode; ‘‘H’’ setting; 30 sec on-off interval) for 15 min.

Samples were centrifuged for 10 min at 20,0006 g and 4uC, and

the supernatants (nuclear extracts) were transferred to clean pre-

chilled tubes. Cytosolic and nuclear extracts were heated to 95uC
for 5 min before immunoblot analysis. Generation of whole cell

extracts, sodium dodecyl sulfate-polyacrylamide gel electrophore-

sis, immunoblotting, and (immuno)fluorescence microscopy were

performed according to previously published protocols [33,

53,215]. Immunodetection employed primary mono- or polyclon-

al antibodies directed against hCMV IE1 (1B12; [216]) or human
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GAPDH (Abcam, no. ab9485), histone H2A (Abcam,

no. ab13923), STAT1 (no. sc-464 for immunoblotting and

no. sc-346 for immunofluorescence, both from Santa Cruz),

STAT1a (Santa Cruz, no. sc-345), STAT2 (Santa Cruz, no. sc-

22816), and phosphorylated STAT1 (Y701-specific antibody

no. 9171 and S727-specific antibody no. 9177, both from Cell

Signaling Technologies). The secondary antibodies used were

peroxidase-conjugated goat anti-mouse (no. 115-035-166) or goat

anti-rabbit IgG (no. 111-035-144) from Dianova for immunoblot-

ting, and highly cross-adsorbed Alexa Fluor 594- or Alexa Fluor

633-conjugated goat anti-mouse (no. A-11032 or no. A-21052,

respectively) and Alexa Fluor 546-conjugated goat anti-rabbit IgG

(no. A-11035) from Invitrogen for immunofluorescence.

ChIP assay
ChIP was performed essentially as described by Nelson et al.

[217,218]. Resting cells on a 15-cm dish were cross-linked by

treatment with 1% (v/v) formaldehyde for 10 min at 37uC.

Isolated chromatin was sonified for 15 min in a Bioruptor

(Diagenode; ‘‘H’’ setting, 30 sec on-off interval) and cleared by

centrifugation for 20 min at 20,0006 g and 4uC. Sheared

chromatin from 76106 cells (0.7 ml) was subjected to immuno-

precipitation for 16 h at 4uC with gentle rotation using 10 mg of

antibody. Two different polyclonal rabbit antibodies each against

STAT1 (no. sc-3454 and sc-346 from Santa Cruz) and STAT2

(no. sc-476 and sc-839 from Santa Cruz) were used. After the

antibody incubation step, insoluble material was removed by

centrifugation (10 min at 20,0006 g and 4uC) and 0.63 ml (90%)

supernatant was transferred to a clean pre-chilled tube. Antibody-

antigen complexes were isolated by sedimentation following

incubation with 60 ml of Protein A Agarose/Salmon Sperm

DNA slurry (Millipore) for 60 min at 4uC. PCR-ready DNA was

prepared using Chelex-100 and duplicate samples of 5 ml (25% of

the final reaction volume) each were used for DNA quantification

by qPCR as described above and in recent publications [33,215].

The PCR primer sequences are listed in Supporting Table S8.

Supporting Information

Figure S1 Time course qRT-PCR analysis of IFN-b and IFN-c
expression. TetR and TetR-IE1 cells were treated with doxycy-

cline for 3 to 96 h or were left untreated (0 h). Relative mRNA

expression levels were determined from 5 ml of undiluted cDNA

by qRT-PCR with primers specific for the IFNB and IFNG genes.

Results were normalized to TUBB, and means of two biological

replicates are shown in comparison to untreated cells (set to 1).

(EPS)

Figure S2 STAT2 knock-down is functionally effective and can

down-regulate a bona fide STAT2-responsive gene. MRC-5 cells

were transfected with control siRNA #149 or STAT2-specific

siRNA #152. Four days post transfection cells were treated with

IFN-a (10 ng/ml) for 24 h or were left untreated (w/o). Relative

mRNA expression levels were determined by qRT-PCR with

primers specific for the type I ISGs STAT2 and OAS1. Results

were normalized to TUBB and mean values with standard

deviations from two biological and two technical replicates are

shown. Expression is presented relative to control siRNA-

transfected cells without IFN-a stimulation (set to 1).

(EPS)

Table S1 Enrichment of GO ‘‘biological process’’

(GO:0008150) terms (p,0.2) in IE1-activated genes.

(DOC)

Table S2 Enrichment of GO ‘‘molecular function’’

(GO:0003674) terms (p,0.2) in IE1-activated genes.

(DOC)

Table S3 Enrichment of GO ‘‘cellular component’’

(GO:0005575) terms (p,10) in IE1-activated genes.

(DOC)

Table S4 qRT-PCR analysis of IFN responsiveness of IE1-

induced genes.

(DOC)

Table S5 Results of GeneChip analysis for IFN genes.

(DOC)

Table S6 qRT-PCR analysis of IFN-b and IFN-c expression.

(DOC)

Table S7 STAT1 binding sites in the promoter regions of IE1-

activated human genes.

(DOC)

Table S8 Oligonucleotides used in this study.

(DOC)

Table S9 siRNAs used in this study.

(DOC)
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