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Abstract

Bacterial extracellular polysaccharides are a key constituent of the extracellular matrix material of biofilms. Pseudomonas
aeruginosa is a model organism for biofilm studies and produces three extracellular polysaccharides that have been
implicated in biofilm development, alginate, Psl and Pel. Significant work has been conducted on the roles of alginate and
Psl in biofilm development, however we know little regarding Pel. In this study, we demonstrate that Pel can serve two
functions in biofilms. Using a novel assay involving optical tweezers, we demonstrate that Pel is crucial for maintaining cell-
to-cell interactions in a PA14 biofilm, serving as a primary structural scaffold for the community. Deletion of pelB resulted in
a severe biofilm deficiency. Interestingly, this effect is strain-specific. Loss of Pel production in the laboratory strain PAO1
resulted in no difference in attachment or biofilm development; instead Psl proved to be the primary structural
polysaccharide for biofilm maturity. Furthermore, we demonstrate that Pel plays a second role by enhancing resistance to
aminoglycoside antibiotics. This protection occurs only in biofilm populations. We show that expression of the pel gene
cluster and PelF protein levels are enhanced during biofilm growth compared to liquid cultures. Thus, we propose that Pel is
capable of playing both a structural and a protective role in P. aeruginosa biofilms.
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Introduction

Biofilms are surface associated communities embedded within

an extracellular matrix [1,2,3]. Biofilm communities exhibit

enhanced antibiotic tolerance [4,5,6]. As a result, biofilm

infections tend to be chronic and difficult to eradicate [2,7]. This

enhanced tolerance is thought to be multi-factorial, owing to

biofilm-associated patterns of gene expression, slow growth rate,

and reduced antimicrobial diffusion within the biofilm [4]. A focus

of research has been to identify biofilm-associated factors that

contribute to their antibiotic tolerance.

The opportunistic pathogen, Pseudomonas aeruginosa, is a model

organism in biofilm research. P. aeruginosa is well known for the

chronic infections it causes in individuals with the genetic disease,

cystic fibrosis (CF) [7]. Biofilm formation within the CF airways is

believed to facilitate the infection, helping the bacteria to

withstand aggressive antimicrobial treatment and host defenses

[8,9].

The extracellular matrix is a distinguishing feature of biofilms,

capable of functioning as both a structural scaffold and protective

barrier to antimicrobials [1,2,10,11,12]. A key component of the

matrix is extracellular polysaccharides [13]. Exopolysaccharides

carry out a wide range of functions involving surface and cell-cell

interactions, as well as protecting against antimicrobials and host

defenses [3,10,14,15,16]. P. aeruginosa produces three exopolysac-

charides, alginate, Pel and Psl, all of which have been implicated in

biofilm development under different circumstances [11].

Pel’s composition has yet to be fully elucidated. Initial

carbohydrate analysis suggests Pel is a glucose-rich polysaccharide

polymer although the exact structure remains unknown [17]. Pel

synthesis machinery is encoded by a seven gene operon (pelA-F)

originally identified in a mutagenesis screen for the loss of pellicle

formation in PA14 [17]. Pel also appears to be important in static

microtiter dish biofilm assays. A pel mutant strain had a defect in

biofilm biomass accumulation in comparison to wild-type PA14

[17,18]. The mechanism behind this observation remains unclear.

Other studies have demonstrated that in the absence of type IV

pili, Pel can play a role in attachment suggesting it can compensate

as an attachment factor in the absence of other adhesins [18].

In this study, we conducted an analysis of Pel function. We

focused our study on two common laboratory strains, PAO1 and

PA14. PAO1 is capable of making both the Pel and Psl

exopolysaccharides, while PA14 is only capable of producing Pel

since three genes of the psl operon are deleted in this strain. We

show that Pel is critical for maintaining cell-cell interactions in

developing PA14 biofilms as well as providing protection against

aminoglycoside antibiotics during biofilm growth. We also show
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that Pel does not appear to play any critical role in PAO1 biofilm

development, where Psl appears to be the primary biofilm

polysaccharide. Finally, we demonstrate that the pel operon is

transcriptionally induced and PelF protein levels increase during

biofilm growth. Thus, we propose that Pel can serve both as a

structural and protective factor within a biofilm community.

Results

Generation of a pel-inducible overexpression strain
To initiate our study, we constructed a Pel overexpression

strain. The native promoter region of pelA was replaced with the

araC-PBAD promoter on the chromosome in two common

laboratory strains, PAO1 and PA14, allowing arabinose-depen-

dent expression of the pel operon (Figure S1A). PA14 is a clinical

strain obtained from a burn patient that has a multi-gene

truncation in the N-terminal region of the psl operon and is

incapable of synthesizing the Psl polysaccharide [19]. Accordingly,

PA14 serves as a useful strain to study the contribution of the Pel

polysaccharide independently of Psl. In contrast, PAO1 has the

necessary genes to produce both polysaccharides. The inducible

strains will be referred to as PAO1PBADpel and PA14PBADpel.

Quantitative RT-PCR was used to quantify pelA transcript level

from log phase cells. The level of pelA transcript increased with

increasing concentrations of the inducer, arabinose (Figure S1C).

The dose-dependent increase in transcription level was similar

between PA14 and PAO1. Addition of 0.2% arabinose led to 51-

and 61-fold increase in expression levels in PA14PBADpel and

PAO1PBADpel, respectively. pelA transcript is expressed 1.8 times

higher in wild-type PA14 compared to wild-type PAO1 relative to

the internal control transcript, ampR (Figure S1C).

Pel overexpression contributes to aggregation, Congo
red binding, pellicle formation and rugose colony
morphology

We evaluated PAO1PBADpel and PA14PBADpel for the ability to

conditionally produce more Pel polysaccharide with increasing pel

transcription. Previous work has demonstrated that Pel synthesis is

controlled at multiple levels, transcriptionally and allosterically

[20,21]. Congo red binding and liquid culture aggregation are two

phenotypes associated with increased polysaccharide production in

multiple bacterial species [20,22,23]. Addition of 1% arabinose to

both PA14PBADpel and PAO1PBADpel leads to bacterial aggregation

in liquid culture relative to the uninduced strain and these bacterial

aggregates hyperbind Congo red (Figure S1B).

Pel expression was previously demonstrated to impact pellicle

formation and colony morphology [17]. Wild-type PA14 forms a

distinct pellicle after about two days of incubation at room

temperature which becomes more pronounced over time. When

induced, PA14PBADpel rapidly produces a thicker pellicle compared

to wild-type. A top-down view reveals that the PA14PBADpel stain

produces a pellicle with a highly defined wrinkly architecture that is

resistant to extensive vortexing (Figure S1D, bottom panel).
Consistent with previously published data, a mutation in pelB leads

to a dramatic reduction in pellicle formation compared to the

parental strain [17,24]. Pellicles produced in wild-type PAO1 grown

under the same conditions are less distinct than PA14 pellicles. No

discernable difference in pellicle formation is seen between PAO1

and PAO1DpelB, but overexpressing Pel enhances pellicle formation

similar to PA14 (Figure S1D). Overexpression of pel produces

enhanced wrinkly colony morphology in PA14, whereas the pelB

mutant grows as a smooth colony with little Congo red binding

(Figure S1D, top panel). Unexpectedly, PAO1 did not produce a

wrinkly colony morphology for any of the tested strains despite

many attempts with varying temperature and media conditions

(Figure S1D, top panel).

Pel contributes to biofilm development post-attachment
We investigated the function Pel plays in biofilm development

using two biofilm culturing methods, a microtiter dish assay and a

flow-cell reactor. A microtiter dish assay quantifies biofilm

formation on plastic during static incubation. In contrast, a flow

cell bioreactor allows a microscopic analysis of live biofilms

growing in dilute medium under conditions of continuous flow.

The influence of Pel on initial attachment to a plastic surface

was examined. A pelB mutation in PA14 did not impact bacterial

attachment (Figure 1A). However, overexpressing pel in either

PA14 or PAO1 increased surface attachment (Figure 1A and
1B). Similar to PA14, no phenotype were seen in a PAO1DpelB

mutant compared to wild-type PAO1 (Figure 1B). In contrast,

but consistent with previously published work, a polar deletion in

psl had a strong attachment defect in PAO1, indicating that Psl,

and not Pel, is an important adhesin for surface attachment under

these conditions [25,26].

Crystal violet staining is an indirect measurement of bacterial

attachment and thus we took a complementary, microscopic

approach to evaluate Pel’s role in attachment to a glass surface in a

flow-cell reactor. Images were acquired by scanning confocal laser

microscopy (SCLM) and analyzed by COMSTAT 1 software for

surface coverage [27]. No statistical differences between PA14,

PA14DpelB, uninduced and induced PA14PBADpel for attachment are

observed (Figure 1C and S2A). Similar to PA14, no difference is

observed for any of the PAO1 strains tested under non-inducing and

inducing conditions (Figure 1D and S2A). These results are slightly

inconsistent with our microtiter dish assay, which demonstrate a

modest but clear increase in attachment for the Pel overexpression

strains. However, in both PAO1 and PA14, a pel mutation did not

affect attachment in either biofilm culturing method.

Unlike surface attachment, we found that Pel has a significant

impact on later stages of biofilm development and this impact was

found to be strain dependent. To assess effects of Pel on later

stages of biofilm development, we grew strains for 24 h in a

microtiter dish assay and found that the pelB mutant strain of PA14

has a significant reduction in biofilm biomass compared to the

parental PA14 strain, similar to previous findings (Figure 2A)

[17,18]. The PA14DpelB biofilm defect was complemented by

supplying Ppel in trans. Ppel contains the entire pel operon cloned

Author Summary

Most bacteria live within biofilm communities, which are a
complex population of microorganisms that attach to
surfaces and produce copious amounts of extracellular
matrix material. Exopolysaccharides are a key feature of
the extracellular matrix and are found in many forms,
ranging from structurally simple linear homopolymers to
structurally complex branched heteropolymers. Exopoly-
saccharides carry out a wide range of functions involving
adherence to surfaces and other cells, structural support
and protection against host and environmental stress. The
goal of our study was to examine the functional
importance of polysaccharide production in the model
biofilm organism, Pseudomonas aeruginosa. Using a
deletion and over expression strategy, we characterized
the function of one polysaccharide, Pel, and demonstrated
that this polysaccharide has two roles, a structural role and
a protective role, against an important class of antibiotics,
aminioglycosides.

The Pseudomonas aeruginosa Biofilm Matrix
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into an arabinose-controlled expression plasmid, pMJT-1

(Figure 2A). Overexpressing Pel in PA14 increased biofilm

biomass almost two-fold (Figure 2A). In contrast to PA14, no

difference is seen between PAO1 and PAO1DpelB, while

overexpressing Pel results in a modest increase of biofilm biomass

(Figure 2B). Conversely, PAO1DpslBCD has a pronounced

defect, suggesting that Psl is the dominant polysaccharide in

PAO1 for both attachment and biofilm maintenance, as reported

by Ma, et al. [26].

Biofilm formation by these strains was monitored in a flow-cell

bioreactor to allow for live imaging and structural analysis. Under

these conditions, P. aeruginosa forms biofilms that contain mush-

room-shaped multicellular structures. PA14 forms small microcol-

onies by day two that further develop into a structurally complex

biofilm with large multicellular aggregates of bacteria by day four

(Figure 2C). In stark contrast, PA14DpelB fails to form cellular

aggregates. After four days of growth, PA14DpelB remains as a

dense monolayer of cells attached to the glass surface, incapable of

Figure 1. Pel is not required for attachment. Attachment of P. aeruginosa PA14 (A) and PAO1 (B) to microtiter dish wells was measured by
crystal violet binding at an OD595. Overexpressing pel by addition of arabinose increased crystal violet binding in both PA14 and PAO1, but a pelB
mutant showed no defect. Attachment to glass slides was visualized in a flow cell after one hour of attachment and one hour of continuous flow.
Medium was supplemented with 0.2% arabinose under inducing conditions. Representative SCLM images of PA14, PA14DpelB and PA14PBADpel are
shown using a 406objective (C). Representative SCLM images of PAO1, PAO1DpelB and PAO1PBADpel are shown using a 406objective (D). Scale bars
represent 25 mm. Error bars represent standard deviations.
doi:10.1371/journal.ppat.1001264.g001

The Pseudomonas aeruginosa Biofilm Matrix
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developing the complex three-dimensional structures typical of the

wild-type strain (Figure 2C). The absence of cell aggregates in

PA14DpelB indicates Pel may be responsible for the cell-to-cell

adhesion necessary for aggregate formation. In support of this,

overexpressing Pel results in larger cellular aggregates and enhanced

biofilm biomass compared to wild-type PA14. Flow cell images were

quantified for four properties of biofilm development using

COMSTAT 1, average thickness, roughness coefficient, surface-

to-volume ratio and maximum thickness (Figure S2B) [27]. Pel

overexpression in PA14 affected each property by increasing the

Figure 2. PA14DpelB is arrested in the monolayer stage of biofilm development. Strains PA14 (A) and PAO1 (B) were compared at 24 h for
levels of biomass in microtiter dishes grown at room temperature by measuring crystal violet binding OD595. Expression of the pel operon from an
arabinose-inducible plasmid pMJT1 (Ppel) but not in the vector control (VC) alleviated the crystal violet staining defect of PA14DpelB. Biofilm structure
was visualized in a flow cell and representative top-down and side-view images are shown for PA14, PA14DpelB and PA14PBADpel (C) and PAO1,
PAO1DpelB and PAO1PBADpel (D). Images were obtained using a 206 objective after four d of growth in continuous flow chambers. Scale bars
represent 100 mm. Error bars represent standard deviations.
doi:10.1371/journal.ppat.1001264.g002

The Pseudomonas aeruginosa Biofilm Matrix

PLoS Pathogens | www.plospathogens.org 4 January 2011 | Volume 7 | Issue 1 | e1001264



average thickness, decreasing the roughness coefficient, decreasing

the surface to volume ratio and increasing the maximum thickness.

In contrast to PA14, no major visual or quantifiable difference is

seen in biofilm structure after four days of growth for PAO1,

PAO1DpelB and PAO1PBADpel (Figures 2D and S2B). Howev-

er, a modest, but not statistically significant, increase in average

biofilm thickness is detected for PAO1PBADpel. We subsequently

assessed whether a Pel-dependent phenotype might manifest itself

in older biofilms. Yet, even after nine days no significant

differences were observed for PAO1, PAO1DpelB and PAO1P-

BADpel (Figure S3).

Continuous expression of pel is required for continued
biofilm growth, but not for maintenance of existing
biofilm structure

Continuous production of the Psl polysaccharide was recently

shown to be required for both the addition of new biofilm biomass

to a growing biofilm and for the maintenance of existing biofilm

structure [26]. Conditional loss of Psl expression resulted in a halt

of biofilm growth and an eventual erosion of the existing biofilm

structure [26].

Using our conditional expression system we grew PA14PBADpel

biofilms for two days in the presence of arabinose and either

continued providing arabinose to the biofilm culture for an

additional two days or we removed it from the growth medium

(Figure 3). Interestingly, halting Pel expression by removing

arabinose resulted in a biofilm that failed to increase in size, but

retained the original shape and mass after two days as calculated

by COMSTAT (Figure S4). The biofilm that was supplied

arabinose continued to grow in size. These results suggest that

continuous Pel production is important over the course of biofilm

development. However, unlike Psl, continuous Pel production is

not required to maintain existing biofilm structure.

Pel is critical for maintaining cell-to-cell interactions in
PA14 biofilms

We hypothesized that the absence of cell aggregates in the

PA14DpelB mutant biofilms is due to a defect in the cell-to-cell

interactions necessary to hold an aggregate together. To initially

test this hypothesis, we used time-lapse microscopy to analyze the

behavior of biofilm cells at an early point in biofilm development.

Dividing cells on the glass surface were monitored and the fate of

daughter cells were separated into two categories [28]. Daughter

cells that remained closely associated with the mother cell were

termed ‘‘aggregate builders’’. Cells that did not remain closely

associated with the mother cells were designated ‘‘flyers’’. We

predicted if Pel were important in cell-to-cell interactions, cells

incapable of Pel production would show a larger percentage of

daughter cells exhibiting ‘‘flyer’’ behavior. Our analysis deter-

mined that Pel is a crucial determinant in daughter cell behavior in

PA14 (Figure 4). As predicted, expression of Pel is related to

daughter cell association with the parental cell. A pelB mutant

displayed increased ‘‘flyer’’ behavior (88.3%) in comparison to

wild-type PA14 (40.2%) and a reduced proportion of ‘‘aggregate

builders’’ were observed (11.7%) than in PA14 (59.8%). Overex-

pressing pel resulted in an increased proportion of aggregate

builders (82%) and relatively few flyers (18%).

Conversely, in PAO1 Psl appears to be the primary polysac-

charide involved in aggregate building. PAO1 and the PAO1Dpel

mutant display indistinguishable daughter cell behavior profiles,

with 33.9% and 32.6% of ‘‘flyers’’, respectively. Conversely,

PAO1DpslBCD exhibits a much larger proportion of ‘‘flyers’’

(85.3%) compared to PAO1 and PAO1DpelB (Figure 4). These

data support our hypothesis that Pel contributes to aggregate

formation in a PA14 biofilm by promoting retention of daughter

cells within a growing aggregate, while Psl appears to be the

critical polysaccharide for aggregate building in PAO1.

To complement the time-lapse microscopy study, we developed

a novel assay involving infra-red laser [29]. This assay involves

maintaining an optical trap in a liquid suspension of bacteria.

Once bacteria enter the trap, they remain there. Initial

experiments determined that continuous trapping of PA14 cells

in liquid culture promoted the formation of stable aggregates.

Using this technique we are able to study the effects of the Pel

polysaccharide for the ability to form and maintain bacterial

clusters. Since Pel was required for maintaining cell-to-cell

interactions in flow cell biofilms, we predicted that Pel would be

required for maintaining stable aggregates in this assay.

Wild-type PA14 forms aggregates after 20 min of trapping in all

visualized fields (Figure 5A). In contrast, PA14DpelB did not form

aggregates, even though a significant amount of free-floating

bacteria entered and remained in the trap (Figure 5B). Rather,

the mutant strain requires a minimum of 45 min of trapping to

form aggregates (Figure 5C). Even with the extended incubation

in the trap, 16% of the fields of view are absent of aggregates.

Based on the differences in time for bacterial clustering to be

observed, these data conclude Pel is an important component in

the initiation of cellular clustering. Subsequently, we tested to see if

Pel was important in maintaining clustering aggregates after an

aggregate was formed. These experiments were set up similarly by

allowing bacterial aggregation to occur for 20 min for wild-type

PA14 and 45 min for the pelB mutant. After the designated

incubation time with the laser, cluster stability was monitored by

microscopy five minutes after the laser trap was disengaged. More

than six aggregates in each strain were visually assessed for stability

and separated into three categories as described in the figure

legend (Figure 5). 85% of wild-type PA14 cell aggregates are

stable five min after the release of the trap. In contrast, only 16%

of the PA14DpelB aggregates remained after the laser trap is

removed. These results further support that Pel is critical for both

initiating and maintaining cell-to-cell interactions.

Pel provides biofilms protection from aminoglycoside
antibiotics

A primary function attributed to the extracellular matrix is

protection [12]. Several well-studied polysaccharides are known to

confer resistance to a range of antibiotics. In P. aeruginosa, alginate

and cyclic glucans have been demonstrated to protect biofilms from

aminoglycosides by directly binding these cationic antibiotics

[15,30,31]. In addition, rugose small colony variants (RSCVs),

which produce elevated levels of Pel and Psl, show increased

tolerance to tobramycin, an aminoglycoside [23,32]. Thus, we

hypothesized that Pel may provide protection from antimicrobials.

Therefore we tested the sensitivity of our strains to several clinically

relevant antibiotics: tobramycin, gentamicin, ciprofloxacin, kana-

mycin, meropenem, ceftazidime, tetracycline, and carbenicillin.

Planktonic cultures of PAO1, PAO1DpelB, PAO1Dpsl, PAO1PBADpel

and WFPA801 (arabinose-inducible psl strain [26]) were initially tested

for antibiotic susceptibility by determining the minimum inhibitory

concentration (MIC) of each strain. No difference is detected between

PAO1, PAO1DpelB, PAO1Dpsl and WFPA801 for any of the antibiotics

tested (Figure S5). However, overexpressing Pel in PAO1 slightly

increases the MIC in comparison to wild-type PAO1 to gentamicin and

tobramycin, two aminoglycoside antibiotics. No difference is seen in

MICs between PA14, PA14DpelB and PA14PBADpel for any of the

antibiotics tested (Figure S5).

The Pseudomonas aeruginosa Biofilm Matrix
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We then assessed Pel’s involvement in planktonic survival by

treating log-phase cultures of our strains with both tobramycin and

ciprofloxacin. Ciprofloxacin was chosen as a representative

antibiotic that has the same MIC for all three strains PAO1,

PAO1DpelB and PAO1PBADpel. Equal susceptibility is seen

between the wild-type and DpelB mutants in both PAO1 and

PA14 (Figure S6). Like the MIC experiments, overexpression of

Pel in PAO1 affords a small degree of protection to killing by

tobramycin and gentamycin, while Pel overexpression in PA14

does not (Figure S6). Similar killing curves are observed between

PA14 and PAO1 strains during ciprofloxacin treatment (Figure
S6).

Figure 3. Continuous Pel production is required for biofilm growth, not maintenance of existing biofilm structure. PA14PBADpel was
grown in 2% TSB for two days under inducing conditions (0.2% arabiniose). Biofilm growth was continued either in the presence (left) or absence
(right) of the inducer arabinose. Representative top-down and side-view SCLM images from day two and day four are shown. Scale bars represent
100 mm.
doi:10.1371/journal.ppat.1001264.g003

Figure 4. Pel impacts daughter cell behavior in early PA14 biofilms. Bacterial cell divisions were monitored by time-lapse microscopy in an
early-stage biofilm grown in a flow cell. Daughter cells that remained within a 15 mm diameter of the mother cell are referred to as ‘‘aggregate
builders’’, other cells were termed ‘‘flyers’’. A minimum of 75 cell divisions was assessed for each strain.
doi:10.1371/journal.ppat.1001264.g004

The Pseudomonas aeruginosa Biofilm Matrix
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We subsequently assessed Pel’s role in antibiotic resistance in a

biofilm model. For a valid comparison of antibiotic tolerance, the

same number of cells must be challenged with the antibiotic of

interest. In order to satisfy this criterion, we used a 48-h colony

biofilm technique that has been demonstrated previously to capture

a biofilm-specific model of antibiotic susceptibility [33]. Bacterial

strains were grown on polycarbonate filters for two days, allowing

complete coverage of the filter and equal colony forming units

(CFUs) for all strains. The filter was then transferred to solid

medium containing antibiotic and incubated for 24 hours. After

treatment, the viable CFUs were quantified. In PA14, a pel mutation

rendered biofilms more susceptible to the aminoglycosides tobra-

mycin and gentamicin, while not impacting the susceptibility to

ciprofloxacin (Figures 6 and S7). However, a pel mutation in

PAO1 did not influence susceptibility to any antimicrobial tested.

Overexpressing pel in both PAO1 and PA14 led to an elevated

tolerance to tobramycin and gentamicin compared to the

corresponding parental strain (Figures 6 and S7). To test

whether Psl overexpression might provide similar aminoglycoside

protection to PAO1, we used an arabinose-inducible Psl

expression strain, WFPA801. Psl overexpression strain was found

not to confer protection from tobramycin (Figure 6).

To make a more direct comparison between planktonic and

biofilm cultures, we compared 24-h-old stationary phase cells with

24-h-old biofilm cells for tobramycin sensitivity. The tobramycin

sensitivity profiles of stationary phase liquid cultures are identical

for PAO1 and PA14 wild-type and the corresponding pelB-mutant

strains (Figure 7). Interestingly, overexpression of Pel in PA14

provides protection in stationary phase cells that is not observed in

log phase cells (compare Figures 7 and S6). Similar to log-phase

treated cells, PAO1PBADpel provides protection to stationary phase

cells. 24-h-biofilms reveal the same susceptibility profiles as the 48-

h-treated biofilms shown in Figure 6, with enhanced sensitivity of

PA14DpelB compared to wild-type (Figure 7).

To complement our analysis of colony biofilms, we determined

the spatial distribution of tobramycin killing in flow cell biofilms.

As expected, PA14 and its derivatives display a similar tobramycin

resistance pattern as the filter biofilm. The pelB mutant strain

produced a monolayer that is easily killed, while the PA14PBADpel

strain biofilm is the least susceptible, probably in part due to the

production of greater amounts of biofilm biomass than PA14

(Figure S8).

Expression of the pel operon is induced during biofilm
growth

Our antimicrobial tolerance data suggest that in PA14, Pel plays

a more important role in biofilm communities as compared to

planktonic cultures. One explanation for this observation is that pel

Figure 5. Pel is important for cell-to-cell interactions necessary for aggregate formation. Laser tweezers were used to trap bacteria and
investigate bacterial clumping phenotypes. The captured bacteria were examined visually by light microscopy for aggregation after 20 min (A) PA14
(B) PA14DpelB. An extended trapping time of 45 min was required to initiate aggregation in PA14DpelB (C). The stability of formed aggregates was
visually assessed five min after the release of the laser trap (center panel A and C). Aggregate stability was classified into three categories, ‘‘stable’’ if
the aggregate remained intact, ‘‘unstable’’ if the aggregate dispersed into single cells and ‘‘none’’ if an aggregate did not form during the allotted
time (right panels). A minimum of six replicates for each strain was assessed. Scale bars represent 10 mm. Representative phase-contrast images are
shown.
doi:10.1371/journal.ppat.1001264.g005

The Pseudomonas aeruginosa Biofilm Matrix
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expression may be enhanced during biofilm growth as compared

to planktonic growth. To test this, we analyzed the expression of

the pel operon in planktonic and biofilm cells using quantitative

RT-PCR. To generate enough biofilm biomass for RT-PCR we

grew the strains on the surface of silicon tubing under constant

flow. We observed that pelA transcript in PA14 is 7.2-fold higher

(+/22.0) when grown as a biofilm for 48 h than in planktonic

conditions (for either logarithmic or stationary phase cells), while

in PAO1 it is 5.11-fold higher (+/23.49). The control transcripts

pslA, lasR and sadC did not exhibit biofilm-specific induction

(Figure 8A). The pslA transcript was chosen as a control because

the Psl polysaccharide is an important structural component in

biofilm development in PAO1. The lasR transcript was chosen

because LasR responds to an increase in biomass and the sadC

transcript was chosen because the product SadC is a diguanylate

cyclase important in regulating biofilm advancement [34,35].

Therefore, an increase in pelA transcript is specific to the pel operon

and not all genes involved in biofilm formation. Even by 24 h of

biofilm growth, PAO1 shows nearly a 15-fold increase in pelA

transcript (Figure S9). To corroborate our transcriptional

analysis, we also demonstrate PelF protein levels are elevated

during biofilm growth but went undetected in stationary phase

liquid cultures (Figure 8B). These data suggest a biofilm-

associated role for Pel.

Discussion

In this study, we have identified two key biofilm-associated

functions of the Pel polysaccharide. Pel is critical for initiating and

maintaining cell-cell interactions. These functions have been

implicated in polysaccharides in other species, such as the MDX

polysaccharide of Shewanella oneidensis and colanic acid of E. coli K-

12 [36,37]. This appears to be a crucial mechanism by which

parent cells retain their daughter cells in the biofilm community.

In the absence of Pel, biofilm formation does not progress beyond

the monolayer stage in PA14.

In addition, Pel appears to provide a measure of protection from

aminoglycoside antibiotics. The antibiotic susceptibility experi-

ments suggest that Pel is capable of providing protection to

planktonic cells when artificially overexpressed, although there is

no phenotype for the pel mutant strain in liquid culture for any of

the tested conditions. However, in biofilms of PA14, both pel

overexpression and a pel mutation impacted aminoglycoside

sensitivities. This suggests that Pel may play an important

protective role in biofilms of this strain.

The mechanism responsible for protection is not clear, but if Pel

behaves similarly to other polysaccharides leading to elevated

aminoglycoside resistance like alginate and ndvB-encoded glucans,

it may bind or sequester the antibiotic. Both alginate and ndvB-

encoded glucans have a high negative charge that is consistent

with their ability to bind positively charged aminoglycosides. If this

model proves to be true, Pel may be an acidic polysaccharide

capable of interacting with cationic antibiotics. This hypothesis

helps explain why no differences were seen in killing of planktonic

or biofilm cells by ciprofloxacin, an anionic antibiotic, and why no

protection was afforded by overexpressing the neutral polysac-

charide, Psl (Figure 6). Another possibility is that Pel production

can influence biofilm structure, which in turn may influence

Figure 6. Analysis of Pel-mediated antibiotic tolerance in biofilms. 48-h filter biofilms were assessed for relative susceptibility. Biofilms were
treated with tobramycin and ciprofloxacin for 24 h. No antibiotic controls are included for baseline comparison. WFPA801 over-expresses the Psl
polysaccharide. Bacterial survival was measured by CFU counts.
doi:10.1371/journal.ppat.1001264.g006
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antimicrobial susceptibility. However, we feel this is unlikely since

the structure of colony biofilms tends to be uniform.

Using PAO1 and PA14 as representative P. aeruginosa laboratory

strains, we see that the role Pel plays in biofilm formation can vary

drastically. In PAO1, it appears that Psl is the predominate

polysaccharide of the biofilm EPS matrix, while in PA14 Pel is

required. However, it appears in other strains, MJK8,

PAO1DwspF and ZK2870, both polysaccharides contribute to

biofilm and/or autoaggregation phenotypes [20,24,32]. Whether

each polysaccharide has a distinct role in biofilm formation and/or

protection, or if their functions are redundant remain to be

determined. Although purely in terms of surface attachment, it

appears that Psl is more important, while Pel is less so.

The enhanced expression of Pel in biofilms is noteworthy. pelA

transcript levels were minimally expressed under the planktonic

culturing conditions we used. Yet despite low pelA transcript in

planktonic conditions, only in biofilms do we detect PelF protein

expression (Figure 8). Therefore, the protection afforded to P.

aeruginosa by Pel from aminoglycosides appears to be a biofilm-

associated mechanism of antimicrobial tolerance. To date, only

the cyclic glucans encoded by the ndvB locus has been shown to be

a biofilm-specific mechanism of antimicrobial tolerance in this

species [30]. Characterizing the structure of Pel and the specific

mechanism behind aminoglycoside protection is underway.

Finally, the ability to prohibit PA14 biofilms from growing larger

by arresting Pel expression is exciting. The biofilm does not dissipate

indicating that continuous Pel is not necessary for biofilm

maintenance. This result is contrary to PAO1 biofilms that require

Psl to be continuously produced for biofilm maintenance [26].

Thus, manipulating Pel and Psl expression may be a central strategy

for disrupting biofilms and targeting them for antibiotic therapy.

Materials and Methods

Bacterial strains, strain construction, and growth media
Strains and primers used in this study are listed in Table S1

[38,39,40,41,42,43]. Plasmid and strain construction are described

in Text S1. Unless otherwise noted, strains were grown at 37uC in

LB medium. For plasmid selection, 300 mg/ml carbenicillin or

100 mg/ml gentamicin was used with P. aeruginosa, and 100 mg/ml

ampicillin or 10 mg/ml gentamicin was used with Escherichia coli.

RNA purification and analysis
RNA was extracted using an RNeasy kit (QIAGEN) according

to manufactures instructions. Contaminating DNA was removed

with an on-column RNase-free DNase I treatment (QIAGEN) and

remaining DNA was removed by an off-column DNase I

treatment (Promega) as recommended. The RNA prep was

confirmed to be free of DNA by PCR. cDNA was generated by

SuperScript III First-Strand Synthesis System for RT-PCR using

random hexamers (Invitrogen). cDNA synthesis was verified by

PCR and quantitated by RT-PCR using the SYBR Green PCR

Figure 7. Analysis of Pel-mediated antibiotic resistance to stationary phase planktonic and biofilm grown cells. Bacterial survival was
assessed for both PA14 (A) and PAO1 (B) 24 h stationary phase cultures and 24 h filter biofilms. Prior to antibiotic treatment, stationary phase
planktonic cells were centrifuged and resuspended in fresh media containing no treatment (No tx) or indicated antibiotics. Biofilm cells were moved
to a fresh media source containing no treatment (No tx) or antibiotics. Planktonic cultures were treated with 5 mg/ml tobramycin (Tob). Biofilm cells
were treated with either 10 mg/ml of gentamicin (Gent) or tobramycin at 5 mg/ml for PAO1 and 150 mg/ml for PA14.
doi:10.1371/journal.ppat.1001264.g007
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Master Mix (Applied Biosystems) as the fluorescent dye.

Fluorescence was measured using ABI Prism 7000 Sequence

Detection and pelA transcript levels were normalized to ampR.

Microtiter dish biofilm
96-well microtiter dish experiments were performed as

described previously [44]. For rapid attachment assays, 100 ml of

log-phase cells were incubated at 37uC for one hour. For analysis

of biofilm development, log-phase cells were incubated at room

temperature for 20 h.

Pellicle formation assay
Standing cultures containing 3-ml LB broth were grown at

room temperature in a glass tube. Pellicles were monitored by

visual inspection between four and ten d. Complete coverage at

the air-liquid interface of an opaque layer of cells is considered to

be indicative of pellicle formation [17].

Congo red assays
LB liquid cultures supplemented with 40 mg/ml Congo red

(Sigma-Aldrich) and incubated shaking overnight 37uC. The

supernatants were measured at OD495 to assess Congo red

binding. Congo red plates contained LB without NaCl, 1% agar,

40 mg/ml Congo red and 15 mg/ml brilliant blue R (Sigma-

Aldrich). Cells were diluted 1/100, 10 ml spotted and incubated at

room temperature for five d.

Flow cell and tube biofilm reactor
The flow cell system and tube biofilm system was assembled as

described previously [32,45,46]. Additional information is found

in Text S1.

Live/dead staining
Biofilms were grown in flow cells in 1% TSB as described in

Text S1 for 4 d and subsequently treated with 1 mg/ml of

tobramycin for 24 h. The MIC for tobramycin when the cells are

grown in 1% TSB is 0.03 mg/ml for PAO1 and 0.06 mg/ml for

PA14. This is in contrast to the MIC of 1 mg/ml seen for PA14

and PAO1 grown in full strength LB. After treatment, flow was

stopped and biofilms were stained with 500 ml of propidium iodide

and SYTO 9 (Invitrogen) for 10 m according to manufactures

instructions. Flow resumed and images were captured after 15 m

of washing.

Biofilm daughter-cell analysis
The movement and behavior of individual daughter cells of P.

aeruginosa monocultures were monitored in young (,2 days old)

flow cell biofilms. The flow cell setup was the same as described.

Fluorescent images were taken every 45 seconds for 2 hours using

the time-lapse feature of the Zeiss Axiophot microscope (Carl

Zeiss). The fate of new daughter cells were visually tracked and

each cell was classified as an ‘‘aggregate builder’’ or ‘‘flyer’’ [28].

From one cell division to the next, ‘‘aggregate builders’’ remained

within a 15 mm diameter circle centered at the point of cell

division, while ‘‘flyers’’ moved further away on the surface or were

dissociated from the surface by media flow. A minimum of 75 cell

divisions of each strain were tracked and classified.

Laser trap experiments
An open-top chamber for microscopy was constructed by

layering five Secure-Seal Imaging Spacers 13mm in diameter

(Grace Bio-Labs) onto a microscope cover slip and this chamber

placed on an inverted Olympus microscope above a 406 or 606

Figure 8. pel expression is elevated during biofilm growth. (A) Planktonic and biofilm cells are compared for transcript level by quantitative
RT-PCR. In both conditions, bacteria are grown to log phase at 37uC. Planktonic cells are incubated statically in a test tube at room temperature for
30 min. Biofilm cells are grown in a tube biofilm, with an initial attachment period of 30 min followed by continuous flow for 48 h. Transcripts are
normalized to ampR and then to the initial planktonic condition. Results shown are the mean of three independent experiments. Error bars represent
the standard deviations. (B) Planktonic and biofilm cells were probed for PelF protein expression by western blot. A 24 h shaking liquid culture was
compared to a 24 h grown tube biofilm at RT. Samples are normalized to total protein. The arrow indicates PelF expected protein size, 56 kDa.
doi:10.1371/journal.ppat.1001264.g008
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long-working-distance objective. Bacteria were grown shaking at

37uC to OD600 1. Samples were incubated statically at room

temperature for 1–7 hours. Static incubation of the cells prior to

the experiment allowed for a slight increase (,2-fold, data not

shown) in pel expression, presumably for the same reasons pel

expression is required for pellicle formation in static liquid cultures

[17]. A 100 mL bacterial suspension was placed into the chamber.

Laser trapping was done by focusing a 1064 nm laser through the

microscope objective at the top of the sample at a transmitted

power of ,50mW. For PA14 wild-type bacteria, the first trap-

induced clustering was seen in samples that had been in the open-

top chamber for 20 min; for DpelB bacteria the first trap-induced

clustering, if any, was seen in samples that had been in the open-

top chamber for 45 min. Cluster stability was evaluated by

monitoring formed bacterial aggregates for cluster dispersal five

min after the laser beam was blocked.

Immunoblot analysis
Immunoblots were performed with whole-cell lysates as

described with equal amounts of total protein in each lane [47].

Protein concentration was measured using the Pierce 660 nm

protein assay (Thermo Scientific). Lysates were probed for PelF

expression levels with a specific PelF antibody. Additional

information on antisera production and immunoblot analysis are

described in Text S1.

Antibiotic sensitivity assays
MIC growth curves were completed in a 96-well microtiter dish

grown in LB broth at 37uC. Log phase bacteria were diluted to 105

CFU in each well. A range of concentrations was assessed for each

antibiotic. Bacterial growth was measured after 24 hours of

incubation using a microplate reader (OD590).

For planktonic killing curves, cells were either grown to log

phase in LB or grown for 24 h to assess stationary phase

susceptibility. Log phase cultures were split and one culture was

treated with either tobramycin (Sigma), gentamicin (Sigma) or

ciprofloxacin (Bayer Healthcare), while the control culture was

untreated. Stationary phase cells were resuspending in fresh media

containing antibiotics. The cultures were incubated shaking at

37uC. Bacterial survival was assessed over time by viable plate

counts.

For biofilm killing, overnight liquid cultures were diluted 1/100

and five ml were spotted onto a UV-sterilized 25mm polycarbon-

ate filter (GE Osmonics). Biofilms were grown for two d unless

otherwise stated at 37uC and moved to fresh solid media each day.

Biofilms were exposed to with 5 mg/ml tobramycin or 1 mg/ml

ciprofloxacin for 24 h. Bacterial viability was obtained by

resuspending the filter in 1 ml of PBS and serially diluting to

obtain viability counts.

Supporting Information

Figure S1 Generation of a pel-conditional strain. (A) Schematic

drawing showing the replacement of the promoter region with an

arabinose promoter on the chromosome to produce PAO1PBAD-

pel. (B) Overnight growth in the presence of 1% arabinose to

PA14PBADpel and PAO1PBADpel leads to visual aggregates in liquid

culture (right tubes) but not seen in the uninduced culture for

either PA14PBADpel and PAO1PBADpel (left tubes). Congo red was

added to visually enhance the phenotype. (C) Quantitative RT-

PCR analysis of pelA transcription in PA14 and PA14PBADpel (left)

and PAO1 and PAO1PBADpel(right) in the presence of increasing

concentrations of arabinose. pelA transcription is normalized to

ampR transcription. Results shown are the mean of three

independent experiments. Error bars represent the standard

deviations. (D) Colony morphology (top) and pellicle formation

(middle, side-view; bottom, top-down) of PA14, PA14DpelB and

PA14PBADpel (left) and PAO1, PAO1DpelB and PAO1PBADpel

(right) grown in LB without NaCl containing 0.5% arabinose.

Photographs were taken after five d of growth at room

temperature.

Found at: doi:10.1371/journal.ppat.1001264.s001 (0.42 MB TIF)

Figure S2 Attachment and biofilm structure quantified by

COMSTAT 1. (A) Using the substratum coverage variable in

COMSTAT 1, the relative number of cells attached to the glass

slide of a flow cell after one hour of attachment followed by one

hour of continuous flow was measured. Four images per flow cell

done in duplicate in three independent experiments were

evaluated. (B) COMSTAT 1 assessed four variables of biofilm

structure for PA14, PA14DpelB, PA14PBADpel, PAO1, PAO1DpelB

and PAO1PBADpel for the SCLM image stacks of day four

biofilms. Three images per flow cell done in duplicate in three

independent experiments were evaluated.

Found at: doi:10.1371/journal.ppat.1001264.s002 (0.18 MB TIF)

Figure S3 Biofilm structure in nine-day PAO1 biofilms. (A)

Biofilm structure was visualized by SCLM in a flow cell after 9

days of growth. Representative top-down and side-view images are

shown for PAO1, PAO1DpelB and PAO1PBADpel. Images were

obtained using a 206 objective. Scale bars represent 100 mm. (B)

Images were quantified for average thickness, roughness coeffi-

cient, surface to volume ratio and maximum thickness by

COMSTAT 1. Four image stacks per flow cell done in duplicate

in two independent experiments were evaluated.

Found at: doi:10.1371/journal.ppat.1001264.s003 (0.97 MB TIF)

Figure S4 COMSTAT 1 analysis of arabinose removal in

PA14PBADpel flow cell biofilms. PA14PBADpel biofilms were

grown for two days under inducing conditions (0.2% arabinose).

Biofilms were either continued to be grown in the presence or

absence of the inducer, arabinose. COMSTAT 1 evaluated

SCLM images for average thickness, roughness coefficient,

surface to volume ratio and maximum thickness. Four image

stacks per flow cell done in duplicate in two independent

experiments were evaluated.

Found at: doi:10.1371/journal.ppat.1001264.s004 (0.11 MB TIF)

Figure S5 Effect of Pel on the minimum inhibitory concentra-

tion (MICs) to a wide range of antimicrobials. Strains were

assessed for their MIC by broth dilution to carbenicillin (Carb),

ciprofloxacin (Cip), tobramycin (Tob), gentamicin (Gent), tetracy-

cline (Tet), meropenem (Mero), kanamycin (Kan) and ceftazidime

(Ceft). Concentrations shown are in mg/ml and were empirically

determined. Bacterial strains were grown in the presence of 0.5%

arabinose.

Found at: doi:10.1371/journal.ppat.1001264.s005 (0.11 MB TIF)

Figure S6 Analysis of Pel-mediated antibiotic tolerance in

planktonic culture. Log-phase planktonic cultures were treated

with either tobramycin (A), gentamicin (B) or ciprofloxacin (C).

Bacterial survival was monitored over time by assessing the

number of CFUs. On the left, PA14 (solid line), PA14DpelB

(dashed line) and PA14PBADpel (dotted line) were treated with

5 mg/ml tobramycin, 2 mg/ml gentamicin and 0.1 mg/ml

ciprofloxacin. On the right, PAO1 (solid line), PAO1DpelB

(dashed line) and PAO1PBADpel (dotted line) were treated with

5 mg/ml tobramycin, 5 mg/ml gentamicin and 1 mg/ml cipro-

floxacin.

Found at: doi:10.1371/journal.ppat.1001264.s006 (0.33 MB TIF)
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Figure S7 Pel provides tolerance to gentamicin during biofilm

growth. 48 h colony biofilms for PA14, PA14DpelB and PA14PBADpel

(A) and PAO1, PAO1DpelB and PAO1PBADpel (B) were assessed for

antibiotic susceptibility. Biofilms were treated with gentamicin for

24 h. No antibiotic addition is included for baseline comparisons.

Bacterial survival was measured as CFUs.

Found at: doi:10.1371/journal.ppat.1001264.s007 (0.13 MB TIF)

Figure S8 Live/dead staining of tobramycin-treated PA14 flow

cell biofilms. 4 d old flow cell biofilms were treated with 1 mg/ml

of tobramycin for 24 h. Treated biofilms were stained with Syto 9

(green) and propidium iodide (red) to visually assess live and dead

cells. Images were taken from a 206 objective.

Found at: doi:10.1371/journal.ppat.1001264.s008 (2.14 MB TIF)

Figure S9 pelA expression is induced throughout biofilm growth.

Biofilm cells are grown in a tube biofilm, with an initial attachment

period of 30 min followed by continuous flow for 48 h. pelA

transcripts are normalized to ampR transcript levels and then to the

planktonic condition at time 0 h. Results shown are the mean of

three independent experiments. Error bars represent the standard

deviations.

Found at: doi:10.1371/journal.ppat.1001264.s009 (0.07 MB TIF)

Table S1 A list of primers, plasmids and bacterial strains used in

the study.

Found at: doi:10.1371/journal.ppat.1001264.s010 (0.05 MB

XLS)

Text S1 Supplementary text describing some of the materials

and methods utilized.

Found at: doi:10.1371/journal.ppat.1001264.s011 (0.08 MB

DOC)
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