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Abstract

Apoptosis is an important mechanism by which virus-infected cells are eliminated from the host. Accordingly, many viruses
have evolved strategies to prevent or delay apoptosis in order to provide a window of opportunity in which virus
replication, assembly and egress can take place. Interfering with apoptosis may also be important for establishment and/or
maintenance of persistent infections. Whereas large DNA viruses have the luxury of encoding accessory proteins whose
primary function is to undermine programmed cell death pathways, it is generally thought that most RNA viruses do not
encode these types of proteins. Here we report that the multifunctional capsid protein of Rubella virus is a potent inhibitor
of apoptosis. The main mechanism of action was specific for Bax as capsid bound Bax and prevented Bax-induced apoptosis
but did not bind Bak nor inhibit Bak-induced apoptosis. Intriguingly, interaction with capsid protein resulted in activation of
Bax in the absence of apoptotic stimuli, however, release of cytochrome c from mitochondria and concomitant activation of
caspase 3 did not occur. Accordingly, we propose that binding of capsid to Bax induces the formation of hetero-oligomers
that are incompetent for pore formation. Importantly, data from reverse genetic studies are consistent with a scenario in
which the anti-apoptotic activity of capsid protein is important for virus replication. If so, this would be among the first
demonstrations showing that blocking apoptosis is important for replication of an RNA virus. Finally, it is tempting to
speculate that other slowly replicating RNA viruses employ similar mechanisms to avoid killing infected cells.
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Introduction

Rubella virus (RV) is an enveloped positive strand RNA virus in

the family Togaviridae and is the sole member of the genus

Rubivirus (reviewed in [1]). Humans are the only natural host for

RV and in most cases the virus causes a systemic infection the

symptoms of which include maculopapular rash, lymphadenopa-

thy, low-grade fever, conjunctivitis and sore throat. However, RV

infections can be complicated by the appearance of acute or

chronic arthralgia, arthritis, thrombocytopenia and encephalopa-

thy. In utero infection during the first trimester of pregnancy often

results in a characteristic series of birth defects known as

congenital Rubella syndrome. Worldwide, RV is thought to cause

more birth defects that any other infectious agent yet, very little is

known about molecular aspects of viral pathogenesis. A number of

studies suggest that viral persistence may underlie some of the most

serious aspects of infection including congenital Rubella syndrome

and arthritis [2,3,4,5,6].

Among the togavirus family, RV is unique in that its replication is

associated with mitochondria. The link between RV infection and

this organelle first became apparent when analysis of purified virions

revealed that cardiolipin, a phospholipid that is only found in

mitochondria, is a significant component of the RV envelope [7].

Subsequently, it was discovered that RV infected cells exhibit

striking mitochondrial defects. Virus infection induces clustering of

mitochondria in the perinuclear region as well as formation of

electron-dense plaques between apposing mitochondrial cisternae:

structures that have been termed confronting membranes [8,9].

The function of these structures is not known but expression of

capsid protein in the absence of other RV proteins is sufficient to

induce their formation [10]. A large pool of the capsid protein

localizes to the surface of mitochondria [11] and the inter-

mitochondrial plaques [12] but given that assembly of RV virions

occurs primarily on Golgi membranes, the targeting of the capsid to

this organelle likely reflects a nonstructural function of this protein.

The studies described above underscore the close link between

the capsid protein and mitochondria in RV biology and form the

basis for our central hypothesis; that association of the RV capsid

protein with mitochondria is important for virus replication. All

viruses must contend with host cell anti-viral mechanisms and

large DNA viruses have the luxury of harboring in many cases,

multiple genes devoted to thwarting host cell defenses (reviewed in

[13]). In contrast, simple RNA viruses express a very limited

number of proteins, most of which are directly involved in

replication and virus assembly. Accordingly, it is beneficial if not

essential that these viral proteins have multiple functions.

It is well documented that togavirus infection often results in

apoptotic death of mammalian cells (reviewed in [14,15]) and to
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our knowledge, there are no published studies showing that

members of this virus family inhibit programmed cell death

pathways. With the exception of RV, togavirus replication and

virus egress from vertebrate cells occurs within 4–6 hours followed

by extensive death by apoptosis within 24 hours. Accordingly, for

most togaviruses, preventing apoptosis is likely not required in

order for efficient replication to occur. In contrast, the replication

cycle for RV is unusually slow; the eclipse period is at least

12 hours and viral titers peak virion secretion occurs between 48–

72 (reviewed in [16]). RV-induced apoptosis in mammalian cells

has been reported but generally, extensive cytopathic effect is not a

hallmark of RV infection. When apoptosis does occur, it is not

until 5–7 days post-infection that maximum levels are reached [17]

and this is well past the peak virus production phase. In the present

study, we report that the capsid protein blocks apoptosis in RV

infected cells most likely to allow sufficient time for virus

replication. This process occurs at the level of mitochondria

through a Bax-dependent pathway.

Results

Cells infected with RV are resistant to apoptosis
We reasoned that in order for RV replication and virion

secretion to increase through 48 hours and beyond, programmed

cell death must be inhibited during this period. Accordingly, we

compared the levels of apoptosis in RV and mock-infected A549

cells by indirect immunofluorescence using an antibody specific

for activated caspase 3. Interestingly, less than 5% of infected

cells exhibited signs of apoptosis 48 hours post-infection

(Figure 1A and B). Moreover, when challenged with the kinase

inhibitor staurosporine, a potent inducer of apoptosis [18], RV

infected cells were significantly more resistant to apoptosis than

mock infected cells. Specifically, the percentage of caspase 3-

positive cells was almost three fold lower in the infected samples.

This was not due to detachment of infected cells as data in

Figure 1C show that treatment with staurosporine did not cause

significant loss of infected cells. Finally, Figure 1D shows that

even after 72 hours, RV infection does not significantly affect the

percentage of viable A549 cells. Together, these data indicate

that RV-infected A549 cells are resistant to programmed cell

death.

Expression of capsid protein inhibits apoptosis
Next, we sought to determine which viral protein(s) was

primarily responsible for protecting infected cells against apoptosis.

Previous studies have indicated that expression of the nonstruc-

tural proteins p150 and p90 are cytotoxic [19,20] and therefore,

we focused our attention on the virus structural proteins. Plasmids

encoding glycoproteins E2 and E1 or capsid, were transiently

tranfected into A549 cells and at 40 hours post-transfection, cells

were induced to undergo apoptosis by treatment with anti-Fas.

Samples were processed for indirect immunofluorescence

(Figure 2A) and the numbers of active caspase 3-positive

transfectants were determined. Data in Figure 2B show that the

levels of apoptosis were similar in cells expressing the viral

glycoproteins E2 and E1 and the negative control protein eGFP.

In contrast, expression of the RV capsid protein was just as

protective against anti-Fas as the well-characterized anti-apoptotic

protein Bcl-XL [21]. Compared to eGFP or E2E1 transfectants

that were treated with anti-Fas, the percentage of apoptotic cells

among capsid transfectants was three fold lower (Figure 2B).

We also examined whether RV infection and/or capsid

expression protects Vero cells from apoptosis. This cell line is

used extensively to study RV replication and similar to what was

observed with A549, infection of Vero cells with RV, or transient

expression of capsid protein conferred protection from stauros-

porine-induced apoptosis (Figure S1A, B, arrowheads). Because

Vero cells do not respond to anti-Fas treatment, it was not possible

to determine the effect of capsid expression on death receptor

pathways. These data appear to be at odds with a previous study

which reported that the RV capsid was pro-apoptotic in RK-13

cells [22]; a cell line that is exquisitely sensitive to RV-induced

apoptosis [23]. Accordingly, we assayed intrinsic and extrinsic

apoptotic pathways by staurosporine and anti-Fas treatment of

RK-13 cells at 48 and 72 hours post-transfection. In both cases,

expression of the capsid protein conferred resistance to apoptosis

similar to Bcl-XL (Figure S2). Together, these data indicate that

the RV capsid is an anti-apoptotic protein that protects cells from

multiple apoptotic stimuli.

Capsid protein blocks activation of the mitochondrial
apoptotic pathway

We next endeavored to identify what step in apoptotic signaling

was blocked by capsid protein. For these experiments, lentiviral

transduction was used to create A549 cells that stably express

capsid protein under the control of a doxycycline-regulated

promoter. Results from indirect immunofluorescence showed that

less than 50% of the polyclonal population of transduced cells

expressed RV capsid following doxycyline treatment (Figure 3A).

Similar to results shown in Figure 2, induction of capsid expression

protected the stably transduced A549 cells against staurosporine-

and Fas-mediated activation of caspase 3 (Figure S3). To further

confirm that apoptotic stimuli do not activate caspases in these

cells, we measured the appearance of the downstream caspase 3

substrate, cleaved Poly(ADP-ribose) polymerase (PARP). Figure 3B

shows that expression of capsid protein results in decreased anti-

Fas-induced cleavage of PARP compared to luciferase-expressing

cells. These data indicate that capsid protects A549 cells from

staurosporine and anti-Fas treatment by blocking caspase

activation.

We next determined where upstream of caspase 3 activation,

that capsid protein acted. Both staurosporine- and anti-Fas- can

trigger apoptosis through the mitochondrial pathway, so we tested

the ability of capsid protein to block depolarization of mitochon-

drial membranes in response to apoptotic stimuli. Doxycycline-

treated A549 cells expressing capsid protein or luciferase were

Author Summary

Among the variety of defense systems employed by
mammalian cells to combat virus infection, apoptosis or
programmed cell death is the most drastic response. Some
large DNA viruses encode proteins whose sole function is
to block apoptosis. Conversely, very little is known about
whether RNA viruses encode analogous proteins. In many
cases, RNA viruses are able to replicate before cell death
occurs, which may be one reason why so little thought has
been given to this topic. However, a number of RNA
viruses, some of which are important human pathogens,
have slow replication cycles and it stands to reason that
they must block apoptosis during this time period. Here
we show that the multifunctional capsid protein of Rubella
virus is a potent inhibitor of apoptosis. Data from reverse
genetic experiments suggest that the anti-apoptotic
function of a virus-encoded protein is important for
replication of an RNA virus. We anticipate that other
slowly replicating RNA viruses may employ similar
mechanisms and, as such, these studies have implications
for development of novel anti-virals and vaccines.

Anti-Apoptotic Viral Capsid Protein
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Figure 1. Caspase 3 activation is blocked in RV infected cells. A. A549 were infected with RV (MOI = 1) for 42 hours after which they were
treated with staurosporine (ST) for 6 hours. Samples were then processed for indirect immunofluorescence using rabbit anti-caspase 3 and mouse
anti-capsid. Primary antibodies were detected with donkey anti-rabbit Alexa488 and chicken anti-mouse Alexa594. Nuclei were counter stained with

Anti-Apoptotic Viral Capsid Protein
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challenged with staurosporine or anti-Fas and then stained with

the membrane potential sensitive dye TMRM. Samples were

analyzed by FACS, after which the relative specific cell death

levels for each sample were calculated (Figure 3C). Data in

Figure 3D show that compared to luciferase, expression of capsid

protein reduced the relative specific death induced through

intrinsic (staurosporine) or death receptor-dependent pathways

(Fas) by 20–35%. However, because less than 50% of the

lentivirus-transduced cells express detectable levels of capsid

protein, these numbers likely underestimate the true level of

protection afforded by stable expression of the RV capsid protein.

Bax and Bak are two key apoptotic molecules that form

oligomers on mitochondria [24,25,26] and apoptosis occurs when

the mitochondrial outer membrane is permeabilized by these

pore-forming molecules [27]. Accordingly, we next focused our

efforts on these Bcl-2 family members starting with Bax. Normally,

Bax is an inactive monomer found in the cytosol or loosely bound

to the mitochondrial outer membrane of healthy cells [28,29]. In

response to apoptotic stimuli, Bax activation is characterized by a

multi-step process whereby it undergoes a conformational change

[30,31], integrates into the mitochondrial membrane [28,32]

where it forms higher order oligomers [33]. It is the large Bax

oligomers that are linked to the formation of membrane pores that

facilitate release of mitochondrial cytochrome c and downstream

caspase activation [33,34]. Of these multiple steps, Bax confor-

mational change can be detected by immunoreactivity with a

conformation-specific antibody, 6A7 [35,36]. We observed that

RV infection induces Bax conformational change, however

cytochrome c remained associated with mitochondria (Figure 4A,

arrows). Moreover, Bax conformational change as detected by

6A7 staining was evident in the majority (76%) of cells expressing

capsid protein (Figure 4B arrows). In contrast, among cells

expressing the viral glycoproteins E2 and E1, only 6% contained

activated Bax. Despite initial stimulation of Bax, similar to infected

cells, no loss of cytochrome c from mitochondria was observed in

capsid-expressing cells. Because capsid protein stimulates Bax in a

manner that does not produce functional pores that mediate efflux

of cytochrome c, we initially thought that capsid protein blocks

oligomerization of Bax. However, data in Figure 5A indicate that

this is not the case. Rather, our results suggest that capsid protein

and Bax form mixed large hetero-oligomers even in the absence of

apoptotic stimuli. Indeed, reciprocal co-immunoprecipitation

experiments confirmed that capsid forms a stable complex with

Bax (Figure 5B). Staurosporine treatment enhanced the formation

of the capsid:Bax hetero-oligomers but evidently did not facilitate

the assembly of functional Bax pores as the cells were not

apoptotic. Interestingly, we found no evidence that capsid protein

binds to Bak (Figure 5C) suggesting the interaction of this viral

protein with Bcl-2 family proteins is highly specific. Together,

these data suggest that capsid protein and Bax form mixed

oligomers that do not function as pores.

Capsid protein protects against Bax- but not Bak-induced
apoptosis

Since capsid protein forms a complex with Bax, we next tested

whether its expression could inhibit Bax-mediated apoptosis.

Over-expression of either Bax or Bak induces cell death in the

absence of other apoptotic stimuli [37]. A549 cells were co-

transfected with plasmids encoding GFP-Bax and capsid, Bcl-XL

(positive control) or vector alone (negative control) and at 24 hour

post-transfection, samples were stained with the membrane-

potential specific dye TMRM and then subjected to flow

cytometric analyses (Figure 6A). As a second control, we

transfected cells with a plasmid encoding a capsid deletion

construct (CapNT) that is not targeted to mitochondria (see

below). Loss of TMRM staining as a result of depolarization of

mitochondrial membranes was used as the measure of apoptotic

cell death. Quantitation of the data (Figure 6C) revealed that

expression of capsid protein reduced the level of Bax-induced cell

death by more than 60% compared to CapNT or vector alone.

Similar results were observed for cells expressing Bcl-XL, a protein

which has previously been shown to block the effects of Bax over-

expression [38]. Data in Figure S4 show that capsid expression

also protects primary human embryonic fibroblast (HEL-18) cells

[17] from Bax-mediated apoptosis. The anti-apoptotic activity of

capsid protein was specific to Bax as evidenced the fact that it did

not attenuate Bak-mediated apoptosis (Figure 6B, C).

To further understand how capsid functions to block apoptosis,

we determined whether expression of this viral protein inhibits

Bax-induced release of cytochrome c. A549 cells were co-

transfected with plasmids encoding GFP-Bax and capsid or empty

vector. Localization of cytochrome c was monitored by fluores-

cence microscopy at 24 hours post-transfection. As expected, in

cells expressing GFP-Bax and vector alone, there was marked loss

of cytochrome c from mitochondria (Figure 7A, asterisks). In

contrast, in cells that expressed both capsid protein and GFP-Bax,

cytochrome c remained associated with this organelle (Figure 7A,

arrows). However, consistent with data shown in Figures 5 and 6,

capsid did not block GFP-Bak-induced loss of cytochrome c from

mitochondria (Figure 7B arrows).

Capsid:Bax interactions form the basis for the anti-
apoptotic activity of capsid

Based on the assumption that association of capsid protein with

mitochondria is critical for its anti-apoptotic function, we next

mapped the region of capsid protein that is required for targeting

to this organelle. Analyses of the RV capsid protein sequence with

web-based algorithms such as PSORT II Prediction (http://psort.

nibb.ac.jp/form2.html) indicated that conventional mitochondrial

targeting signals are absent. We therefore constructed a series of

capsid deletion mutants whose localizations were determined by

expression in A549 cells (Figure 8A). From the indirect

immunofluorescence data shown in Figure 8B, it can be seen that

the 23 amino acid residue E2 signal peptide which forms the

hydrophobic carboxyl-terminus of capsid protein, is required for

association with mitochondria. Moreover, the observation that a

pool of CapCT overlaps with cytochrome c indicates that the

carboxyl-terminal region of capsid protein contains information

that is sufficient for targeting to mitochondria. Intriguingly,

expression of the CapCT construct caused extreme compaction

of the mitochondrial network to the perinuclear region, much

more so than in cells expressing full-length capsid protein.

DAPI. Scale bar = 20 mm. B. The percentages of cells among mock and RV infected cells treated with ST expressing active caspase 3 were determined
and plotted. Student’s t-Test was performed to determine statistical significance. p = #0.001. Percentages were determined from three independent
experiments in which at least 100 cells for each experiment were scored. C. To demonstrate that ST treatment did not result in selective loss of
infected cells, the percentages of RV infected cells were determined in control (RV) and ST-treated (RV + ST) samples. D. The percentage of viable cells
in mock and RV infected samples were determined by Trypan blue dye exclusion at the indicated time points. Error bars indicate standard deviations
calculated from three independent experiments.
doi:10.1371/journal.ppat.1001291.g001
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Figure 2. Expression of RV capsid protein blocks activation of caspase 3. A. A549 cells were transiently transfected with plasmids encoding
eGFP, RV glycoproteins E2 and E1, capsid protein or the anti-apoptotic protein Bcl-XL. At forty hours post-transfection, cells were treated with anti-Fas
for 6 hours after which time they were processed for immunofluorescence using rabbit anti-caspase 3 and mouse antibodies to E1, capsid or Bcl-XL.

Anti-Apoptotic Viral Capsid Protein
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We next determined whether association of capsid with

mitochondria correlated with its ability to block apoptosis.

Transfected cells expressing the various capsid constructs were

challenged with staurosporine or anti-Fas, and then apoptosis

induction was assessed using the activated caspase 3 assay. The

amino-terminal capsid construct (CapNT) neither associates with

mitochondria nor protects against apoptosis (Figures 8, 9).

Conversely, CapCT, a pool of which is targeted to mitochondria,

protects as well as full-length capsid protein against staurosporine

and anti-Fas challenge. CapDRSP, which lacks the hydrophobic

E2 signal peptide and a membrane proximal arginine-rich (R)

motif, is not targeted to mitochondria and does not block

staurosporine or anti-Fas-mediated induced activation of caspase

3. Interestingly, although CapDSP does not localize to mitochon-

dria, it did confer resistance to both Fas- and staurosporine-

induced apoptosis (Figure 9). This observation suggests that the

membrane-proximal R motif is important for the anti-apoptotic

function of capsid. Table 1 summarizes the localization and anti-

apoptotic properties of the capsid deletion mutants.

To investigate if the arginine residues in the membrane-

proximal R motif were important for the anti-apoptitic function of

capsid protein, we created a point mutant (CapCR5A) in which

five arginines in this motif were changed to alanine residues

(Figure 10A). This capsid mutant was targeted to mitochondria

where it activated Bax and stimulated cytochrome c release in the

absence of apoptotic stimuli (Figure 10B and C asterisks);

indicating that the arginine residues within the R domain are

critical for the anti-apoptotic activity of capsid protein. Moreover,

it would appear that mutation of these arginine residues unmasks

an intrinsic pro-apoptotic activity of capsid protein, which may

explain why it alone can stimulate Bax conformational change and

membrane insertion. Next, we compared the Bax-binding ability

of the CR5A mutant relative to wild type capsid and capsid

deletion constructs. The observation that more CapDSP is

recovered in anti-Bax coimmunoprecipitations than CapDRSP

(Figure 11A) suggests that the R domain is important for

interaction with Bax. However, ablation of the arginine residues

in the R domain did not affect binding to Bax indicating that the

arginine residues per se in this motif are not essential for interaction

with Bax (Figure 11A). Binding between Bax and CapCT or

CapNT was not detected in our assays (Figure 11B). Indirect

immunofluorescence analyses revealed that unlike wild type capsid

and CapCR5A, neither CapNT, CapCT, CapDSP nor CapDRSP

induced the 6A7-specific conformation change in Bax (data not

shown). Together, these results suggest that capsid protein employs

a multi-step mechanism to block apoptosis. Specifically, binding to

Bax through the R domain and/or the carboxyl terminus

stimulates a conformational change in Bax; but pore formation

and/or functionality is blocked by the arginines in the R motif of

capsid protein.

Recombinant viruses with mutations in the R domain are
less resistant to apoptosis and are replication defective

We introduced the CR5A mutations into the capsid gene of a

RV infectious clone in order to determine if the membrane-

proximal arginine-rich (R) domain in capsid protein is required for

blocking apoptosis during infection. Our hypothesis was that early

onset apoptosis would result in decreased replication and virus

particle production. A549 cells were infected with wild type or

CR5A strains of RV and virus replication and apoptosis induction

were analyzed. Data in Figure 12A show that cells infected with

CR5A virus were significantly more susceptible to Fas-dependent

apoptosis. Moreover, in non-treated (control) samples, the level of

virus-induced apoptosis was four fold higher in cells infected with

the CR5A mutant. Similar results were obtained with infected

Vero cells (data not shown). Next, we compared the levels of RV

proteins in CR5A and wild type (WT) RV infected cells as a

function of time. Figure 12B shows that in cells that were infected

with WT RV, the level of virus nonstructural (p150) and structural

proteins (capsid) peaked at 72 hours. In contrast to p150 levels

which were only moderately lower, steady state levels of capsid

protein were dramatically lower in CR5A infected cells at all time

points. To control for the possibility that CR5A capsid was

unstable in the infected cells, we also determined the relative levels

of another structural protein, E1. Similar to capsid protein levels in

CR5A infected cells, levels of E1 were much lower than in WT

virus infected cells; suggesting a defect in synthesis of structural

proteins in CR5A infected cells. Consistent with this theory, data

in Figure 12C show that secretion of CR5A virions is severly

impaired. This was not because the CR5A capsid is misfolded as

data in Figure S5 show that this mutant capsid protein functions as

well as wild type capsid in driving assembly and secretion of

Rubella virus-like particles.

Nonstructural proteins are translated directly from the 40S

genomic RNA whereas capsid and other structural proteins are

made from a subgenomic RNA. Accordingly, it is possible that

virus transcription and replication are impaired in the CR5A

mutant. Quantitative RT-PCR with p90 specific primers was used

to determine the relative levels of genomic RNA in the WT and

CR5A infected samples (Figure 12D). From these data, it can be

seen that replication of viral RNA was severely affected in CR5A

infected cells. This was not due to decreased infection efficiency

because at six hours post-infection, there was on average .50%

more genomic RNA in CR5A infected cells (Table 2). Moreover,

as demonstrated by plaque assays, cells infected with CR5A virus

did release infectious virus (Figure 12E). Interestingly, the CR5A

plaques were larger and had a spotty appearance compared to

wild type virus-produced plaques which were smaller and clearer.

Although data in Figure S5 indicate that Cap5RA is not

misfolded, without additional investigation, we could not com-

pletely rule out the possibility that the replication defects

associated with the CR5A strain virus were due to other inherent

defects of the mutant capsid protein. Therefore, we attempted to

artificially block apoptosis by over-expression of Bcl-XL or adding

the caspase inhibitor Z-VAD-FMK to CR5A infected cells. Over-

expression of Bcl-XL did not rescue the CR5A replication but this

result was non-informative as further investigation revealed that

this anti-apoptotic protein was unable to protect mitochondria

from the effects of CapC5RA in transfected cells (data not shown).

In contrast, addition of Z-VAD-FMK did have a modest effect on

production of viral proteins in CR5A infected cells (Figure 13A).

The effect was most pronounced at 72 hrs post-infection where

levels of p150 and capsid were considerably higher in Z-VAD-

FMK treated cells. In contrast, blocking caspase activity in cells

Primary antibodies were detected with donkey anti-rabbit Alexa488 and chicken anti-mouse Alexa594. For samples expressing eGFP, the rabbit anti-
caspase 3 was detected with donkey anti-rabbit conjugated to Texas Red. Nuclei were counter stained with DAPI. Scale bar = 10 mm. B. The
percentages of transfected cells expressing active caspase 3 (double positive) were determined and plotted. Error bars indicate standard deviations
calculated from three independent experiments in which at least 100 cells for each experiment were scored. One-way ANOVA was used to determine
statistical significance. p = #0.001.
doi:10.1371/journal.ppat.1001291.g002
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Figure 3. Expression of capsid in stably transduced A549 cells protects against staurosporine- and Fas-induced depolarization of
mitochondria and PARP cleavage. A. A549 cells were stably transduced with a lentivirus encoding RV capsid. Following induction with
doxycycline (Dox), approximately ,40% of cells were found to express capsid protein as detected by indirect immunofluorescence with a mouse
monoclonal antibody and chicken anti-mouse Alexa594. Nuclei were counter stained with DAPI. Scale bar = 10 mm. B. Cells expressing capsid (Cap) or
luciferase (Luc) were treated with anti-Fas for 0, 2 and 6 after which levels of cleaved PARP (c-PARP) were determined by immunoblotting. Monitoring
GAPDH levels was done to illustrate comparable loading. C. Capsid protein or luciferase expression was induced with doxycycline for 48 hours and
then cells were treated with staurosporine (ST) or anti-Fas antibody for 6 hours to induce apoptosis. Samples were then stained with TMRM for 30
minutes and then subjected to flow cytometric analyses. The relative level of specific cell death in each sample was calculated and plotted (D). Error
bars indicate standard deviations. Student’s t-Test was performed to determine statistical significance *p#0.01 **p#0.005.
doi:10.1371/journal.ppat.1001291.g003

Figure 4. RV infection activates Bax. A. A549 cells were infected with RV (MOI = 1) and then processed for indirect immunofluorescence after
48 hours. Samples were stained with goat anti-RV, rabbit anti-cytochrome c and a mouse monoclonal (6A7) that recognizes activated Bax. Primary
antibodies were detected with chicken anti-goat Alexa488, donkey anti-rabbit Alexa637, and chicken anti-mouse Alexa594. B. A549 cells were
transiently transfected with plasmids encoding RV capsid, glycoproteins E2 and E1 or vector alone. After 48 hours, samples were processed for
indirect immunofluorescence as described in A. Images shown are representative of three independent experiments in which at least 100 infected or
transfected cells were examined. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1001291.g004
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that were infected with wild type RV did not appreciably alter the

steady state levels of viral proteins. Finally, it can be seen from the

data in Figure 13B that Z-VAD-FMK treatment had a modest

effect on production of CR5A virus. Compared to CR5A-infected

Vero cells treated with DMSO alone, addition of Z-VAD-FMK

resulted in a modest increase in viral titers as evidenced by

increased clearing of RK-13 monolayers. Together, these data are

consistent with our hypothesis that the anti-apoptotic function of

capsid is important for virus replication.

Discussion

Apoptosis is a common defense mechanism used by host cells to

limit the spread of viral infections and consequently, a number of

viruses have developed mechanisms to disrupt programmed cell

death pathways. With few exceptions, all known viral apoptosis

inhibitors are accessory proteins that are encoded by DNA viruses

and therefore, a great deal of effort has focused on these proteins

(reviewed in [39]). Ironically, even though RNA viruses cause the

vast majority of viral diseases in humans, comparatively little is

known about if or how these types of viruses interfere with

apoptotic signaling. Among the exceptions are picornaviruses, a

number of which encode ‘‘security’’ proteins (leader protein and

2BC) that can block apoptosis [40,41]. The mechanisms by which

these proteins block apoptosis are not known and interestingly,

caspase activation can still occur normally. These proteins may not

actually prevent cell death per se, but rather, shift the balance

toward necrotic cell death as opposed to apoptosis.

Hepatitis C virus (HCV) is known to modulate apoptotic

signaling but unlike picornaviruses, this virus is not cytolytic and

readily establishes persistent infections in vivo. HCV encodes a

number of proteins that reportedly exhibit anti-apoptotic activity.

For example, the nonstructural proteins NS2 and NS5A interfere

with programmed cell death by different mechanisms [42,43]. The

functions of HCV structural proteins in apoptotic signaling events

are less clear; in particular, the core/capsid protein. The majority

of data suggest that this protein acts to induce apoptosis although a

number of published studies suggest otherwise (reviewed in [44]).

Similarly, with one exception [45], expression of HCV E2

glycoprotein reportedly acts in a pro-apoptotic manner

[46,47,48]. By and large, these studies involved plasmid-based

expression of individual HCV proteins and indeed the data

provide much to ponder with respect how this virus interfaces with

apoptotic pathways. However, it is still not clear how individual

HCV proteins or those of any other RNA virus affect cell death

during infection.

Multiple laboratories have reported that RV infection induces

programmed cell death in a variety of cultured cell lines

[17,19,23,49,50] but it is worth noting that in virtually all cases,

maximum synthesis of viral macromolecules and release of virions

occur well before extensive apoptosis is observed. For example, in

Vero cells, robust expression of structural proteins is first detected

at 16 hours post-infection and secretion of infectious virions peaks

32 hours later [51]. Conversely, late apoptotic events such as DNA

fragmentation and expression of pro-apoptotic proteins p53 and

p21 does not peak until 5–7 days post-infection [17]. This

indicates that that the majority of programmed cell death occurs

long after the peak of virus production. Consistent with these

observations, we show that RV infected cells are in fact, resistant

to apoptosis for at least 48 hours post-infection.

Here, we provide evidence that in addition to functioning in

virus assembly, the RV capsid protein is a potent inhibitor of

apoptosis. With the possible exception of HCV capsid and E2,

structural proteins of RNA viruses have been found to cause

apoptosis rather than prevent cell death (reviewed in [39,44,52]).

As far as we are aware, this is the first example of a structural

protein from an RNA virus that functions to block cell death

pathways through interactions with Bax. Mapping studies suggest

that expression of the virus nonstructural proteins is the cause of

RV-induced cell death [19,20]. Accordingly, counteracting

apoptotic pathways that become activated by expression of these

early proteins may be essential for efficient replication; a theory

that is supported by data from reverse genetic experiments with

the CR5A mutant.

Our data appear to be in disagreement with previously

published data showing that capsid protein expression induces

apoptosis [22]. An important distinction between the previous

study and the present work is that we assayed the ability of capsid

protein to protect against various apoptotic stimuli rather than

assaying whether or not capsid expression induces apoptosis in the

absence of stimuli. In addition, we found that capsid protein blocks

apoptosis in multiple cell lines (including a primary human cell

line) whereas in the afore-mentioned study, capsid protein was

reported to be pro-apoptotic in RK-13 but not other cell lines.

Data in the present study are also consistent with the fact that

stable cell lines that express high levels of RV structural proteins

(including capsid protein) are readily established in a variety of

cells types [19,53,54]. Importantly, the results of the reverse

genetic experiments suggest that the anti-apoptotic function of the

capsid protein is critical for RV replication. Although we cannot

absolutely rule out the possibility that mutations in the R domain

of capsid directly affect its functions in replication and assembly

this seems unlikely. First, the CapCR5A mutant was able to drive

particle assembly and CR5A virions efficiently delivered viral

RNA to host cells. Second, the region of capsid that complements

p150 function in virus replication is in the amino-terminal one

third of the protein [55]. Accordingly, the most logical conclusion

is that the anti-apoptotic role of capsid protein is necessary to

promote survival of the host cell during the long replication cycle.

To our knowledge, this has never been demonstrated before for an

RNA virus but it is tempting to speculate that other slowly

replicating RNA viruses employ similar mechanisms to avoid

killing infected cells.

Although capsid protein may interfere with apoptosis by more

than one mechanism, because the Bax-dependent pathway is a

critical feature of mitochondrial apoptosis in most human cell

types, interfering with the pore-forming ability of this protein is

likely the key anti-apoptotic function of capsid protein. Binding of

capsid protein to Bax induces a major conformational change,

which interestingly, seems to promote activation and oligomeri-

zation of Bax. It is not clear if this phenomenon is related to the

anti-apoptotic activity of capsid or if it is an inconsequential effect

of complex formation with Bax. Figure 14 depicts a model in

Figure 5. Capsid protein forms complexes with Bax. A. Stably transduced A549 cells expressing luciferase (Luc) or capsid protein (Cap) were
treated with staurosporine (ST) for 6 hours. After ST treatment, crude mitochondria were isolated and then crosslinked with BMH prior to analyses by
immunblotting with antibodies to capsid and Bax. The arrowhead in the upper panels denotes an SDS-resistant Bax dimer that is present in all
samples. The asterisk in the lower panels denotes a non-specific protein that cross-reacts with the capsid antibody. A549 cells were infected with RV
and at 42 hours, were treated with ST for 0 to 6 hours. Cell lysates were subjected to immunoprecipitation (IP) with antibodies to capsid, Bax (B) or
Bak (C) followed by SDS-PAGE and immunoblotting (IB).
doi:10.1371/journal.ppat.1001291.g005
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Figure 6. Capsid expression protects against Bax- but not Bak-induced apoptosis. A549 cells were co-transfected with plasmids encoding
GFP-Bax or GFP-Bak together with plasmids encoding capsid, CapNT, Bcl-XL (not shown) or vector alone. After 24 hours, samples were stained with
TMRM for 30 minutes and then subjected to flow cytometric analyses. Sample FACS plots for GFP-Bax (A) and GFP-Bak (B) transfectants are shown. C.
The levels of relative specific cell death in GFP positive cells were calculated and plotted. Error bars indicate standard deviations calculated from three
independent experiments. *p#0.001, **p#0.01.
doi:10.1371/journal.ppat.1001291.g006
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Figure 7. Capsid expression prevents Bax-induced release of cytochrome c from mitochondria. A549 cells were co-transfected with
plasmids encoding capsid or vector alone together with GFP-Bax (A) or GFP-Bak (B). After 24 hours, cells were stained with mouse anti-capsid and
rabbit anti-cytochrome c. Primary antibodies were detected with chicken anti-mouse Alexa594 and donkey anti-rabbit Alexa637. Asterisks mark Bax
or Bak expressing cells that have released their mitochondrial stores of cytochrome c into the cytoplasm. In part A, the arrows denote a cell
expressing both capsid and Bax. In this cell, it can be seen that cytochrome c remains associated with mitochondria. In part B, the arrowheads denote
a cell expressing both capsid and Bak. However, in this case, the cell has released its mitochondrial stores of cytochrome c into the cytoplasm. Images
shown are representative of three independent experiments in which at least 100 cells were examined. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1001291.g007
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which capsid protein interferes with formation of functional Bax

pores. In some critical aspects, the RV capsid protein may function

analogously to the cytomegalovirus accessory protein vMIA, a

putative Bcl-2 homolog that forms mixed oligomers with Bax [56].

However, confirmation of this theory is dependent upon

determining the structure of the RV capsid protein.

Mapping studies localized the anti-apoptotic activity to the

carboxyl-terminal region of capsid protein. The E2 signal peptide,

which is required for membrane association of capsid protein

[57,58], is also essential for targeting to mitochondria but not for

blocking apoptosis. Conversely, while the membrane proximal

arginine-rich (R) motif in capsid is dispensable for targeting to

mitochondria, it is required for protection from intrinsic and

extrinsic apoptotic stimuli (Table 1). The R motif (RSARHP-

WRIR) of RV capsid bears remarkable similarity to the Bax-

binding motif (RRHRFLWQRR) in vMIA [59] which is critical

for blocking Bax- but not Bak-dependent apoptosis [60]. Despite

the apparent similarities between vMIA and RV capsid protein,

one difference worth noting is that the arginine-rich motif in

capsid is not required for binding to Bax.

As mentioned above, it is possible that capsid protein blocks

apoptosis through other mechanisms, at least one of which does

not involve Bax. For example, CapCT, which neither binds to nor

activates Bax, protects cells from staurosporine and Fas-dependent

apoptosis. However, unlike full-length capsid, CapCT does not

protect cells from Bax over-expression. Capsid binds two other

pro-apoptotic proteins p32 and Par-4 [61] and through seques-

tration into non-functional complexes, it is possible that the

functions of these proteins in apoptotic signaling are mitigated.

Although we have no direct evidence to support this theory,

binding to membrane-associated capsid protein may prevent Par-4

from engaging in pro-apoptotic complexes in the nucleus or cell

surface [62,63,64]. Finally, we showed that translocation of the

capsid-binding pro-apoptotic protein p32 into mitochondria is

inhibited by RV infection [12]. Because targeting of p32 to

mitochondria is critical for its function in programmed cell death

pathways [65,66], reducing the levels of mitochondrial p32 would

be expected to reduce apoptosis.

To summarize, we describe a novel mechanism by which a viral

capsid protein potently blocks apoptosis. Our data suggest that this

function of capsid is important for virus replication and it is also

tempting to speculate that establishing and/or maintaining

persistent infections in vivo also requires this activity. RV is known

to persistently infect lymphocytes and capsid-dependent inhibition

of Fas-dependent apoptosis may allow the virus to disseminate

through the body using apoptosis-resistant lymphocytes as

conduits. It will be of interest to examine proteins from other

slowly replicating RNA viruses to determine if capsids or other

proteins double as inhibitors of apoptosis.

Materials and Methods

Reagents
The following reagents were purchased from the respective

suppliers: Protein A and G Sepharose from GE Healthcare Bio-

Sciences Corp (Princeton, NJ); General lab chemicals from Sigma

Chemical Co. (St. Louis, MO); Media and fetal bovine serum

(FBS) for cell culture from Life Technologies-Invitrogen, Inc.

Figure 9. The anti-apoptotic function of capsid protein maps to the carboxyl-terminal region. A549 cells were transiently transfected
with various capsid constructs or Bcl-XL and at 42 hours post-transfection, cells were treated with staurosporine or anti-Fas for 6 hours after which
the numbers of transfectants that were positive for active caspase 3 (double positive) were determined by indirect immunofluorescence. Error bars
indicate standard deviations calculated from three independent experiments. *p#0.0001, **p#0.001.
doi:10.1371/journal.ppat.1001291.g009

Figure 8. The E2 signal peptide is required for targeting of capsid protein to mitochondria. A. Schematic of capsid constructs used for
transfection experiments. RNA = RNA-binding domain; R = Arginine-rich motif; SP = E2 signal peptide. Numbers denote the amino acid residues of
capsid protein. B. A549 cells were transfected with plasmids encoding capsid constructs and were then processed for indirect immunofluorescence
after 40 hours. With the exception of transfectants expressing CapNT, all samples were stained with mouse anti-capsid and rabbit anti-cytochrome c
to label mitochondria. Primary antibodies were detected with chicken anti-mouse Alexa594 and donkey anti-rabbit Alexa488. CapNT was detected
using goat anti-RV serum and chicken anti-goat Alexa594. Nuclei were stained with DAPI. Scale bar = 10 mm.
doi:10.1371/journal.ppat.1001291.g008

Anti-Apoptotic Viral Capsid Protein

PLoS Pathogens | www.plospathogens.org 14 February 2011 | Volume 7 | Issue 2 | e1001291



(Carlsbad, CA); A549, HEK 293T, Vero, and RK-13 cells from

the American Type Culture Collection (Manassas, VA.). Hel-18

cells [17] were obtained from Dr. Eva Gonczol, (National Center

for Epidemiology, Budapest, Hungary).

Mammalian cell culture and virus infection
A549 and HEK 293T cells were cultured in Dulbecco’s minimal

essential medium (high glucose) containing 10% FBS, 2 mM

glutamine, 1 mM HEPES, and antibiotics. Vero cells were

cultured in Dulbecco’s minimal essential medium (high glucose)

containing 5% FBS, 2 mM glutamine, 1 mM HEPES, and

antibiotics. RK-13 cells were cultured in minimum essential

medium containing 10% FBS, 2 mM glutamine, 1 mM HEPES,

0.1 mM non-essential amino acids, and antibiotics. Hel-18 cells

were cultured in RPMI-1640 medium containing 10% FBS,

2 mM glutamine, 1 mM HEPES, 0.1 mM non-essential amino

acids, and antibiotics. Cells were incubated at 37uC in a

humidified atmosphere with 5% CO2. RV stocks were diluted

with cell culture media and then added to cells that had been

washed with PBS. Cells were incubated with the virus (1 ml/

35 mm dish) for 4 hours at 35uC after which time the inoculum

was replaced with normal growth media. Infected cultures were

kept at 35uC until experimental analyses.

To investigate the effect of blocking apoptosis on virus

replication, Vero cells were infected with M33 (wild type) or

CR5A strains of RV (MOI: 1) in the presence of 50 mM pan-caspase

inhibitor Z-VAD-FMK (Promega, Madison, WI) which was initially

made as a 20 mM stock solution in dimethyl sulfoxide (DMSO). Z-

VAD-FMK or control vehicle (DMSO) was added to infected cells

every 24 hrs. Samples were processed at the indicated time points

and virus titers were determined by plaque assay [67].

Plasmid construction and lentivirus production
Plasmids for expression of pCMV5-Capsid, pCMV5-CapCT,

pCMV5-CapDSP and pCMV5-E2E1 have been described previ-

ously [58,67,68]. An expression plasmid encoding amino acid

residues 1–152 of capsid (CapsidNT) was constructed by polymerase

chain reaction (PCR) using a forward primer with a EcoRI site and a

Kozak consensus ribosome-binding site (59-CGGAATTCGCCAC-

CATGGCTTCCACTACCCCCATCACC-399) and a reverse prim-

er with a BamHI site and stop codon (59-CGCGCGGATCCC-

TAGGCCTCAGTGGGTGC-39). The restriction sites are

underlined in the primer sequences. The CapDRSP cDNA which

encodes amino acid residues 1–267 of capsid, was constructed by

PCR using the forward EcoRI and Kozak site-containing forward

primer (59-CGGAATTCGCCACCATGGCTTCCACTACCCC-

CATCACC-399) and a reverse primer with a BamHI site and stop

codon (59-CGCGCGGATCCCTACTCGGTGGTGTGAGGG-

39). The template cDNA for the CapNT and CapDRSP PCR

reactions was pCMV5-capsid. The CapC5RA expression plasmid

was prepared by PCR using a forward primer containing an EcoRI

site and a Kozak site (59-TCACGGAATTC-39) and a reverse primer

containing a BamHI site (59-TCAGGATCCCTAGGCGCGC-

GCGGTGC-39). The template DNA was pBRM33-CR5A. The

CapsidNT, CapsidDRSP, and CapsidC5RA cDNAs were resulting

products were sublconed into the EcoRI and BamHI sites of the

mammalian expression vector pCMV5 [69] to produce pCMV5-

CapNT, pCMV5-CapDRSP and pCMV5-CapCR5A respectively.

For establishing capsid and luciferase expressing stable cell lines,

the Lenti-X-tet-On advanced inducible expression system (Clon-

tech Laboratories, La Jolla, CA) was utilized. A cDNA encoding

full-length capsid was amplified by PCR using a forward primer

with a BamHI site and Kozak consensus ribosome binding site (59-

TAGGATCCGCCACCATGGCTTCCACTACCCCCATCACC-

39) and a reverse primer with a EcoRI site (59-GGCCGAATTCC-

TAGGCGCGCGCGGTGC-39) respectively, where the restric-

tion sites are underlined. The DNA used as a template was

pCMV5-capsid. The PCR product was digested with BamHI and

EcoRI, and subcloned into the pLVX-Tight-Puro vector. Lentivi-

rus-production in HEK 293T and transduction of A549 cells were

performed as per the manufacturer’s instructions. At 48 hours

post-transduction, cells were split 1:2 into medium containing

G418 (500 mg/ml) and puromycin (0.5 mg/ml). Surviving cells

were tested for inducible expression of capsid by indirect

immunofluorescence and immunoblot analyses. The resulting

polyclonal stable cell lines A549-Luciferase and A549-Capsid were

maintained in media containing G418 (250 mg/ml) and puromy-

cin (0.25 mg/ml). To induce capsid or luciferase gene expression

doxycycline (1 mg/ml) was added to the culture medium.

Construction of RV strain with mutations in Arginine-rich
domain

Codons for arginine-to-alanine mutations in the C-terminus of

capsid were introduced into the RV M33 infectious clone

(pBRM33) [70] by a two step cloning procedure. A 421 base

pair synthetic fragment (Epoch BioLabs Inc, Sugarland, TX)

containing five arginine-alanine substitutions (R264, 268, 271,

275, 277) was used to replace the analogous region in pCMV5-

24S [68]. The resulting plasmid was named pCMV5-24S-CR5A.

Next, the BsrGI/BamHI fragment from pCMV5-24S CR5A was

used to replace the analogous region (BsrGI/BamHI) in pBRM33

resulting in the infectious clone pBRM33-CR5A.

Quantitative PCR
Total RNA samples were isolated with TRI Reagent

(Ambion) from Vero cells infected with M33 (wild type) or

Table 1. Properties of Capsid mutants.

Construct Mitochondria localization Bax binding Protection against anti-Fas Protection against ST

Capsid Yes Yes Yes Yes

CapNT No No No No

CapCT Yes No Yes Yes

CapDSP No Yes Yes Yes

CapDRSP No No No No

CapCR5A Yes Yes aND aND

aND = Not determined.
doi:10.1371/journal.ppat.1001291.t001
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Figure 10. The arginine-rich motif in capsid protein is not required for targeting to mitochondria or activation of Bax. A. In the
CapC5RA mutant, 5 arginine residues in the R motif were changed to alanines. RNA = RNA binding site; R = arginine-rich motif; SP = E2 signal
peptide. B. A549 cells were transfected with plasmids encoding wild type capsid or CapC5RA. At 40 hours post-transfection, cells were processed for
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CR5A strains of RV (MOI: 1) according to the manufacturer’s

instructions. Prior to the RT-PCR reaction, 1 mg of total RNA

was treated with 2 U of amplification grade DNase I

(Invitrogen) as per manufacturer’s recommendations. The

DNase I-treated RNA samples were reverse transcribed to

single-stranded cDNA using qScript Flex cDNA synthesis kit

and Oligo (dT)20 primer (Quanta Biosciences, Gaithersburg,

MD) as per manufacture’s instructions.

Quantitative PCR reactions were conducted on a MX3005P

thermocycler (Stratagene, La Jolla, CA) using a PerfecCTa SYBR

green supermix low Rox real-time PCR kit (Quanta Biosciences).

Reactions were carried out by triplicate in a total volume of 25 ml

Figure 11. The carboxyl-terminal R motif in capsid protein is required for binding to Bax. A549 cells transiently expressing capsid, CapNT,
CapCT, CapDSP, CapDRSP, CapC5RA or vector alone were subjected to immunoprecipitation (IP) with rabbit anti-Bax under non-denaturing
conditions. Samples were resolved by 10% (A) or 15% (B) SDS-PAGE and analyzed by immunoblotting (IB) with goat anti-RV to detect capsid proteins
or mouse anti-Bax. Arrowheads in the lower panel denote the various capsid constructs. The asterisk indicates IgG light chain.
doi:10.1371/journal.ppat.1001291.g011

indirect immunofluorescence using goat anti-RV, rabbit anti-cytochrome c and a mouse monoclonal antibody specific for activated Bax (6A7). Asterisk
denotes a cell expressing CapC5RA that has loss its mitochondrial stores of cytochrome c. C. Samples were processed as in panel B except that a
mouse monoclonal antibody to Complex II was included (instead of anti-Bax) to show that CapCR5A was targeted to mitochondria. Scale bars
= 10 mm.
doi:10.1371/journal.ppat.1001291.g010
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Figure 12. The carboxyl-terminal R motif in capsid protein is required to block apoptosis during RV infection. A. A549 cells were
infected with wild type (WT) or CR5A strains of RV (MOI = 1) and 42 hours later, cells were treated with anti-Fas to induce apoptosis. Cells were
processed for indirect immunofluorescence using rabbit anti-caspase 3 and mouse anti-capsid. The average number of double-positive cells for each
experimental condition was determined from three independent experiments and the results were plotted. *p#0.005, **p#0.001. B. Vero cells were
infected with WT or CR5A strains of RV (MOI = 1). At the indicated times, cell lysates (60 mg) were subjected to immunoblot analyses using antibodies
to p150, capsid, E1 and GAPDH (loading control). C. Cell culture supernatants from infected Vero cells were centrifuged at 100,0006g and the pellets
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containing 5 ml of cDNA and 0.2 mM of each oligonucleotide

primer. Primers used to amplify RV nucleotides 5520–5706 from

the RV p90 non-structural protein coding region of the RV

genome were as follow: RV-F (59-AGGTCATGTCTCCG-

CATTTC-39) and RV-R (59-GTCCCGAGTAGCAAGGG-

TCT-39). The amplification cycles for p90 samples consisted of

an initial denaturating cycle at 95uC for 3 min, followed by 40

cycles of 15 s at 95uC, 30 s at 58uC, and 20 s at 72uC.

Fluorescence was quantified during the 58uC annealing step,

and the product formation was confirmed by melting curve

analysis (57uC to 95uC). As an internal control, levels of the house

keeping gene product cyclophilin A determined. Amplification was

performed using the following primers, CYP-F (59- TCCAAA-

GACAGCAGAAAACTTTCG-39) and CYP-R (59-TCTTC-

TTGCTGGTCTTGCCATTCC-39). The amplification cycles

for Cyclophilin A consisted of an initial denaturating cycle at

95uC for 3 min, followed by 40 cycles of 15 s at 95uC, 20 s at

60uC, and 40 s at 72uC. Fluorescence was quantified during the

60uC annealing step, and the product formation was confirmed by

melting curve analysis (57uC to 95uC).

Quantification of the samples was performed using the two

standard curves method [71], and the relative amount of RV

genomic RNA was normalized to the relative amount of

Cyclophilin A mRNA. Three independent PCR analyses were

performed for each sample.

Immunoprecipitation and immunoblotting
A549 cells (16105) in 35 mm culture dishes were infected with

the M33 strain of RV (MOI = 2) and then incubated for 48 hours

at 35uC prior to lysis. Alternatively, A549 cells were transiently

transfected with pCMV5-capsid, pCMV5-CapNT, pCMV5-

CapCT, pCMV5-CapDSP, pCMV5-CapDRSP or pCMV5-Cap-

CR5A using Lipofectamine 2000 (Invitrogen). Cells were lysed in

1% (wt/vol) CHAPS, 150 mM NaCl, 50 mM Tris, pH 8.0

containing Complete EDTA-free protease inhibitors (Roche) or

1% NP-40, 150 mM NaCl, 2 mM EDTA, 50 mM Tris, pH 7.4

containing protease inhibitors. Cell lysates were clarified by

centrifugation at 10,0006 g for 10 minutes at 4uC. Immunopre-

cipitation was performed with clarified lysates and 1 mg/ml of

mouse monoclonal anti-Bax6A7 (Sigma), or 1:1000 of rabbit

polyclonal anti-capsid serum (7W7), or 2 mg/ml of rabbit anti-Bak

(Millipore) antibodies overnight at 4uC with rotation. Fifteen

microliters of protein A or protein G sepharose (50% suspension)

were added and then samples were rotated for 1 hour at 4uC
before washing; twice with lysis buffer and once with PBS. Proteins

were eluted from the beads by boiling in protein gel sample buffer,

separated by SDS-PAGE, and then transferred to polyvinylidene

fluoride (PVDF) membranes (Immobilon-P Millipore, Bedford,

MA). Membranes were incubated for 1 hour at room temperature

with the following antibodies and dilutions: 1:1000 rabbit anti-RV

capsid (7W7) [61],1:1000 mouse anti-capsid (H15C22), 1:1000

goat anti-RV (Meridian Life Science Inc, Saco, Maine), 1:1000

rabbit anti-Bak (Cell Signaling), 1:1000 rabbit anti-Bax (Abcam) or

1:5000 mouse anti-Bax (YTH-2D2, Trevigen Inc, Gaithersburg,

MD). To detect E1 glycoprotein by immunoblotting, it was

necessary to perform SDS-PAGE under non-reducing conditions.

E1 was detected using a 1:1000 dilution of a mouse monoclonal

antibody (H2C213) obtained from Abbott Labs (Abbott Park, IL).

After three washes with Tris-Buffered-Saline-Tween (TBS-T), the

membranes were incubated with either goat anti-rabbit, goat anti-

mouse or rabbit anti-goat horseradish peroxidase-conjugated IgG

(Bio-Rad Hercules, CA) for 1 hour. Membranes were washed four

times with TBS-T and immunoreactive proteins were detected

using Supersignal West Pico chemiluminescent substrate (Pierce

Biotechnology, Rockford, IL) followed by exposure to X-ray film

(Fuji Photo Film Co, LTD, Tokyo, Japan).

PARP cleavage assay
A549-Capsid or A549-Luciferase cells were cultured in the

presence of doxycycline and after 36 hours, anti-human Fas

activating clone CH11 antibody (0.12 mg/ml) (Millipore, Teme-

cula, CA) and cycloheximide (10 mg/ml) were added to the

cultures for 6 hours. Cells were then lysed in 1% NP-40 buffer

containing a cocktail of protease inhibitors. The lysates were

centrifugated at 10,0006 g for 10 min at 4uC, and protein

concentrations were determined by BCA protein assay (Pierce

Biotechnology, Rockford, IL) using bovine serum albumin as a

standard. Equivalent amounts of protein (60 mg) from each lysate

were resolved in 8% SDS-PAGE and transferred to PVDF

membranes followed by immunoblotting with mouse monoclonal

anti-cleaved PARP (Asp214) clone 19F4 antibody (Cell Signaling).

Indirect immunofluorescence microscopy
A549 and Vero cells cultured on glass coverslips were infected

with RV (MOI = 1) or transiently transfected with pCMV5-capsid

or pCMV5-CapNT or pCMV5-CapCT or pCMV5-CapDSP or

pCMV5-CapDRSP or pCMV5-E2E1 or pcDNA3.1-Bcl-XL, and

peGFP-Bax or peGFP-Bax (Gift of Dr. Michele Barry, University

of Alberta) using Lipofectamine 2000 (Invitrogen). After 24 or

48 hours post-infection or post-transfection as indicated, cells were

fixed in 4% paraformaldehyde for 20 min, followed by quenching

with PBS containing 50 mM ammonium chloride. Cell mem-

branes were permeabilized with PBS containing 0.2% Triton-X-

100 for 5 min before incubation with primary and secondary

antibodies. All the washes were done in PBS containing 0.1 mM

CaCl2 and 1 mM MgCl2.

RV proteins were detected with rabbit anti-capsid (7W7), mouse

anti-capsid (H15C22), mouse-anti E1 (H2C213), goat anti-RV, or

human anti-RV (GB) which has been described previously.

Mitochondria were detected using rabbit anti-cytochrome c (from

Dr. L. Berthiaume, University of Alberta) or with a mouse anti-

complex II monoclonal antibody (Mitosciences, Eugene, OR).

Activated isoforms of Bax and capsase 3 were detected with a Bax-

specific mouse monoclonal antibody 6A7 (Abcam) or caspase 3-

specific rabbit monoclonal antibody (BD Pharmingen) respectively.

Primary antibodies were detected with Alexa Fluor 594 chicken

anti-mouse, Alexa Fluor 488 donkey anti-rabbit, Alexa Fluor 488

Table 2. Relative genomic RNA levels in infected Vero cells.

Hours post-infection

RV strain 6 24 48 72

WT 1 623.26116.8 336.56138.3 818.8628.5

CR5A 1.760.1 14.764.5 94.6657.5 245.4618.6

doi:10.1371/journal.ppat.1001291.t002

were subjected to immunoblot analyses using antibodies to capsid. D. Relative levels of genomic viral RNA (gRNA) in the infected Vero cells were
determined by qRT-PCR at the indicated time periods. E. RK13 cells were infected with wild type WT or CR5A strains of RV and plaque assays were
performed. The CR5A-derived plaques are much larger and have a spotty appearance.
doi:10.1371/journal.ppat.1001291.g012
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donkey anti-mouse, Alexa fluor 637 Donkey anti-rabbit and/or

Alexa 594 goat anti-rabbit (Molecular Probes, Invitrogen, Carlsbad,

CA). Coverslips were mounted onto microscope slides using

ProLong Gold antifade reagent with 4’-6-Diamidino-2-phenylin-

dole (Molecular probes, Invitrogen). Samples were then examined

using Zeiss 510 confocal microscope or a Zeiss Axioskop2

microscope equipped with a CoolSNAP HQ digital camera

(Photometrics).

Isolation of mitochondria and Bax cross-linking
A549-Cap or A549-Luciferase cells were cultured for 36 hours in

the presence of doxycycline, followed by incubation with 1 mM

staurosporine (Sigma-Aldrich) or anti-Fas antibody (0.12 mg/ml)

and cycloheximide (10 mg/ml) for 6 hours. Cells were then

homogenized in ice-cold mitochondria isolation buffer containing

200 mM mannitol, 70 mM sucrose, 10 mM Hepes, and 1 mM

EGTA (pH: 7.5) using a dounce homogenizer with a loose fitting

pestle. Unbroken cells and nuclei were pelleted by centrifugation at

5006g for 10 min at 4uC. The supernatants were then centrifuged

at 10,0006 g for 20 min at 4uC to obtain crude mitochondrial

pellets that were cross-linked with 10 mM bis(maleimido)hexane

(BMH; Thermo Scientific) for 30 min at room temperature.

Samples then were separated on 4–12% polyacrylamide gels and

then processed for immunobloting with rabbit polyclonal antibodies

to Bax antibody (Abcam, Cambridge, MA) and capsid (7W7).

Measurement of mitochondrial membrane potential by
flow cytometry

Expression of capsid or luciferase in A549-cap or A549-luc cells

respectively was induced with doxycycline for 36 hours, followed by

incubation with staurosporine (1 mM) or anti-Fas antibody (0.12 mg/

ml) to induce apoptosis. Cells then were stained with 0.2 mM

Tetramethylrhodamine methyl ester (TMRM) (Invitrogen, Molec-

ular probes) for 30 min at 37uC before analyses by flow cytometry

(FACScan, Becton Dickinson). For each sample, 10,000 events were

acquired. Data were analyzed using CellQuest software. The

Figure 13. Vero cells that were infected with the CR5A mutant or wild type RV were treated with DMSO (-) or Z-VAD-FMK (50 mM)
every day for up to 3 days. A. Cell lysates and culture supernatants were harvested at indicated time periods. Equal amounts of cell lysates (60 mg)
were subjected to immunoblot analyses with antibodies to viral (p150 and capsid) and cellular proteins (GAPDH). At each time point, the relative
signals of the p150/GAPDH and capsid/GAPDH in DMSO-treated cells were normalized to 1.0. Relative ratios of Z-VAD-FMK to DMSO samples were
then determined. In some cases (ND), it was not possible to determine the relative ratios due to low signal intensity. B. Media from infected cells were
serially diluted 10-fold before addition to RK-13 monolayers for plaque assays. Based on the clearing of cell monolayers, it can be seen that
supernatants from CR5A infected Z-VAD-FMK-treated Vero cells contain more infectious virus.
doi:10.1371/journal.ppat.1001291.g013
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percentage of killing was calculated as the number of TMRM-

negative cells divided by the total number of cells, and standard

deviations were determined from three independent experiments.

For Bax or Bak killing assays, A549 or Hel-18 cells were

transfected with peGFP-Bax or peGFP-Bak together with

pCMV5, pCMV5-CapNT, or pCMV5-capsid using Lipofecta-

mine 2000 or Lipofectamine LTX respectively (Invitrogen). After

24 hours, cells were stained with 0.2 mM TMRM for 30 min at

37uC prior to analyses by two-color flow cytometry. TMRM

fluorescence was detected through the FL-2 channel equipped

with a 585-nm filter and eGFP fluorescence was measured using

the FL-1 channel equipped with a 489-nm filter. Data were

acquired on 10,000 eGFP-positive cells per sample, and analysis

was performed using CellQuest software. The relative specific cell

death was calculated as the number of eGFP-positive TMRM-

negative cells divided by the total number of eGFP positive cells.

Standard deviations were generated from three independent

experiments.

Rubella virus-like particle assay
Vero cells (16105/35 mm dish) were transiently transfected

with pCMV5-capsid or pCMV5-CapCR5A and pCMV5-E2E1

using Lipofectamine 2000. Assembly and secretion of RV-like

particles was assayed after 48 hours of transfection as described

elsewhere [58].

Statistical analyses
Data from FACS and indirect immunofluorescence-based

apoptosis assays were subjected to statistical analyses (student’s t

test or one-way analysis of variance (One-way ANOVA)) using

Predictive Analytics Software (version 17.0.3) (SPSS Inc, Chicago,

Il).

Supporting Information

Figure S1 Vero cells that have been infected with RV or that

transiently express capsid protein are resistant to apoptosis. A.

Vero cells were infected with RV (MOI = 1) or transiently

transfected with plasmids encoding capsid, eGFP, E2 and E1 or

Bcl-XL (B). After 40 hours, cells were treated with staurosporine

(ST) for 6 hours. Samples were then processed for indirect

immunofluorescence using rabbit anti-caspase 3 and mouse anti-

capsid. Primary antibodies were detected with donkey anti-rabbit

Alexa488 and chicken anti-mouse Alexa594. Nuclei were counter

Figure 14. Model for how capsid blocks Bax-dependent apoptosis. Apoptotic stimuli can induce a conformational change in Bax, which is
followed by stable membrane association and oligomerization. The Bax oligomers serve as pores that faciliate efflux of cytochrome c from the
mitochondria to the cytoplasm where it initiates downstream apoptotic signaling through the apoptosome. The RV capsid protein binds to Bax
before or after it is translocated to mitochondria. Interaction with capsid is followed a conformational change in Bax and subsequent hetero-oligomer
formation. However, the Bax-capsid oligomers do not allow efflux of cytochrome c from the mitochondria and apoptosis is blocked.
doi:10.1371/journal.ppat.1001291.g014
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stained with DAPI. Arrowheads indicate RV infected, capsid or

Bcl-XL-expressing cells that are caspase 3 negative. Images shown

are representative of at least three independent experiments in

which at least 100 cells were examined. Scale bar = 10 mm.

Found at: doi:10.1371/journal.ppat.1001291.s001 (1.56 MB TIF)

Figure S2 Expression of capsid protein in RK-13 cells blocks

apoptosis. RK-13 cells were transiently transfected with plasmids

encoding eGFP, E2 and E1, capsid or Bcl-XL. A. At 42 and 66

hours post-transfection, cells were treated with staurosporine (ST)

for 6 hours after which the numbers of transfectants that were

positive for active caspase 3 (double positive) were determined by

indirect immunofluorescence. * Differences are statistically

significant according to oneway ANOVA with 95% confidence

interval. B. At 42 hours post-transfection, cells were treated with

anti-Fas for 6 hours after which the numbers of transfectants that

were positive for active caspase 3 (double positive) were

determined by indirect immunofluorescence. A minimum of 100

transfectants were analyzed per sample. Error bars indicate

standard deviations calculated from three independent experi-

ments. p = # 0.001

Found at: doi:10.1371/journal.ppat.1001291.s002 (0.26 MB TIF)

Figure S3 Expression of capsid protein in stably transduced

A549 cells protects against staurosporine- and Fas-induced

activation of capsase 3. A. A549 cells were stably transduced with

lentiviruses encoding RV capsid or luciferase (control). Expression

of capsid and luciferease was induced with doxycycline for 48

hours after which cells were treated with staurosporine (ST) or

anti-Fas for 6 hours to induce apoptosis. Samples were then

processed for indirect immunofluorescence using rabbit anti-

caspase 3 and mouse anti-capsid. Primary antibodies were

detected with donkey anti-rabbit Alexa488 and chicken anti-

mouse Alexa594. Nuclei were counter stained with DAPI. Scale

bar = 10 mm. B. The percentages of active capsase 3-positive cells

were determined from three independent experiments in which at

least 100 cells for each experiment were scored. Error bars indicate

standard deviations calculated from three independent experi-

ments. *p# 0.01, **p# 0.01

Found at: doi:10.1371/journal.ppat.1001291.s003 (0.89 MB TIF)

Figure S4 Expression of capsid protein protects primary human

cells from Bax-induced apoptosis. HEL-18 cells cells were co-

transfected with plasmids encoding GFP-Bax together with

plasmids encoding capsid, CapNT, or vector alone. After 24

hours, samples were stained with TMRM for 30 minutes and then

subjected to flow cytometric analyses. A. Sample FACS plots for

GFP-Bax transfectants are shown. B) The levels of relative specific

cell death in 5,000 GFP positive cells were calculated and plotted.

Error bars indicate standard deviations calculated from three

independent experiments.

Found at: doi:10.1371/journal.ppat.1001291.s004 (0.40 MB TIF)

Figure S5 The CapCR5A mutant is fully functional for

assembly of rubella virus like-particles (RLP). Vero cells were

transfected with plasmids encoding vector; WT capsid alone

(Capsid); or a plasmid encoding glycoproteins E2 and E1 with

Capsid or CapCR5A. After 48 hours, RLPs recovered from the

pre-cleared media by centrifugation at 100,000 x g were detected

by immunoblotting with a rabbit polyclonal antibody.

Found at: doi:10.1371/journal.ppat.1001291.s005 (0.18 MB TIF)
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