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DNA Is a Potent Activator of Innate Immunity

When a pathogen attacks, the immune system rapidly mobilizes

host defenses in order to reduce the microbial burden and limit

damage to the host [1]. Innate immunity is the first line of defense

and relies on germ line–encoded pattern recognition receptors

(PRRs) such as the Toll-like receptors (TLRs), which sense

microbial products that are not normally found on or in

mammalian cells. The considerable potency of nucleic acids as

triggers of the innate immune response has gained appreciation

over the last few years. In particular, nucleic acid sensing of viruses

is central to anti-viral defenses through recognition of viral

genomes or nucleic acids generated during viral replication.

Distinct classes of nucleic acid sensing molecules have been

uncovered that function in different cell types and subcellular

compartments to coordinate innate defenses (reviewed in [2]).

While recognition of RNA molecules is dependent on members

of the TLR family and cytosolic RNA helicases, the mechanisms

underlying the sensing of DNA have been less well defined. It has

been known for over a decade that DNA, the most recognizable

unit of life, is a potent trigger of inflammatory responses in cells.

The discovery of TLR-9, a receptor for hypomethylated CpG-rich

DNA, partially explained these findings [3]. TLR9 is localized to

the endosomal compartment and in humans is expressed in B cells

as well as in plasmacytoid dendritic cells (pDCs). However, it

became clear that the immune stimulatory activity of microbial

DNA was not compromised in many cells lacking TLR9 [4].

These observations prompted new efforts to understand how DNA

triggers immune responses, an endeavor that has led to the

discovery of several new DNA recognition receptors and fresh

insights into infectious as well as autoimmune diseases.

There Are Multiple Receptors for Microbial DNA

A significant effort from many laboratories has highlighted the

importance of cytosolic DNA sensing in the innate immune

response. At least six intracellular receptors have been implicated

to some degree. These include DNA-dependent activator of

interferon (IFN)-regulatory factors (DAI) (also called Z-DNA-

binding protein 1, ZBP1) [5], absent in melanoma 2 (AIM2) [6–9],

RNA polymerase III (Pol III) [10,11], leucine-rich repeat (in

Flightless I) interacting protein-1 (Lrrfip1) [12], DExD/H box

helicases (DHX9 and DHX36) [13], and most recently, the IFN-

inducible protein IFI16 [14]. DAI was the first to be implicated in

synthetic B- and Z-form dsDNA recognition [5]; however, the role

of DAI is still unclear, as DAI-deficient mice and cells coordinate

normal immune responses to DNA [15]. Cytoplasmic dsDNA also

triggers IFN production via RNA Pol III, which transcribes the

DNA into 59-ppp RNA, a ligand for the RNA helicase RIG-I

[10,11]. In pDCs, DHX9 and DHX36 contribute to cytosolic

CpG-DNA and HSV-1-driven IFN responses [13], which likely

account for previously reported TLR9-independent cytokine

responses to some DNA viruses [12]. Lrrfip1 appears to bind

both DNA and RNA; however, Lrrfip1 does not regulate the

transcription factors that drive IFN gene transcription, but rather

signals a co-activator pathway involving b-catenin and CBP/p300

histone modifying complexes to enhance the transcription of type I

IFNs in the nucleus [16]. DNA from Listeria monocytogenes and RNA

from vesicular stomatitis viral (VSV) activate this Lrrfip1-b-catenin

pathway to mediate these effects.

Immune responses to DNA are not restricted to type I IFN-

inducing pathways: cytosolic DNA also activates caspase-1-

dependent maturation of the pro-inflammatory cytokines inter-

leukin (IL)-1b and IL-18. This pathway is mediated by AIM2, a

PYHIN (Pyrin- and HIN200-domain-containing) protein. Recent

evidence from knockout studies has revealed the importance of

AIM2 in host defense to cytosolic bacteria such as Fransicella spp.,

as well as DNA viruses like mouse cytomegalovirus (reviewed in

[17–20]). The newest receptor identified, IFI16, binds viral DNA

and is critical in the immune response to certain DNA viruses [14].

Like AIM2, IFI16 is a PYHIN protein that binds viral DNA via

HIN domains; however, IFI16 does not appear to associate with

ASC to regulate IL-1b maturation. Rather, IFI16 activation

induces IFN-b and inflammatory cytokine production in response

to cytosolically administered viral DNA or HSV1 infection.

Distinct Classes of DNA Sensors Engage Distinct
Signaling Complexes

Most of these DNA sensors utilize a subset of adapter molecules,

which relay signals to NF-kB and members of the interferon

regulatory factor (IRF) family. TLR9 as well as DHX9 and

DHX36 recruit MyD88 to activate IFN production in pDCs in

response to DNA. In contrast, recognition of DNA by RNA-Pol

III generates an RNA intermediate, which signals via RIG-I and

MAVS. In the case of IFI16, the endoplasmic reticulum–resident

protein stimulator of interferon genes (STING) relays signaling

downstream [21]. Whether STING binds IFI16 directly or merely

acts as a signaling intermediate for this pathway is unclear. AIM2

triggers caspase-1 activation via the PYD domain containing

adapter molecule ASC. Although IFI16 also contains a PYD

domain, it does not appear to utilize ASC for IFN production. It is

likely that the DAI pathway also involves STING, although this
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has not been formally demonstrated. Downstream of STING,

MAVS, or MyD88, the nucleic acid sensing pathways converge on

different IKK kinases to phosphorylate and activate IRFs

(reviewed in [2]). In the case of the TLRs and possibly DHX

helicases, IKKa is involved in phosphorylating IRF7, while

downstream of MAVS and STING, TANK-binding kinase 1

(TBK-1), an IKK-related kinase, phosphorylates and activates

IRF3. There is no evidence for the involvement of adaptor

proteins in the Lrrfip1-b-catenin pathway, although intermediary-

signaling molecules may be required for Lrrfip1-dependent b-

catenin phosphorylation.

Cytosolic DNA Recognition Pathways Also
Contribute to the Pathogenesis of Autoimmune
Disease

While DNA recognition receptors and associated signaling

pathways are part of the normal immune response to infection, self

DNA that gains access to compartments where these sensors are

localized can also trigger inflammation, with deleterious conse-

quences for the host (reviewed in [1]). Systemic lupus erythema-

tosis (SLE) is one of the first autoimmune diseases where aberrant

self-DNA recognition and type I IFNs play a role in disease

pathogenesis. DNA and RNA complexed with autoantibodies

trigger immune activation, leading to autoantibody production

and significant cell death. Here, TLR7- and TLR9-sensing

pathways in autoreactive B cells and pDCs appear to be central

to disease pathogenesis [1]. Mutations in enzymes that normally

degrade DNA have been linked to SLE and other diseases. For

example, defective clearance of extracellular nucleic acids from

dying cells due to deficiency or mutation of DNAse I causes a

lupus-like syndrome in mice and humans [22,23]. The sensing of

accumulated DNAse I substrates is unclear but likely involves

TLRs as well as other DNA sensors.

DNases regulate the accumulation of DNA in more than one

compartment. For instance, DNase II is localized to lysosomes

where it normally degrades DNA from engulfed apoptotic and

necrotic cells. Interestingly, DNAse II–deficient mice are embry-

onic lethal due to overproduction of type I IFNs [24,25]. However,

mice deficient in both DNAse II and the type I IFN receptor are

viable. The DNA sensing mechanism triggering IFN in this case is

known to be TLR independent but dependent on IRF3 and IRF7.

It is likely that one or more of the DNA sensors described above

account for these responses. Another type of deoxyribonuclease,

DNAse III, also called 39 repair exonuclease 1 (TREX1), is found

on the endoplasmic reticulum and has been shown to digest

Figure 1. Pathways of innate immune sensing of DNA. (A) Cytosolic DNA from invading viruses and bacteria engage and activate AIM2
binding to the adaptor ASC. ASC mediates caspase-1-dependent pro-IL-1b/pro-IL-18 cleavage and secretion of their bioactive forms, IL-1b and IL-18.
IL-1b and IL-18 are significant mediators of inflammatory responses to infection. (B) Four known cytosolic sensors are represented here. Lrrfip1
recognized viral DNA as well as RNA to induce IFNb via a b-catenin-IRF3 transactivator pathway independently of the kinase TBK1. DAI can bind
double-stranded B-form and atypical Z-form DNA to induce TBK1-IRF3-dependent IFNb production. Evidence for the role of adaptors MAVS/STING in
these pathways is lacking. IFI16 can directly bind viral DNA via its HIN200 domains and initiate IFNb induction in a STING-TBK1- and IRF3-dependent
manner. RNA polymerase III (Pol III) generates 59 tri-phosphate RNA that is a ligand for RIG-I. RIG-I signals via the adaptor MAVS, subsequently
activating ubiquitin ligase TRAF3 and subsequently TBK1 and IRF3. The ubiquitin binding protein RNF5 inhibits STING activation by targeting it to the
proteasome, while TREX1 inhibits/prevents IFNb production by degrading DNA substrate. (C) The receptor for advanced glycated end products
(RAGE) and HMGB1 can bind extracellular CpG-rich DNA and transport it to a TLR9-positive compartment. Here, it is recognized by TLR9 and signals
via MyD88 and the IKK kinase, IKKa, and IRF7 in pDCs to induce IFNa production. The cytosolic DExD/H box helicases DHX9/DHX36 can recognize
cytosolic CpG DNA and initiate signaling to IRF7 via MyD88.
doi:10.1371/journal.ppat.1001310.g001
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cell-intrinisic DNA generated as a result of reverse transcription

from endogenous retroelements. Under normal circumstances

TREX1 prevents the accumulation of this reverse transcribed

DNA [26]. However, in situations where TREX1 is non-

functional, DNA accumulates and can lead to activation of

cytosolic sensing pathways. Mutations in TREX1 are found in

patients with Aicardi-Goutières syndrome (AGS) and chilblain

lupus, diseases that clinically resemble congenital viral infections

[26,27]. Mutations in the sterile a motif (SAM domain) and HD

domain-containing protein 1 (SAMHD1) are also linked to this

disease [27,28]. Although there is no direct evidence linking

SAMHD1 to cytosolic DNA sensing per se, it is likely that

SAMHD1 also acts to counterbalance cytosolic DNA sensing and/

or signaling, perhaps by interfering with one or more of the sensors

above.

There Are Still Major Unknowns in the World of
DNA Sensing

Fresh new insights into infectious as well as autoimmune

diseases have been gained as a result of the studies on DNA

sensing and signaling pathways. While there has been great

progress in this area, many important questions arise from these

discoveries. How these different sensors coordinate cell type–

specific and or species-specific responses to DNA is still a major

question and undoubtedly the focus of future research efforts in

this area. Another key issue to be resolved is how DNA ligands,

which are often enclosed in membrane-bound compartments (e.g.,

DNA viruses replicating in the nucleus), meet these cytosolic

receptors. The identification of TREX1 as well as SAMHD1

suggests that in healthy cells, tightly controlled DNA levels prevent

engagement of these pathways. It is likely that additional counter

regulatory mechanisms that dampen these responses will be

uncovered. Moreover, it is also likely that future discoveries will

unveil mechanisms by which pathogens inactivate these defenses

to prevent the immune response from sampling their genomes and

turning on anti-viral defenses. Further characterization of these

DNA sensing and counter regulatory mechanisms is likely to

impact our understanding of common autoimmune and autoin-

flammatory diseases as well as build a framework for our

understanding of infectious diseases. Future discoveries in this

area will no doubt unveil new opportunities for therapeutic

interventions in infectious and autoimmune disease.
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