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Abstract

Methicillin-resistant Staphylococcus aureus is estimated to cause more U.S. deaths annually than HIV/AIDS. The emergence
of hypervirulent and multidrug-resistant strains has further amplified public health concern and accentuated the need for
new classes of antibiotics. RNA degradation is a required cellular process that could be exploited for novel antimicrobial
drug development. However, such discovery efforts have been hindered because components of the Gram-positive RNA
turnover machinery are incompletely defined. In the current study we found that the essential S. aureus protein, RnpA,
catalyzes rRNA and mRNA digestion in vitro. Exploiting this activity, high through-put and secondary screening assays
identified a small molecule inhibitor of RnpA-mediated in vitro RNA degradation. This agent was shown to limit cellular
mRNA degradation and exhibited antimicrobial activity against predominant methicillin-resistant S. aureus (MRSA) lineages
circulating throughout the U.S., vancomycin intermediate susceptible S. aureus (VISA), vancomycin resistant S. aureus (VRSA)
and other Gram-positive bacterial pathogens with high RnpA amino acid conservation. We also found that this RnpA-
inhibitor ameliorates disease in a systemic mouse infection model and has antimicrobial activity against biofilm-associated
S. aureus. Taken together, these findings indicate that RnpA, either alone, as a component of the RNase P holoenzyme, and/
or as a member of a more elaborate complex, may play a role in S. aureus RNA degradation and provide proof of principle
for RNA catabolism-based antimicrobial therapy.
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Introduction

Staphylococcus aureus infections are often associated with high rates

of morbidity and mortality [1]. Indeed, reports estimate that in

2005 the organism caused more U.S. deaths than HIV/AIDS

[2,3]. The emergence of vancomycin-resistant and hypervirulent

strains has further accentuated the need for novel anti-staphylo-

coccal agents [4,5]. Bacterial RNA processing and degradation are

required cellular process that could be exploited for antibiotic drug

discovery.

Much of our understanding of bacterial RNA degradation

comes from studies of Escherichia coli where bulk mRNA decay is

thought to be catalyzed by a holoenzyme complex (RNA

degradosome), which consists of at least four subunits: RNase E

(rne), RNA helicase (rhlB), enolase (eno), and PNPase (pnpA) [6].

RNase E is an essential ribonuclease and a key component of the

degradosome complex; it serves as a scaffold for the assembly of

other members of the RNA degradosome and catalyzes the initial

endoribonucleolytic event during substrate degradation [7,8].

Based on its essentiality, RNase E could be considered an

appropriate target for antibiotic drug discovery. However, many

Gram-positive bacteria, including S. aureus, lack a RNase E

ortholog [9]. As a consequence, their degradation components and

mechanism(s) of mRNA decay are less understood.

Recent studies suggest that at least two ribonucleases, RNase J1

and RNase Y, contribute to bulk mRNA degradation within
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Bacillus subtilis, and presumably other Gram-positive bacteria. B.

subtilis ribonuclease J1 is a bifunctional ribonuclease, with 59

exonuclease and endonuclease activities, that mediates mRNA

degradation in vitro [10,11]. The enzyme has also been found to

interact with enolase (component of the E. coli RNA degradosome)

and RNase J1 depleted B. subtilis strains demonstrate a moderate

decrease in mRNA decay, suggesting that it may be the functional

equivalent to E. coli RNase E [10,12,13]. However, mRNA

turnover still occurs in RNase J1 diminished cells and RNA species

containing 59 strong-hairpin structures are not effectively degraded

by the enzyme, indicating that additional factors are likely to

contribute to B. subtilis cellular RNA degradation [14]. Ribonu-

clease Y is a recently identified endonuclease that can cleave

mRNA molecules containing high-order secondary structures,

globally affects cellular messenger RNA turnover and may

ostensibly work in concert with RNase J1 to mediate bulk RNA

decay [15]. Consistent with that possibility, recent two-hybridiza-

tion studies revealed that RNase J1 and RNase Y are likely to

interact with one another and with other proteins that are

presumably members of the B. subtilis degradosome, including 6-

phospho-fructokinase (Pfk), Enolase, PNPase, and the RNA

helicase CshA [12,16]. Both RNase J1 and RNase Y are essential

enzymes and, in that regard, could be considered targets for

antimicrobial drug discovery [17]. However, it remains to be seen

whether RNase J1, RNase Y, and/or previously uncharacterized

ribonucleases modulate mRNA decay within S. aureus.

In the current body of work we set out to empirically identify S.

aureus RNA degradation factors, with the expectation that they

would represent promising antimicrobial drug development

targets. To do so, we exploited the fact that S. aureus owes its

ability to cause infection, in part, to the temporal expression of an

expansive repertoire of virulence factors, many of which are

regulated in a cell density-dependent manner during laboratory

culture conditions [18]. This, combined with recent reports

indicating that bacterial pathogens, including S. aureus, govern

gene expression by modulating the mRNA turnover of target

transcripts [19,20,21] led to the prediction that growth phase

regulated changes in S. aureus virulence factor expression occur at

the level of mRNA degradation and that the proteins involved in

this process may include members of the organism’s RNA

degradation machinery. Accordingly, Affymetrix GeneChips were

used to compare the mRNA decay rates of well-characterized S.

aureus virulence factors during exponential- and stationary- phase

growth.

Results revealed that the mRNA turnover properties of many S.

aureus virulence factor transcripts differed between the two growth

phases. Furthermore, and of direct relevance to the current work,

the global mRNA decay properties of exponential and stationary

phase cells were found to be dramatically different; 884 S. aureus

mRNA species were stabilized during stationary phase growth.

Among the genes whose expression correlated with mRNA decay

was the protein component of ribonuclease P (RNase P), RnpA,

suggesting that it may play a role in bulk mRNA turnover.

Consistent with that possibility, we show that recombinant S. aureus

RnpA exhibits ribonuclease activity in vitro and RnpA depleted

cells exhibit reduced mRNA degradation, indicating that RnpA-

alone, RNase P, or RnpA in complex with other cellular factors

contributes to S. aureus mRNA degradation. Because RnpA is an

essential S. aureus enzyme with low amino acid conservation with

mammalian proteins, we hypothesized that it may be an

appropriate target for antimicrobial drug discovery. Accordingly,

high through-put and secondary screening assays were used to

identify small molecule inhibitors of RnpA-mediated in vitro RNA

degradation. One of these agents was shown to inhibit S. aureus

cellular mRNA turnover, exhibited antimicrobial activity against

MRSA, VISA and VRSA, as well as other Gram-positive

pathogens with high RnpA conservation, and limited pathogenesis

in a murine acute lethal model of infection. Collectively these

results suggest that RnpA alone, or as a member of a more

elaborate complex, may contribute to the mRNA degradation

properties of S. aureus and validate its utility as an antimicrobial

drug discovery target.

Results

Many S. aureus virulence factors are expressed in a cell density

dependent manner during growth in laboratory culture conditions.

In general, cell surface virulence determinants are predominantly

expressed during exponential phase growth, whereas secreted

virulence factors are primarily expressed during stationary phase

growth [18]. Recent studies indicate that regulated changes in S.

aureus mRNA turnover, in part, effect the expression of the

organism’s virulence determinants [22]. Accordingly, we predicted

that alterations between the mRNA turnover properties of

exponential and stationary phase cells may differ in a manner

that correlate with changes in virulence factor expression.

Growth-phase dependent alterations in S. aureus mRNA
turnover

Affymetrix GeneChips were used to compare the mRNA

turnover properties of exponential- and stationary- phase S. aureus

cells. To do so, S. aureus strain UAMS-1 was cultured to either

mid-exponential or stationary phase growth. De novo transcript

synthesis was arrested by the addition of rifampin and aliquots

were removed at various post-transcriptional arrest time points.

The RNA from these samples was labeled, applied to Affymetrix

GeneChips, and the half-life of each mRNA species was

determined, as previously described [19,20]. As predicted, results

revealed that the mRNA turnover properties of many (41%)

virulence factor transcripts differed between the two growth

Author Summary

The last decade has witnessed a mass downsizing in
pharmaceutical antibiotic drug discovery initiatives. This
has posed a major healthcare issue that will likely worsen
with time; antibiotic resistant bacteria continue to emerge
while advances in new therapeutic options languish. In the
current body of work, we show that agents that limit
bacterial RNA turnover have potential as a new class of
antibiotics. More specifically, our findings indicate the
essential bacterial protein, RnpA, exhibits in vitro ribonu-
clease activity and either alone and/or as a member of the
RNase P holoenzyme, may contribute to the RNA
degradation properties of Staphylococcus aureus, a pre-
dominant cause of hospital and community bacterial
infections. Accordingly, using high throughput screening
we identified small molecule inhibitors of RnpA’s in vitro
RNA degradation activity. One of these agents, RNPA1000,
was shown to limit S. aureus mRNA turnover and growth.
RNPA1000 also limited growth of other important Gram-
positive bacterial pathogens, exhibited antimicrobial
efficacy against biofilm associated S. aureus and protected
against the S. aureus pathogenesis in an animal model of
infection. When taken together, our results illustrate that
components of the bacterial RNA degradation machinery
have utility as antibiotic drug-discovery targets and that
RNPA1000 may represent a progenitor of this new class of
antibiotics.

S. aureus RnpA Is an Antibiotic Target
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phases, suggesting that regulated changes in mRNA turnover may

affect their expression (Supplementary Table S1.). Moreover, it

was observed that the organism produced at least five stationary

phase specific small stable RNAs (SSRs), a hypothesized class of

regulatory non-coding RNA molecules (Supplementary Table S2.;

[19,20]). Further, the global mRNA turnover properties of

exponential- and stationary-phase cells differed considerably.

Consistent with previous measurements, it was found that most

(90%) exponential phase transcripts are rapidly degraded (half life

of #5 min), 9% exhibit intermediate stability (half life of .5 min

but #30 min), and 1% are stable (half life of $30 min) [19,20].

However, during stationary phase growth, 76%, 21%, and 3% of

mRNA species exhibit short, intermediate, and stable half lives,

respectively (Figure 1). We anticipated that the observed stationary

phase-dependent stabilization of many mRNA species would

reflect diminished expression of a member(s) of the S. aureus RNA

decay machinery; neither RNase J1 or RNase Y were found to be

differentially expressed in a growth phase dependent manner.

Among the 367 genes repressed during stationary phase growth

was rnpA, which codes for the protein component of ribonuclease P

(RNase P; Supplementary Table S1).

S. aureus RnpA exhibits ribonuclease activity
RNase P is an ubiquitous enzyme that catalyzes maturation of

the 59 end of precursor tRNAs [23,24,25]. The enzyme is unique

by virtue of the fact that it is a ribonucleoprotein complex, which

includes a single ribozyme RNA molecule and at least one protein

component. Within bacteria both the ribozyme (rnpB) and protein

(RnpA) components are required for cell viability; rnpB mediates

tRNA processing in vitro, whereas RnpA facilitates rnpB/substrate

binding at physiologically relevant magnesium concentrations

[26,27,28,29]. In addition to catalyzing tRNA maturation, E. coli

and B. subtilis RNase P have been found to digest certain double-

stranded RNA templates, such as guide-RNAs and 4.5s RNA [30].

Cleavage of those templates strictly requires RnpA [31,32], raising

the possibility that RNase P mediated RNA digestion may be

dependent on rnpB, RnpA, or both. Domain searches (http://

smart.embl.de/) [33,34] revealed that S. aureus RnpA residues 40–

111 best conform to a ribonuclease-like motif (data not shown) and

several RNA binding sites are embedded within this region [35].

Taking these observations into consideration, we predicted that

RnpA, either alone or, more likely, as a component of RNase P

holoenzyme or a more elaborate complex, affects S. aureus RNA

degradation.

Consistent with those possibilities, recombinant S. aureus RnpA

was found to catalyze digestion of rRNA and staphylococcal

protein A (spa) mRNA (Figures 2B and 2C), as well as three other

mRNA species tested (data not shown). Other putative S. aureus

ribonucleases including RNase III, RNase HII, RNase HIII,

RNase Y, RNase J1, and BN did not exhibit equivalent RNA

degradation activity during these assay conditions (Figure 2B).

SDS-PAGE and matrix-assisted laser desorption/ionization

(MALDI) analysis confirmed that the observed ribonuclease

activity was associated with the presence of S. aureus RnpA

(Figure 2A). None the less, SDS-PAGE assessment of approxi-

mately 1000-fold excess (25 mg) of RnpA purification product used

in the aforementioned ribonuclease assays revealed trace amounts

of four additional polypeptides within the protein preparation,

raising the possibility that contaminating E. coli ribonucleases may

be present with our RnpA product. MALDI analysis revealed the

identity of these proteins to be E. coli ribosomal protein L3, and

three S. aureus RnpA fragments, presumably reflecting proteolytic

degradation of full length RnpA during protein preparation as

opposed to mature alternative translation products. Importantly,

no E. coli ribonucleases were detected, suggesting that the protein

preparation’s ribonucleolytic activity could be attributed to S.

aureus RnpA. Moreover, reverse transcriptase mediated PCR

revealed that E. coli rnpB was undetectable within our preparation,

establishing that RnpA ribonuclease activity was not due to the

formation of chimeric RNase P molecules consisting of S. aureus

RnpA and E. coli rnpB RNA. Indeed, in vitro synthesized E. coli rnpB

neither catalyzed S. aureus RNA degradation (alone) nor affected

the activity of RnpA-mediated RNA digestion during both

standard and elevated Mg+2 reaction conditions (data not shown).

S. aureus RnpA is an essential enzyme that affects cellular
mRNA degradation

Small molecule inhibitors of essential bacterial RNA turnover

proteins are expected to interfere with bacterial growth and

represent a new class of antimicrobial agents. In that regard, S.

aureus RnpA is a reported essential enzyme [36,37] and thus could

be considered a target for chemotherapeutic development. Indeed,

Figure 1. S. aureus growth phase mRNA turnover measurements. Plotted are the percent of detectible mRNA species (Y-axis) with a half life of
#2.5, 5, 15, 30, or .30 min during exponential- and/or stationary- phase growth (X-axis).
doi:10.1371/journal.ppat.1001287.g001

S. aureus RnpA Is an Antibiotic Target
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induction of an antisense RNA molecule that is predicted to be

complementary to the 234 to +353 rnpA mRNA translation start

site (under control of the cadmium chloride inducible promoter of

plasmid, pCN51 [38]) limited S. aureus proliferation in the presence

of 10 mM inducer. Conversely, no growth defects were observed

for cells expressing the corresponding sense strand RNA molecule

or the antisense plasmid strain in the absence of inducer

(Supplemental Figure S1; data not shown). These results support

the work of others and indicate that S. aureus RnpA is an essential

protein. Further, using this rnpA antisense RNA system we assessed

whether RnpA affects S. aureus cellular mRNA turnover.

Accordingly, the RNA degradation properties where measured

for cells harboring plasmid vector alone or cells containing plasmid

borne copies of rnpA mRNA or rnpA antisense RNA during growth

in the presence of 2.5 mM CaCl2. As shown in Supplementary

Figures S1A and S1B, 2.5 mM cadmium chloride was empirically

determined to be the optimal concentration that allowed

increased- or decreased- RnpA production within rnpA mRNA

or rnpA antisense expressing strains, respectively, but did not limit

bacterial growth of the antisense RNA producing strain.

Figure 2. S. aureus RnpA catalyzes rRNA and mRNA digestion. (A) SDS-PAGE of purified recombinant S. aureus RnpA; shown are molecular
markers (Lanes M), 2.5 mg and 25 mg elution products (Lanes 1 and 2, respectively). The band at ,17.2 kDa (solid arrow; Band 2) was confirmed to be
S. aureus RnpA by tandem mass spectrometry (Wistar Institute; Philadelphia, PA), whereas top-hits for minor contaminants (dashed arrows) were
determined to be E. coli 50S ribosomal protein L3 (Band 1) or S. aureus RnpA polypeptide fragments, corresponding to amino acids 11–107 (Bands 3
and 4) or 12–107 (Band 5). (B) Gel-mobility of 1 mg of total S. aureus RNA following 60 min incubation in the absence (2) or presence (+) of 50 pmol
of each putative ribonuclease (indicated) in 1X reaction buffer (2 mM NaCl, 2 mM MgCl2, 50 mM Tris-HCl, pH 6.0). Recombinant S. aureus RnpA
catalyzed RNA digestion; equivalent amounts of other putative S. aureus ribonucleases demonstrated little or no ribonuclease activity. (C) Mobility of
0.5 pmol in vitro transcribed spa mRNA following 60 min incubation in the absence (0 pmol) or presence of the indicated amount of RnpA protein in
1X reaction buffer. Recombinant S. aureus RnpA catalyzed digestion of spa mRNA; molecular weight markers (M) are shown. (D) Plotted are
measurements for all mRNA species measured on a GeneChip at 0 (X-axis) and 10 min (Y-axis) post-transcriptional arrest. Red data points represent all
transcripts that are considered present by Affymetrix algorithms at both 0 and 10 min following transcriptional arrest. Blue data points represent
transcripts that were considered present in one sample but not detectable in the second. Yellow data points represent transcripts that are not
expressed/detectible in either RNA sample. Comparisons of the transcript titer of a given data point at 0 min to that of 10 min post-transcriptional
arrest serves as a measurement of the degradation of that particular mRNA species. Grey dashed line indicates the lower limit of sensitivity for each
sample. A total of 88% and 87% of all transcripts produced in cells harboring vector (pCN51; left panel) or overexpressing RnpA (pRNPA; middle
panel), respectively, exhibit a decrease in transcript titer of $2-fold following 10 min transcriptional arrest. Conversely, many RNA species are
stabilized in RnpA depleted cells (pRNPA-A.S.; right panel). Western blotting confirmed the amount of S. aureus RnpA protein present in each strain
(Supplemental Figure S1B.).
doi:10.1371/journal.ppat.1001287.g002

S. aureus RnpA Is an Antibiotic Target
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Accordingly, RNA turnover analyses revealed that diminished

RnpA levels correlated with the stabilization of many mRNA

species, suggesting that the enzyme either alone, as a member of

the RNase P holoenzyme, and/or as another RnpA-complex

contributes to bulk cellular RNA degradation (Figure 2D). More

specifically, it was found that 88% and 87% of all exponential

phase transcripts produced in RnpA overexpressing and vector

containing cells exhibited a half life of less than 10 min,

respectively. Conversely, 63% of transcripts produced in RnpA

depleted cells exhibited a half life of less than 10 min, suggesting

that the protein contributes to S. aureus mRNA turnover

(Figure 2D). The finding that RnpA overexpression did not

accelerate cellular RNA degradation suggests that either the

protein did not reach a concentration that effectively increases

RNA turnover or that the protein’s RNA degradation activity is

dependent on co-factors, which remain at wild type levels under

these experimental conditions.

Identification of small molecule inhibitors of RnpA-
mediated RNA degradation

The above results indicate that S. aureus RnpA is an essential

enzyme that exhibits in vitro ribonuclease activity and either alone,

as a component of RNase P or in concert with other cellular

components participates in bulk RNA degradation. Moreover, the

protein is well conserved across Gram-positive bacteria but lacks

amino acid conservation with mammalian proteins, making it an

attractive target for novel antibiotic drug development. Accord-

ingly, we set out to exploit the protein’s in vitro ribonuclease activity

as a means to identify RnpA inhibitory agents; a fluorescence-

based high through-put assay was used to screen 29,066

commercial compounds (ActiProbe-25K and Natural product

libraries; Timtec; Newark, DE) for small molecule inhibitors of

RnpA-mediated in vitro RNA degradation (Figure 3A). In total,

fourteen molecules inhibited the enzyme’s RNA turnover activity

by $50%. A gel-based secondary assay confirmed that five of

these molecules were bona-fide inhibitors of RnpA-mediated RNA

degradation (Figure 3B). One of these compounds, RNPA1000

(Figure 3C; IC50 = 100–125 mM), did not affect the activity of the

commercially available E. coli RNase HI, RNase A, RNase I or in-

house purified S. aureus RNase J1 at any concentration tested (0–

750 mM), but did mildly inhibit E. coli RNase III activity (IC50 =

500–750 mM; data not shown). These and other data (see below)

suggest that RNPA1000 may have specificity for S. aureus RnpA,

yet as with any small molecule we cannot rule out the possibility

that the agent may also affect other S. aureus enzymes. To assess

whether RnpA-inhibitory agents exhibit potential as antimicrobi-

Figure 3. Identification of small molecule inhibitors of RnpA-mediated RNA degradation. (A) Representative screening effort results; dark
blue arrow indicates substrate alone (negative control); grey arrow indicates enzyme (positive control); light-blue arrows indicate compounds that
inhibited RnpA activity by $50%. (B) An agarose gel-based assay was used to distinguish bona-fide RnpA inhibitors from primary screening artifacts.
Shown is the gel mobility of molecular weight marker, spa mRNA in the absence (2) or presence (+) of 20 pmol RnpA and RnpA-mediated spa mRNA
degradation in the presence of increasing concentrations of RNPA1000, as described in Materials and Methods. (C) Structure of RnpA-inhibitory
molecule RNPA1000.
doi:10.1371/journal.ppat.1001287.g003

S. aureus RnpA Is an Antibiotic Target
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als, a series of experiments were performed to evaluate whether

RNPA1000 inhibited S. aureus growth and could limit S. aureus

pathogenesis in a systemic model of infection.

In vitro antimicrobial activity of RnpA-inhibitor RNPA1000
As shown in Table 1, RNPA1000 demonstrated moderate

antimicrobial activity against two well-characterized genotypically

diverse S. aureus isolates, UAMS-1 (clinical osteomyelitis isolate;

MIC 26 mg/ml) and USA300–0114 [predominant cause of U.S.

community-associated methicillin resistant S. aureus infections

(MRSA); MIC 23 mg/ml], as well as representatives of other

major MRSA lineages circulating throughout the U.S. [39].

Likewise, RNPA1000 demonstrated antimicrobial activity against

vancomycin-intermediate susceptible S. aureus (VISA) and vanco-

mycin resistant S. aureus (VRSA). Time kill assays revealed that

RNPA1000 acts as a bacteriostatic agent (Supplemental Figure

S2A), and that it does not affect the antimicrobial activities of

other anti-staphylococcal agents, including vancomycin, dapto-

mycin, or rifampicin (data not shown), but does mildly increase the

potency of oxacillin (Supplemental Figure S2B and S2C). The

RnpA-inhibitor also exhibited antimicrobial activity against

Staphylococcus epidermidis, antibiotic susceptible and multi-drug

resistant Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus

agalactiae, and Bacillus cereus. RNPA1000 also showed mild activity

against Enterococcus faecalis, Enterococcus faecium and vancomycin

resistant E. faecium (VRE), but did not affect Escherichia coli or

Acinetobacter baumannii growth (Table 1). The latter was expected

because E. coli and A. baumannii RnpA share limited amino acid

identity (24% and 26%, respectively) with S. aureus RnpA

(Supplemental Figure S3). Moreover, purified A. baumannii RnpA

did not demonstrate ribonuclolytic activity in our in vitro assay

conditions (data not shown). Enterococci susceptibility to

RNPA1000 was increased from an MIC of 64 mg/ml to 32 mg/

ml in the presence of the efflux pump inhibitor reserpine,

suggesting that enterococci may be inherently susceptible to the

RnpA inhibitor. Conversely, the efflux inhibitor had no effect on

A. baumannii RNPA1000 susceptibility (Table 1). Taken together,

these results indicate that bacterial RNPA1000 susceptibility

correlates with amino acid similarity to S. aureus RnpA and the

enzyme’s in vitro RNA degradation activity.

In vivo antimicrobial efficacy of RnpA-inhibitor RNPA1000
Next we assessed whether RnpA-inhibitory agent concentra-

tions corresponding to the effective bacterial MIC values (10–

50 mg/ml) elicited human cell cytotoxicity. MTT cell proliferation

assay measurements revealed that 24 hr RnpA-inhibitor exposure

did not cause human HepG2 cell toxicity at any concentration

tested (data not shown). However, extended RNP1000 exposure

(48 hr) elicited mild cytotoxicity at 25 mg/ml, which corresponds

to the minimum inhibitory concentration of most MRSA lineages

(Figure 4A), whereas higher concentrations exhibited increased

toxicity (data not shown).

Clearly, the observed toxicity associated with RNPA1000

precludes its direct utility as an antimicrobial agent. None the

less, we hypothesized that because RNPA1000 was not toxic

during short- and only mildly toxic during extended- HepG2

exposure, it could serve as an appropriate tool to assess whether

RnpA-inhibitory molecules are efficacious in a systemic mouse

infection model. As shown in Figure 4B, subcutaneous injection of

RNPA1000 limited the lethal effects of wild type S. aureus injected

(4.556105 cfu/animal) into the intraperitoneal cavity of CD-1

mice. Although this bacterial inoculum (equivalent to 10–100

LD50s) resulted in 100% death of non-treated control animals

within 24 hr, RNPA1000 provided protection in a dose-dependent

manner. Administration of the highest RnpA-inhibitor dose

(256 mg/kg) reproducibly resulted in 50% survival, whereas

128 mg/kg and 64 mg/kg resulted in 30% and 20% survival,

respectively, over the course of study (Figure 4B; Supplemental

Table S3). Notably, dosing regimens of compound (alone) did not

affect animal survival at any of the concentrations tested (32 mg/

kg, 64 mg/kg, 128 mg/kg, 256 mg/kg; Supplemental Table S3).

Taken together, these results suggest that RNPA1000 limits

bacterial pathogenicity within the acute lethal model of S. aureus

infection with a median effective dose (ED50) between 64–

256 mg/kg. While the combination of mild toxicity and high

effective dose would exclude the compound from consideration as

a therapeutic agent, RNPA1000 could be considered a platform

for medicinal chemistry-based generation of more potent deriva-

tives. More importantly, these results provide proof of concept that

RnpA inhibitory agents are efficacious in a systemic mouse

infection model and that RNPA1000 represents a tool to study the

contribution of RnpA to infection processes.

Antimicrobial efficacy of RnpA-inhibitor on biofilm-
associated bacteria

The success of S. aureus as a bacterial pathogen can be

attributable, in part, to its ability to form biofilms on implanted

medical devices, which presumably provides a focus for bacterial

dissemination to secondary host sites. One of the complicating issues

in treating biofilm-associated infections is that biofilm-associated

bacteria are inherently recalcitrant to antibiotic treatment. For

instance, one recent in vitro study showed that despite using a strain

that was intrinsically susceptible to each antibiotic, 5X MIC of

daptomycin, linezolid, or vancomycin only reduced biofilm-

associated bacteria by ,2 logs following 24 hr treatment and none

of these antibiotics cleared biofilm-associated S. aureus even when

administered at 20X MIC over a course of 3 days [40].

Transcription profiling studies have revealed that despite being

physiologically unique, biofilm-associated S. aureus resemble plank-

tonic stationary phase cells [41]. Indeed, similar to stationary phase

bacteria, rnpA expression is diminished 4.3 and 6.2- fold in S. aureus

biofilm-associated and biofilm-detached bacteria, respectively, in

comparison to exponential phase cells (Dunman and Horswill,

unpublished). Because low levels of RnpA are likely to be present

within biofilm-associated bacteria, we hypothesized that fewer

RnpA-inhibitory molecules would be required to interfere with the

protein’s function and, consequently, antimicrobial activity. Thus,

biofilm-associated S. aureus may exhibit considerable susceptibility to

an RnpA-inhibitor, such as RNPA1000.

As shown in Figure 4C, treatment of biofilm-associated S. aureus

with 5X MIC RNPA1000 for 24 hr resulted in a 3-log decrease in

bacterial burden, suggesting that during short term exposure the

agent is equally, if not more potent, than daptomycin, vancomycin,

or linezolid. Further, while bacterial clearance was never achieved,

increasing the length of exposure or RNPA1000 concentration

enhanced antimicrobial activity. Maximal RNPA1000 antimicro-

bial potency (5-log reduction in biofilm-associated bacteria)

compared favorably with the activities of commercially available

antibiotics assessed in the same model and conditions (6-log

decrease daptomycin, 5-log decrease linezolid; 4-log decrease

vancomycin) [40]. Taken together, these results suggest that RnpA

plays an important biological role in S. aureus biofilm maintenance,

and that corresponding inhibitors may have expanded therapeutic

utility in treating biofilm-associated infections.

RNPA1000 affects S. aureus mRNA decay
To assess whether the susceptibility of S. aureus to RNPA1000

was attributable to the inhibition of cellular RnpA, we initially
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attempted to isolate and characterize spontaneous mutants with

reduced compound susceptibility. Attempts to isolate mutants that

were resistant to 64 mg/ml RNPA1000 (2X MIC) were unsuc-

cessful. By reducing the stringency it was found that the

spontaneous RNPA1000 resistance frequency to 32 mg/ml

RNPA1000 is 3.7610213, but further characterization of these

Table 1. In vitro RNPA1000 antimicrobial properties.

Organism (Phenotype)a Strainb MIC (mg/ml)c Organism (Phenotype)a Strainb MIC (mg/ml)c

S. aureus (MRSA) USA100 26 S. pneumoniae (MDR) Isolate 4 32

S. aureus (MRSA) USA200 32 S. pneumoniae (MDR) Isolate 5 16

S. aureus (MRSA) USA300 23

S. aureus (MRSA) USA400 23 S. pyogenes Isolate 1 8

S. aureus (MRSA) USA500 23 S. sanguis Isolate 1 16

S. aureus (MRSA) USA600 32 S. bovis 49147 32

S. aureus (MRSA) USA700 32

S. aureus (MRSA) USA800 23 E. faecalis Isolate 1 64

S. aureus (MRSA) USA900 32 E. faecalis Isolate 2 64

S. aureus (MRSA) USA1000 29 E. faecalis Isolate 3 64

S. aureus (MRSA) USA1100 32 E. faecalis Isolate 4 64

S. aureus (MSSA) UAMS-1 26 E. faecalis Isolate 5 64

S. aureus (VISA) NRS1 32 E. faecium Isolate 1 64

S. aureus (VISA) NRS3 16 E. faecium Isolate 2 64

S. aureus (VISA) Isolate 3 16 E. faecium Isolate 3 64

S. aureus (VISA) Isolate 4 32 E. faecium Isolate 4 64

S. aureus (VISA) Isolate 5 16 E. faecium Isolate 5 64

+ reserpine Isolate 5 32

S. aureus (VRSA) VRS1 16

S. aureus (VRSA) VRS10 32 E. faecium (VRE) Isolate 1 64

E. faecium (VRE) Isolate 2 64

S. epidermidis Isolate 1 16 E. faecium (VRE) Isolate 3 32

S. epidermidis Isolate 2 8 E. faecium (VRE) Isolate 4 64

S. epidermidis Isolate 3 8 E. faecium (VRE) Isolate 5 32

S. epidermidis Isolate 4 8

S. epidermidis Isolate 5 8 B. cereus Isolate 1 8

S. agalactiae Isolate 1 16 E. coli Isolate 1 .64

S. agalactiae Isolate 2 32 E. coli Isolate 2 .64

S. agalactiae Isolate 3 32 E. coli Isolate 3 .64

S. agalactiae Isolate 4 32 E. coli Isolate 4 .64

E. coli Isolate 5 .64

S. pneumoniae Isolate 1 16

S. pneumoniae Isolate 2 16 A. baumannii Isolate 1 .64

S. pneumoniae Isolate 3 16 A. baumannii Isolate 2 .64

S. pneumoniae Isolate 4 32 A. baumannii Isolate 3 .64

S. pneumoniae Isolate 5 16 A. baumannii Isolate 4 .64

A. baumannii Isolate 5 .64

S. pneumoniae (MDR) Isolate 1 32 + reserpine Isolate 5 .64

S. pneumoniae (MDR) Isolate 2 32

S. pneumoniae (MDR) Isolate 3 16

aOrganism and relevant antibiotic resistance phenotype (in parentheses); methicillin resistant S. aureus (MRSA); vancomycin intermediate S. aureus (VISA); vancomycin
resistant S. aureus (VRSA); multidrug resistant S. pneumoniae (MDR); vancomycin resistant E. faecium (VRE).

bWith the exception of S. aureus and S. bovis, all strains were clinical blood isolates; USA-types (U.S. MRSA lineages) were obtained from the Centers for Disease Control
and Prevention; S. aureus strain UAMS-1 is a clinical osteomyelitis isolate; isolates NRS1, NRS3, VRS1 and VRS10 were obtained through the Network on Antimicrobial
Resistance in Staphylococcus aureus (NARSA); S. bovis strain ATCC49147 was obtained from the American Type Culture Collection (ATCC).

cMinimal inhibitory concentration (MIC) was determined following the Clinical and Laboratory Standards Institute (CLSI) guidelines for antimicrobial susceptibility
testing. Each S. aureus strain was tested 5 times; other organisms were tested in duplicate. S. aureus isolates were subsequently more accurately measured as described
within Materials and Methods.

doi:10.1371/journal.ppat.1001287.t001
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mutants revealed that the resistance phenotype was lost following

serial passage. As a second approach, we directly measured the

mRNA turnover properties of S. aureus that were challenged with a

sub-inhibitory concentration of RnpA-inhibitor (0.5X MIC).

Following 30 min treatment, RNPA1000 reduced the mRNA

degradation rate of S. aureus cells, in comparison to mock treated

cells (Figure 5A). Thus, RnpA-inhibitory compounds reduce

cellular mRNA degradation, presumably by limiting the enzyme’s

cellular function. While we cannot rule out the possibility that the

agent affects other enzymes or, in particular other S. aureus

ribonucleases, the mRNA turnover properties of RNPA1000

treated cells resembled that of RnpA depleted cells (Figure 2D),

suggesting that the agent may be affecting the enzyme. To more

directly determine whether RNPA1000’s antimicrobial effects are

mediated through cellular inhibition of RnpA we assessed the

RNPA1000 susceptibility of S. aureus RnpA over- and under-

producing cells. S. aureus harboring vector, or a plasmid copy of

wild type rnpA mRNA or rnpA antisense RNA under control of the

CdCl2 inducible promoter were grown in the presence of 2.5 mM

inducer and increasing concentrations of RNPA1000. As stated

above, this concentration of cadmium chloride induces mild

changes in RnpA protein expression (RnpA overproduction or

underproduction) but is modest enough that cellular growth is not

affected. As shown in Figure 5B, both vector containing- and

RnpA overproducing- cells exhibited an MIC of 32 mg ml21,

whereas the MIC of RnpA underproducing cells was 8 mg ml21.

The latter indicates that S. aureus’ RNPA1000 susceptibility

correlates to cellular RnpA levels and that the agent’s antimicro-

bial mode-of-action is, in part, RnpA dependent. It is currently

unclear why RnpA overexpression did not result in increased

RNPA1000 tolerance; presumably enzyme levels did not reach

concentrations needed to limit RNPA1000 effectiveness.

Discussion

The emergence of community-acquired methicillin-resistant S.

aureus (CA-MRSA) strains capable of causing serious infections in

otherwise healthy individuals make the organism a more formidable

pathogen now than perhaps any time since the beginning of the

antibiotic era. Indeed, it is estimated that in 2005 alone the number

of invasive MRSA infections in the U.S. reached approximately

94,360, with 18,650 resulting in fatal outcome [3]. Based on these

statistics, S. aureus has passed acquired-immunodeficiency syndrome

(AIDS) as a cause of death in the United States, further accentuating

the need for new anti-staphylococcal agents.

The success of S. aureus as a human pathogen can, in part, be

attributed to its ability to produce an expansive repertoire of

Figure 4. RnpA-inhibitor characterization. (A) MTT-cytotoxicity assay results of HepG2 cells exposed to compound solvent (DMSO; negative
control), Mitomycin C (positive control), and indicated amount of RNPA1000. (B) Shown are the average daily (X-axis) percent surviving animals (Y-
axis) following no treatment (closed diamonds; negative control), vancomycin treatment (closed squares; 1 mg/kg; positive control), or RNPA1000
treatment; 64 mg/kg (open circles); 128 mg/kg (open squares), 256 mg/kg (open triangles). Experiment was repeated twice; replicate measurements
are shown in Supplemental Table S3. (C) In vitro biofilm assay results; graphed are the number of catheter-associated S. aureus following 1, 2, or 3
days of no antimicrobial treatment (untreated; UT) or exposure to 5, 10, or 20 times the MIC for RNPA1000. Boxes define the interval between the 25th

and 75th percentile. Bars extending upward indicate the boundary defined by the value 1.5X higher than the 75th percentile while those extending
downward indicate the boundary defined by a value 1.5X lower than the 25th percentile. Filled circles indicate individual values outside these two
extremes.
doi:10.1371/journal.ppat.1001287.g004
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virulence factors, which collectively augment the organism’s ability

to colonize and invade host tissue, evade host immune responses,

and adapt to host-associated environmental challenges. In the

laboratory setting, many S. aureus cell surface virulence factors are

predominantly expressed during exponential phase growth,

whereas secreted virulence factors are predominantly expressed

as cultures transition to early stationary phase growth [18]. This

combined with the recent observation that the modulation of

mRNA turnover affects S. aureus virulence factor expression led to

the premise of the current study; the degradation properties of

virulence factors transcripts differ during exponential and

stationary phase growth [19,20,42]. Further, these changes in

mRNA turnover may, in part, account for growth-phase

dependent changes in virulence factor expression. A comparison

of the mRNA degradation properties of known and predicted

virulence factor transcripts indicates that this may be the case;

41% exhibited an alteration in mRNA turnover during exponen-

tial in comparison to stationary phase growth. Thus, growth

phase-dependent changes in transcript degradation are likely to

contribute to changes in the mRNA titers, and consequently

protein production, of these virulence determinants.

Our mRNA turnover measurements also revealed growth

phase-dependent alterations in mRNA turnover extend beyond

virulence factor mRNA species; 884 staphylococcal transcripts are

stabilized during stationary phase growth. This phenomenon

could be attributable to the stationary phase-dependent down-

regulation of components of the organism’s RNA degradation

machinery. An analysis of the transcript titers of known and

putative ribonucleases revealed that neither RNase J1 or RNase Y

were differentially expressed in a growth phase dependent manner,

Figure 5. RNPA1000 characterization. Plotted are all GeneChip detected transcript levels at 0 and 5 min post-transcriptional arrest. Red, blue,
and yellow data points represent all GeneChip measurable transcripts that were considered present, present in one sample but absent in second, or
absent in both RNA samples, respectively. Grey dashed line indicates the lower limit of sensitivity for each sample. (A) A comparison of the mRNA
levels of DMSO treated cells; 90% of all transcripts decrease $2-fold at 5 min post-transcriptional arrest (Left Panel). A comparison of the mRNA levels
of cells challenged with sub-inhibitory concentration of RnpA-inhibitor; addition of the agent resulted in pronounced stabilization of S. aureus
transcripts (Right Panel). (B) Microtiter plate assay illustrating the in vitro antimicrobial effects of indicated concentration of RNPA1000 (across top)
against S. aureus RN4220 pRNPA-A.S. (RnpA depleted cells; top panel), RN4220 pRNPA (RnpA overexpressor cells; center panel) and RN4220 pCN51
(vector; bottom panel) when grown in the presence of 2.5 mM CdCl2. All strains were assessed twice; arrows indicate MIC values.
doi:10.1371/journal.ppat.1001287.g005
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whereas RNase HIII and the protein component of RNase P,

RnpA, were down-regulated during stationary phase growth.

Bacterial RNase P holoenzymes are ribonucleoprotein com-

plexes consisting of a ribozyme (rnpB) and a protein component,

RnpA. Both rnpB and RnpA are required for bacterial survival,

thus an agent that inhibits either subunit’s activity could have

potential as an antimicrobial therapeutic agent [27,43]. Indeed,

the function of rnpB is well established; it catalyzes maturation of

precursor tRNA molecules, and progress has been made in

developing antimicrobial small molecule inhibitors of rnpB-

mediated tRNA processing [23,24,25]. RnpA augments cellular

rnpB-precursor tRNA binding [26], a phenotype that is difficult to

exploit for antimicrobial screening. In addition to mediating tRNA

processing, RNase P has also been shown to catalyze cleavage of

other double-stranded RNA substrates, such as guide RNAs, and

this activity requires RnpA [30,31,32].

Our data suggest that S. aureus RnpA exhibits pronounced in

vitro ribonuclease activity in comparison S. aureus RNase J1, RNase

Y and RNase HIII, in the conditions assessed here. We do not

mean to imply that the other putative ribonucleases assessed are

devoid of ribonucleolytic activity. Rather, their activity would

probably be better measured in differing buffering conditions or

with different RNA substrates. In fact, subsequent studies revealed

that S. aureus RNase J1 is a potent ribonuclease in differing

buffering conditions [10].

By exploiting the observed ribonuclease activity of RnpA, high

through-put screening and secondary assays identified small

molecule inhibitors of RnpA-mediated in vitro RNA degradation.

The inhibitory activity of one of these molecules, RNPA1000, was

found to have specificity for RnpA, as the agent did not interfere

with the activity of commercially available ribonucleases or

recombinant S. aureus RNase J1 (data not shown). RNPA1000

was shown to have increased antimicrobial activity against RnpA

depleted cells, indicating that the agent targets the enzyme in vivo.

None the less, we cannot exclude the possibility that RNPA1000

may also affect other essential S. aureus enzymes. While it remains

to be seen whether RnpA’s in vitro ribonuclease activity correlates

to what occurs within the cell, sub-inhibitory concentrations of

RNPA1000 and RnpA depleted cells were also found to limit S.

aureus RNA-degradation, suggesting that RnpA, either alone, as

RNase P cofactor, or as a component of a unrecognized complex,

may participate in bulk mRNA turnover, a function that may

contribute to enzyme’s role in maintaining cellular survival.

Because S. aureus RnpA is well conserved among many Gram-

positive bacteria, our findings may have expanded significance by

providing insight regarding the RNA degradation machinery of

additional bacterial species.

Our results also indicate that inhibitors of RnpA-mediated RNA

degradation may have promise as antimicrobial agents. Indeed,

RNPA1000 exhibited moderate antimicrobial activity against each

of the predominant S. aureus MRSA lineages circulating through-

out the U.S., VISA, VRSA, VRE, as well as bacterial pathogens

with high RnpA amino acid conservation. The agent also limited

the organism’s pathogenesis in a murine acute lethal model of

infection and limited biofilm-associated bacterial burden. While

the mode-of-action for RNPA1000 appears to, in part, effect S.

aureus RnpA mediated RNA processing we do not know if the

same is the case for other RNPA1000 susceptible pathogens.

Collectively, these data establish that RnpA represents an

attractive antimicrobial drug target and that RNA stabilizing

agents represent a new paradigm for treating bacterial pathogens

of immense health care concern. The RnpA-inhibitory molecule

identified in this study may represent a progenitor of this new class

of antimicrobials.

Methods

mRNA half-lives
For half life determinations, S. aureus strain UAMS-1, RN4220

(pCN51; plasmid containing CdCl2 inducible promoter), RN4220

(pRNPA; pCN51 capable of producing full length rnpA mRNA), or

RN4220 (pRNPA-A.S.; pCN51 capable of producing rnpA antisense

RNA) were grown to mid-exponential or stationary phase,

transcription was arrested by the addition of rifampin (200 mg/

ml), and aliquots were removed at 0-, 2.5-, 5-, 15- and 30- min post-

transcriptional arrest for strain UAMS-1. To conserve reagents,

aliquots were removed at 0 and 10 min post-transcriptional arrest

for RN4220 derivatives. Plating ensured cultures had not developed

rifampin resistance. Each strain and/or growth phase was assessed

twice, except for RN4220 pRNPA-A.S. cells which were assessed

four times. RNA was isolated from each aliquot, labeled, hybridized

to an S. aureus GeneChip (Affymetrix; Santa Clara, CA), duplicates

were averaged and the mRNA half-lives of all mRNA species were

determined, as previously described [19,20]. To measure the

mRNA turnover characteristics of RNPA1000 challenged cells,

exponential-phase S. aureus were treated with 0.5X MIC of the

RnpA inhibitor or equivalent volume compound solvent (DMSO)

for 30 min. Transcript synthesis was then arrested and the

transcript titers of mRNA species were measured at 0- and 5- min

post-transcriptional arrest [19,20].

Protein purification
Each putative S. aureus ribonuclease predicted open reading

frame was PCR amplified and inserted into the ligation-

independent cloning site of plasmid pET-30 Ek/LIC (Novagen;

Madison WI). Sequencing confirmed that this fused a hexahisti-

dine-tag to the N-terminus of each protein under the control of the

plasmid’s isopropyl b-D-1-thiogalactopyranoside (IPTG) inducible

promoter. Following transformation, each protein was purified

from E. coli BL21 (DE3) cells grown in the presence of IPTG (4 hr)

by Ni+2 affinity chromatography. More specifically, 10 g of cell

pellet was suspended in 50 ml of buffer A (300 mM NaCl, 50 mM

Na2HPO4, pH 7.4) containing a complete mini EDTA-free

protease inhibitor tablet (Roche; Branford, CT) and 20 mM

imidazole. Cells were ruptured by seven passes at 15,000 psi

through an Emulsifex-C3 microfluidizer (Avestin Inc.; Ottawa,

Canada). Cell debris was removed by centrifugation at 12,0006g

for 30 min and supernatants were loaded onto a 5 mL Ni-NTA

FF-crude affinity column (GE Healthcare Bio-Sciences; Piscat-

away, NJ) with an AKTA-FPLC high performance liquid

chromatography system (GE Healthcare Bio-Sciences; Pittsburgh,

PA). Proteins eluted in a single peak with a linear imidazole

gradient (80 mM to 500 mM) in buffer A. The presence of each

protein was assessed by Coomassie stained SDS-PAGE and

matrix-assisted laser desportion/ionization (MALDI) analysis

spectrometry (Wistar Institute; Philadelphia, PA).

Plasmids
Plasmids pRNPA-S and pRNPA-A.S. contain the putative rnpA

transcriptional unit including predicted Shine-Dalgarno sequence

in the sense and antisense orientation, respectively under control

of the CdCl2 inducible of the S. aureus shuttle-vector pCN51 [38].

Briefly, the rnpA open reading frame and 34 nt upstream sequence

was PCR amplified from S. aureus strain UAMS-1 using primers 59

GAATTCTCAAATAAAAACGATAAATAAGCGAGTGATG-

TTA (forward) and 59 GGTACCTTACTTAATCTTTTTAT-

TAAAAACTTTGGCAA (reverse) containing a 59 terminal EcoRI

and KpnI restriction enzyme site (underlined), respectively, or

primers in which the restriction enzyme sequence had been
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reversed. Resulting PCR products were ligated into pCRII-

TOPO vector and transformed into E. coli INVaF’ cells for

propagation (Invitrogen, Carlsbad, CA). Plasmid DNA was

subsequently purified using QIAprep Spin Miniprep Kits

(Qiagen, Valencia, CA) then digested with EcoRI and KpnI to

liberate the plasmid inserts, which were gel purified using a

QIAquick Gel Extraction Kit (Qiagen) and ligated into EcoRI and

KpnI-digested pCN51. DNA sequencing confirmed the integrity of

plasmid pRNPA-S and pRNPA-A.S.

Western blotting
Affinity purified PolyQuik rabbit S. aureus RnpA polyclonal

antibodies were generated by Invitrogen (Carlsbad, CA). Total

bacterial proteins were isolated from RN4220 cells containing

plasmid vector (pCN51), RnpA overexpressor plasmid (pRNPA-S)

or RnpA antisense RNA plasmid (pRNPA-A.S.) following 30 min

growth in TSB medium supplemented with 2.5 mM CdCl2 to induce

RNA expression and 10 mg/ml erythromycin for plasmid mainte-

nance. Resultant protein concentrations were determined by

conventional Bradford Assays and 2.0 mg of each protein sample

or purified S. aureus RnpA was electrophoresed in a 10% SDS

polyacrylamide gel and transferred to a polyvinylidene fluoride

membrane (Millipore, Billerica, MA). Membranes were blocked with

10% milk, washed, incubated with rabbit RnpA antibody (1:1000

dilution), washed, incubated with horseradish peroxidase-conjugated

anti-rabbit antibody (1:1000 dilution; GE Healthcare) and processed

using an Amersham ECL Western Blotting System, according to the

manufacturer’s recommendations (GE Healthcare).

RnpA inhibitors
Members of the ActiProbe-25K and Natural Product libraries

(29,940 compounds total; TimTec Inc.; Newark, DE) were screened

for small molecule inhibitors of S. aureus RnpA mediated total

bacterial RNA degradation. All reactions (50 ml) were performed in

96-well format and contained 20 pmol RnpA, 200 ng S. aureus total

RNA, and ,5 mM of each compound in 1X reaction buffer (2 mM

NaCl, 2 mM MgCl2, 50 mM Tris-HCl, pH 6.0). Mixtures were

incubated at 37uC for 20 min at which time Quant-iT RiboGreen

(100 ml; Invitrogen) was added to quantify the amount of RNA

substrate remaining. Percent enzyme inhibition was calculated as

remaining substrate/starting substrate * 100. For inhibitory titration

assays, 1 pmol of spa mRNA was incubated with 20 pmol RnpA

alone (positive control) or in the presence of increasing amounts (0,

25, 50, 100, 125, 150, 200, 250, and 500 mM) RNP1000 for one

hour at 37uC. 20 ml of each reaction mixture were subjected to

electrophoresis in a 1.2% formaldehyde-containing agarose gel and

visualized by ethidium bromide staining.

Cytotoxicity assays
HepG2 human hepatocytes (105 cells) were seeded in individual

wells of a microtitre plate and incubated for 16 hr at 37uC with

5% carbon dioxide in Dulbecco’s Modified Eagle Media

supplemented with 10% fetal bovine serum. Cells were then

challenged with Mitomycin C (5 mg/ml; positive control) or 0, 25,

or 50 mg/ml RNPA1000 for either 24 or 48 hrs. Cell viability was

measured spectrophotometrically (570 nm) following the addition

and subsequent reduction of tetrazolium salt (MTT) within

metabolically active cells, as per the manufacturer’s recommen-

dations (American Type Culture Collection; Manassas, VA).

Antimicrobial susceptibility testing
With the exception of RN4220-derivatives, in vitro activities of

RNPA1000 against bacteria were determined by the broth

microdilution method according to the Clinical and Laboratory

Standards Institute (CLSI) guidelines using cation adjusted

Mueller-Hinton broth or MH broth supplemented with 5% lysed

horse blood (for testing Streptococcus spp.). Microtiter plates

containing serial dilutions of RNPA1000 (0, 4, 8, 16, 32, 64,

and 128 mg/ml) were inoculated with 105 colony forming units

(CFU)/ml and incubated for 18 hr at 37uC. The MIC for each

isolate was defined as the lowest concentration of RNPA1000 that

completely inhibited growth of the organism as detected by the

unaided eye. The MIC for each S. aureus strain was further refined

by repeat testing following the procedure described above, except

that microtiter wells contained 1 mg/ml incremental increases in

concentration of RNPA1000 spanning the lowest concentration

that initially did not completely inhibit growth (16 mg/ml) and the

concentration that completely inhibited growth (32 mg/ml). The

MIC value for each S. aureus strain was determined to be the

median score of replicate measurements (n = 5). Wells containing

concentrations of RNPA1000 $ MIC were plated for minimal

bactericidal measurement. Where possible, experiments with

VRSA strains were performed in a laminar flow hood to minimize

potential for equipment contamination. For RN4220 cells

containing plasmid vector (pCN51), RnpA overproducing plasmid

(pRNPA-S) or RnpA underproducing plasmid (pRNPA-A.S.) in

vitro antimicrobial activity of RNPA1000 was performed by the

microdilution method as described above, except that cells were

grown in Tryptic Soy Broth medium supplemented with 2.5 mM

CdCl2 and 0, 1, 2, 4, 8, 16, 32, 64, or 128 mg/ml RNPA1000.

Time-kill assays were also performed to monitor the antimicrobial

properties of RNPA1000 for S. aureus strain UAMS-1 in the

absence and presence of 0.25, 0.5, 2, and 4 times the strain’s MIC

for oxacillin (1 mg/ml), rifampicin (0.5 mg/ml), vancomycin (2 mg/

ml), or daptomycin (1 mg/ml). The indicated amount of

RNPA1000 and/or commercial antibiotic were added to mid-

exponential phase (26108 cfu/ml) S. aureus strain UAMS-1 cells

and incubated at 37uC. Aliquots were removed at 0, 2, 4, 8, and

24 hr post-antimicrobial challenge, serial diluted, and plated to

enumerate resulting cfu/ml. All time-kill assays were repeated at

least 3 times.

Biofilm assays
In vitro biofilm assays were performed as previously described

[40]. Briefly, 1 cm segments of 14-gauge fluorinated ethylene

propylene Introcan Safety Catheters (B. Braun, Bethlehem, PA)

were coated with human plasma and placed in individual wells of a

12-well microtiter plate containing 2 ml biofilm medium and S.

aureus strain UAMS-1 at a final OD600 nm of 0.05. Following

overnight incubation at 37uC catheters were removed, rinsed in

phosphate buffered saline (PBS), and transferred to fresh biofilm

medium containing 0, 5, 10, or 20 times the S. aureus MIC for

RNPA1000. Catheters exposed to each dose (n = 3) were recovered

daily over a period of 3 days, with the medium being replaced

each day. After each recovery time point catheters were rinsed in

PBS and adherent bacteria were enumerated by sonication and

plating. Analysis of variance (ANOVA) of logarithmically-

transformed bacterial count data was used to evaluate the effect

of RNPA1000 exposure.

Acute lethal model of infection
Female 5–6 week old CD-1 mice were challenged by

intraperitoneal injection (0.5 ml) of wild type S. aureus strain

Smith, resulting in a final inoculum of 4.556105 colony forming

units/animal; equivalent to 10–100 LD50s and resulted in death of

non-treated control animals (n = 5) within 24 hr post-inoculum.

RNPA1000 was solubilized in 1:1 mixture of DMSO and
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PEG400; Vancomycin was prepared in water. Animals (5/dose

group) were administered 16, 64, and 256 mg/kg or 0.25, 1, 4,

and 16 mg/kg of RNPA1000 or Vancomycin, respectively, at

30 min post infection by subcutaneous injection (0.2 ml). The

percent surviving animals receiving no treatment, a single dose of

Vancomycin, or RnpA-inhibitor was recorded daily over the

course of the study (5 days).

Ethics statement
All animal studies were performed at the University of North

Texas Health Science Center (UNTHSC) at Fort Worth under the

principles and guidelines described in the Guide for the Care and

Use of Laboratory Animals. UNTHSC is an American Association

for Laboratory Animal Science (AALAS) and United States

Department of Agriculture (USDA) accredited facility using

Institutional Animal Care and Use Committee (IACUC) approved

protocol UNT 2006/07-09. The UNTHSC Animal Program is

registered with the Office of Laboratory Animal Welfare (OLAW

Animal Welfare Assurance No. A37711-01).

Supporting Information

Figure S1 RnpA expression. (A) Plotted are the growth

characteristics (optical density; Y-axis), for S. aureus strain

RN4220 containing vector (pCN51; dark blue diamonds), rnpA

sense RNA (pRNPA-S; dark blue triangles) and rnpA antisense

RNA (pRNPA-A.S.; red squares) when grown in the presence of

10 mM CdCl2. Plasmid capable of producing an RNA comple-

mentry to rnpA mRNA exhibited diminished growth for a period

of 4 hrs (X-axis) in the presence of inducer. This growth defect was

not observed when cells were grown in the absence of cadmium

chloride (not shown) or when grown in the presence of 2.5 mM

CdCl2 (hashed line and pink squares). (B) Western blotting results

for S. aureus strain RN4220 pCN51 (vector), RN4220 pRNPA

(overexpressor), and RN4220 pRNPA-A.S. (RnpA depleted) cells

grown in the presence of 2.5 mM CdCl2.

Found at: doi:10.1371/journal.ppat.1001287.s001 (0.29 MB TIF)

Figure S2 S. aureus time-kill assay results. (A) Mid-exponential

phase S. aureus strain UAMS-1 cells were treated with 0.25, 0.5, 1,

2, or 4 times the MIC for RNPA1000. Plotted are the average cfu/

ml at 0, 2, 4, 8, and 24 hr post-RNPA1000 addition for each drug

concentration tested (n = 3); standard deviation shown. (B) Plotted

are the average cfu/ml at 2, 4, 8, and 24 hr post-oxacillin

treatment (0.25, 0.5, 2, or 4 times the MIC; n = 3) of mid-

exponential phase cells. (C) Mid-exponential phase cells were

treated with 0.5 times the MIC for RNPA1000, oxacillin, or both

(RNPA1000 and oxacillin). Shown are the average cfu/ml of mid

exponential phase cells following 2, 4, 8, and 24 hr post treatment

(n = 3); standard deviation shown.

Found at: doi:10.1371/journal.ppat.1001287.s002 (0.30 MB TIF)

Figure S3 RnpA amino acid comparisons. Alignment of amino

acid sequences of RnpA using GramAlign (http://bioinfo.unl.

edu/gramalign.php) with default parameters. Conserved amino

acids are boxed.

Found at: doi:10.1371/journal.ppat.1001287.s003 (2.93 MB TIF)

Table S1 mRNA half-lives of S. aureus transcripts produceddur-

ing exponential or stationary phase growth. Shown are the

expression properties and RNA half-lives of all S. aureus

transcripts produced during exponential and/or stationary phase

growth.

Found at: doi:10.1371/journal.ppat.1001287.s004 (3.46 MB XLS)

Table S2 Characterization of stationary phase-specific small

stable RNAs. Characterization of Stationary Phase-Specific Small

Stable RNAs.

Found at: doi:10.1371/journal.ppat.1001287.s005 (0.03 MB XLS)

Table S3 In vivo efficiacy of RnpA-inhibitor. Acute-lethal

murine model of infection results of animals treated with the

RnpA-inhibitor RNPA1000, Vancomycin (positive control) and

mock treatment (negative control).

Found at: doi:10.1371/journal.ppat.1001287.s006 (0.02 MB XLS)
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